Lecturer: Siu On Chan

Notes 9: Occam's Razor

1. Hypothesis class

Hypothesis class $\mathcal{H} = \text{set of hypotheses}$ the learning algorithm may output

Usually $\mathcal{H} \supseteq \mathcal{C}$, but can sometimes be bigger

e.g. Winnow1 learns $\mathcal{C} = \{k\text{-sparse monotone disjunctions}\}\ \text{using } \mathcal{H} = \{\text{LTFs with} \ge 0 \text{ weights}\}$

Proper learning: Algorithm required to output $h \in \mathcal{C}$, i.e. $\mathcal{H} = \mathcal{C}$

Improper learning: Algorithm allowed to output $h \notin \mathcal{C}$, i.e. $\mathcal{H} \supseteq \mathcal{C}$

2. Consistent hypotheses

Fix concept class \mathcal{C} and finite hypothesis class \mathcal{H}

Consistent Hypothesis Algorithm

Given labelled samples, output any $h \in \mathcal{H}$ consistent with all samples

Call hypothesis h bad if $\operatorname{err}_{\mathcal{D}}(h,c) \geq \varepsilon$

Theorem 1. For any distribution \mathcal{D} over instance space X, given m independent samples from $\mathrm{EX}(c,\mathcal{D})$, if $m\geqslant \frac{1}{\varepsilon}\ln(|\mathcal{H}|/\delta)$, then

 $\mathbb{P}[some\ bad\ hypothesis\ in\ \mathcal{H}\ consistent\ with\ all\ samples] \leqslant \delta$

Better bound than Halving Algorithm + Online-to-PAC conversion

Proof. For any bad $h \in \mathcal{H}$

 $\mathbb{P}[h \text{ consistent with all } m \text{ samples}] \leq (1-\varepsilon)^m \leq e^{-\varepsilon m} = \delta/|\mathcal{H}|$

Union bound:

 $\mathbb{P}[\text{some bad hypothesis in } \mathcal{H} \text{ consistent with all samples}] \leq |\mathcal{H}| \cdot (\delta/|\mathcal{H}|) = \delta$

In other words, $|\mathcal{H}| \leq \delta e^{\varepsilon m}$

Occam's Razor: Scientific principle to favour simpler hypotheses

PAC learning algorithm due to small hypothesis class

Simple hypothesis \approx hypothesis with short description \approx small number of hypotheses

3. PAC LEARNING SPARSE DISJUNCTIONS

 $C = \{\text{disjunctions}\} \text{ over } X = \{0, 1\}^n \qquad s \stackrel{\text{def}}{=} \text{size}(c)$

How to PAC learn C efficiently?

(1) Elimination Algorithm + Online-to-PAC conversion: $O\left(\frac{n}{\varepsilon}\ln\frac{n}{\delta}\right)$ samples

 $\approx \frac{n}{\varepsilon}$ ignoring log factors

(2) Winnow1 + Online-to-PAC conversion: $O\left(\frac{s \ln n}{\varepsilon} \ln \frac{s \ln n}{\delta}\right)$ samples

 $\approx \frac{s}{\varepsilon}$ ignoring log factors

Better dependence on n; Good for small s

But improper

(3) Consistent Hypothesis Algorithm: $O\left(\frac{s}{\varepsilon} \ln \frac{n}{\delta}\right)$ samples

Because $|\mathcal{H}| = \binom{n}{s} 2^s \leqslant (2n)^s$ $(\mathcal{H} \stackrel{\text{def}}{=} \{s\text{-sparse disjunctions}\})$

Even better dependence on n and s

But inefficient! (need $|\mathcal{H}| \approx n^s$ time, not poly $(n, 1/\varepsilon, 1/\delta, s)$)

(4) (Below) efficient algorithm using $O\left(\frac{1}{5}(\ln\frac{1}{5} + s\ln\frac{1}{5}\ln n)\right)$ samples

 $\approx \frac{s}{\varepsilon}$ ignoring log factors; Good dependence on s and n

Idea 1: Find consistent disjunction quickly using Greedy Heuristic for Set Cover

Idea 2: Further reduce $|\mathcal{H}|$ by hypothesis testing

4. Set Cover

A computational problem (not originated from learning)

Universe $U = \{1, \dots, m\}$ of m elements and subsets $S_1, \dots, S_r \subseteq U$ Input:

Find smallest collection S_{i_1}, \ldots, S_{i_k} of given subsets to cover U (i.e. $S_{i_1} \cup \cdots \cup S_{i_k} = U$) Goal:

Set Cover is NP-hard (as hard as thousands other problems conjectured to be intractable) We settle for an approximation algorithm that outputs a nearly optimal solution

Greedy Heuristic

For $t = 1, 2, \ldots$ until U is covered

Pick largest subset S_{i_t}

Remove from every subset S_i all elements in S_{i_t} (i.e. S_i becomes $S_i \setminus S_{i_t}$)

Theorem 2. Greedy Heuristic always outputs a cover with \leq OPT $\cdot \ln m$ many sets

Proof. Let $T_t \subseteq U$ denote set of uncovered elements after iteration t(initially $T_0 = U$)

Largest subset S_{i_t} at iteration t covers $\geq 1/\text{OPT}$ fraction of T_{t-1}

Uncovered elements are covered by OPT sets; largest set must cover $\geq 1/OPT$ fraction Reason: Using Claim,

$$|T_t| \le \left(1 - \frac{1}{\text{OPT}}\right) |T_{t-1}| \le \dots \le \left(1 - \frac{1}{\text{OPT}}\right)^t m < e^{-t/\text{OPT}} m$$

$$\le 1 \quad \text{if } t \ge \text{OPT} \cdot \ln m$$

Elimination Algorithm + conversion only uses negative samples

Keep removing literals x_i or \overline{x}_i that contradicts a negative sample

All literals in c are also in h(h automatically consistent with all positive samples)

Improved algorithm further uses positive samples to shorten h(and hence shrink \mathcal{H})

Find a few literals to "explain" (i.e. cover) all positive samples

c contains s literals, all positive samples can be "covered" with s literals

Can quickly find a cover using $s \ln m$ literals (m = #positive samples)

Improved algorithm.

 $\{y_1,\ldots,y_r\}$ = set of literals that are consistent with all negative examples i.e. if literal y_i is true in some negative sample, then y_i is excluded

For $1 \leq i \leq r$, let $S_i = \text{set of positive samples where } y_i$ is true

Find a set cover S_{i_1}, \ldots, S_{i_k} using $k = s \ln m$ sets

Hypothesis $h = y_{i_1} \vee \cdots \vee y_{i_k}$

$$\begin{aligned} |\mathcal{H}| &= \binom{n}{s \ln m} 2^{s \ln m} \leqslant (2n)^{s \ln m} \\ \text{Need } &|\mathcal{H}| \leqslant \delta e^{\varepsilon m} \end{aligned}$$

True if $(2n)^{s \ln m} \leq \delta e^{\varepsilon m} \iff s(\ln m) \ln 2n + \ln(1/\delta) \leq \varepsilon m$ Can show that $m \geq \Omega\left(\frac{1}{\varepsilon}(\ln(1/\delta) + s(\ln n) \ln \frac{s \ln n}{\varepsilon})\right)$ suffices (details omitted)