Spring 2023

Based on Rocco Servedio's notes

Lecturer: Siu On Chan

Notes 11: Proper vs Improper Learning

Proper learning: Algorithm required to output $h \in \mathcal{C}$, i.e. $\mathcal{H} = \mathcal{C}$

Improper learning: Algorithm allowed to output $h \notin \mathcal{C}$, i.e. $\mathcal{H} \supseteq \mathcal{C}$

(Below) When $\mathcal{C} = \{3\text{-term DNF}\}\ \text{over } X = \{0,1\}^n$

Can efficiently PAC-learn $\mathcal C$ with improper algorithm

No efficient algorithm can properly PAC-learn \mathcal{C} (under standard complexity assumption)

By contrast, 1-term DNF (= disjunctions) can be efficiently PAC-learned properly

using Consistent Hypothesis Algorithm: $\frac{1}{\varepsilon} \left(O(n) + \ln \frac{1}{\delta} \right)$ samples

1. 3-TERM DNF vs 3-CNF

Every 3-term DNF is 3-CNF

3-term DNF $f(x) = T_1 \vee T_2 \vee T_3$ where T_i are conjunctions

Since \vee distributes over \wedge , i.e. $(u \wedge v) \vee (x \wedge y) = (u \vee x) \wedge (u \vee y) \wedge (v \vee x) \wedge (v \vee y)$

$$f(x) = T_1 \vee T_2 \vee T_3 = \bigwedge_{\text{literals } x \text{ in } T_1, \ y \text{ in } T_2, \ z \text{ in } T_3} (x \vee y \vee z)$$

There is efficient improper PAC learning algorithm when $\mathcal{C} \subsetneq \mathcal{H} = \{3\text{-CNF}\}$

e.g. when $C = \{3\text{-term DNF}\}$

Consistent Hypothesis Algorithm based on Elimination

$$|\mathcal{H}| = 2^{\binom{n}{3}2^3} = 2^{O(n^3)}$$
 \Longrightarrow $\frac{1}{\varepsilon} \left(O(n^3) + \ln \frac{1}{\delta} \right)$ samples

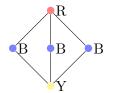
2. Graph 3-Coloring

Theorem 1. If some efficient algorithm A properly PAC-learns 3-term DNF, then some efficient randomized algorithm B solves Graph-3-Coloring (and violates standard complexity assumption)

Graph-3-Coloring problem

Input: n-vertex undirected graph G

Goal: Decides if vertices of G can be colored using 3 colors so that no edge has both endpoints with the same color



Graph-3-Coloring is NP-complete

widely believed not solvable in polynomial time; current fastest algorithm takes $2^{\Theta(n)}$ time. In the theorem, efficient randomized algorithm B for Graph-3-Coloring on graph G

- (1) always runs in poly(n) time
- (2) If G is not 3-colorable, B always says No
- (3) If G is 3-colorable, B says Yes with probability $\geq 1/2$ (can be boosted to $\geq 1-2^{-n}$)

Standard complexity assumption is $NP \neq RP$

The theorem is proved via reduction from Graph-3-Coloring to proper PAC-learning of 3-term DNF An algorithm R that maps n-vertex graph G to set $S = S^+ \cup S^-$ of labelled examples over $\{0,1\}^n$

s.t. G has 3-coloring
$$\iff$$
 (S^+, S^-) is consistent with some 3-term DNF

R runs in poly(n) time (in particular $|S| \leq \text{poly}(n)$)

Labelled samples (S^+, S^-) from R corresponds to PAC-learning task with parameters

$$\varepsilon = 1/(2|S|)$$
 $\delta = 1/2$ $\mathcal{D} = \text{uniform distribution over } S$

Suppose some algorithm A solves proper PAC-learning of 3-term DNF

Randomized algorithm B to solve Graph-3-Coloring on graph G_{-}

Run reduction R on G to get labelled samples S^+ and S^-

Feed m random samples to A to get its hypothesis h

Return Yes if h is consistent with all labelled samples (S^+, S^-)

(Return No otherwise)

Let's check that ${\cal B}$ satisfies the three conditions of an RP algorithm

Since A efficiently PAC-learns 3-term DNF

Number of samples needed by A is $m = \text{poly}(n, \frac{1}{\epsilon}, \frac{1}{\delta}) = \text{poly}(n)$

Overall, B always runs in poly(n) time

If G has no 3-coloring, no 3-term DNF c(x) is consistent with all labelled samples

Neither is A's hypothesis h(x) that is 3-term DNF

B always says No

If G has 3-coloring, some 3-term DNF c(x) is consistent with all labelled samples

With probability $\geqslant \delta = 1/2$, A must output h with $\operatorname{err}_{\mathcal{D}}(h,c) = 0$ (effectively no error) B will say Yes

3. The Reduction

Reduction algorithm R reads G and outputs S^+ and S^-

Every vertex v in G yields a positive sample in S^+ that has 0 at position v and 1 everywhere else Every edge (u, v) in G yields a negative sample in S^- that has 0 at positions u and v and 1 elsewhere

e.g.
$$S^{+} = \begin{cases} 01111, \\ 10111, \\ 11011, \\ 11101, \\ 11110 \end{cases} \qquad S^{-} = \begin{cases} 00111, \\ 01011, \\ 01101, \\ 10110, \\ 11010, \\ 11100 \end{cases}$$

In general

$$S^{+} = \{ \mathbb{1}_{\neq v} \mid v \in G \}$$

and

$$f^{-} = \{ \mathbb{1}_{\notin(u,v)} \mid (u,v) \in G \}$$

Claim 2. If G has 3-coloring, then (S^+, S^-) is labelled by some 3-term DNF

Proof. Fix 3-coloring f of G using colors R, B, Y

 $T_R = \text{conjunction of all } x_v \text{ such that } v \text{ is not red in } f$

 T_B, T_Y defined similarly (not blue, not yellow respectively)

When is $T_R(x)$ true? Every $x \in \{0,1\}^n$ is the indicator of some subset $S \subseteq V$, i.e. $x = \mathbb{1}_S$

 $T_R(\mathbb{1}_S)$ is true \iff S contains all non red vertices \iff \overline{S} are all red

 $c = T_R \vee T_B \vee T_Y$ correctly labels (S^+, S^-) because

 $c(\mathbb{1}_{\neq v}) = 1$ since $\{v\}$ is all red (or all blue, or all yellow)

 $c(\mathbb{1}_{\neq(u,v)}) = 0$ since endpoints u, v of an edge are not both red (nor both blue, nor both yellow)

Claim 3. If (S^+, S^-) is labelled by some 3-term DNF, then G has 3-coloring

Proof. Fix 3-term DNF $c = T_R \vee T_B \vee T_Y$ that correctly labels (S^+, S^-)

Color v red if $T_R(\mathbb{1}_{\neq v})$ is true; Similarly for blue and yellow

If a vertex can get multiple colors, pick any one of them

 $c(\mathbb{1}_{\neq v}) = 1$ \Longrightarrow every vertex v can get at least one color

 $\widehat{c(\mathbb{1}_{\not\in(u,v)})} = 0 \qquad \Longleftrightarrow \qquad \widehat{T_R}(\mathbb{1}_{\not\in(u,v)}) = T_B(\mathbb{1}_{\not\in(u,v)}) = T_Y(\mathbb{1}_{\not\in(u,v)}) = 0$

When is $T_R(\mathbb{1}_{\not\in(u,v)})$ false?

Let P be the set of vertices whose positive literal appears in T_R ; Likewise N for negative

 $T_R(\mathbb{1}_{\not\in(u,v)})$ is false $\iff u\in P$ or $v\in P$ or some vertex $w\in N$ is distinct from u,v

if $u \in P$ then $T_R(\mathbb{1}_{\neq u}) = 0$ and u cannot be red (Likewise $v \in P$ implies v cannot be red)

if some $w \in N \setminus \{u, v\}$, then $T_R(\mathbb{1}_{\neq u}) = 0$ and u cannot be red (and neither can v)

Thus $T_R(\mathbb{1}_{\not\in(u,v)})=0$ implies at least one of u or v can't be red

 $T_R(\mathbb{1}_{\neq(u,v)}) = T_B(\mathbb{1}_{\neq(u,v)}) = T_Y(\mathbb{1}_{\neq(u,v)}) = 0$ means u and v can't get the same color