CSCI4230 Computational Learning Theory Lecturer: Siu On Chan Spring 2023 Based on Rocco Servedio's notes

Notes 7: PAC model

1. PROBABLY APPROXIMATELY CORRECT

Valiant'84 "Theory of the Learnable"; Turing Award'14 Average case performance wrt a fixed instance distribution Assume instances $x \in X$ are drawn from a distribution \mathcal{D} (unknown and arbitrary) (Training phase) Given independent samples (x, c(x)), all labelled by an unknown concept $c \in \mathcal{C}$ Goal: Output hypothesis $h \subseteq X$ s.t. $\operatorname{err}_{\mathcal{D}}(h,c) := \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq c(x)]$ is small Equivalently $\operatorname{err}_{\mathcal{D}}(h,c) = \mathbb{P}_{x \sim \mathcal{D}}[x \in h \bigtriangleup c]$ Recall $h \triangle c := (h \setminus c) \cup (c \setminus h)$ (symmetric difference) cX h error region $= h \triangle c$ Want small error region under \mathcal{D}

err_{\mathcal{D}}(h, c) > 0 unavoidable: some $x \sim \mathcal{D}$ falls inside the error region Error cannot always be small: if unlucky, training samples may be useless **New goal:** With high probability over training samples and internal randomness (*probably*), output hypothesis $h \subseteq X$ with small error (*approximately correct*)

$$\begin{split} & \operatorname{EX}(c,\mathcal{D}) = \operatorname{distribution} \text{ of labelled samples } (x,c(x)) \text{ when } x \text{ is drawn from } \mathcal{D} \\ & \operatorname{Algorithm} A \operatorname{PAC} \operatorname{learns} \mathcal{C} \text{ if} \\ & \text{ for any concept } c \in \mathcal{C} \\ & \text{ for any distribution } \mathcal{D} \text{ over } X \\ & \text{ for any confidence parameter } \delta > 0 \text{ and accuracy parameter } \varepsilon > 0 \\ & \text{ when } A \text{ takes } m \text{ samples from } \operatorname{EX}(c,\mathcal{D}) \\ & \text{ with probability } \geqslant 1-\delta \text{ over the samples and } A \text{'s randomness} \\ & \text{ output hypothesis } h \subseteq X \text{ such that } \operatorname{err}_{\mathcal{D}}(h,c) \leqslant \varepsilon \\ A \text{ is efficient if runs in } \operatorname{poly}(1/\delta, 1/\varepsilon) \text{ time} \qquad (\text{plus two more conditions below}) \\ & \operatorname{poly}(1/\delta, 1/\varepsilon) \text{ means at most polynomial in } 1/\delta \text{ and } 1/\varepsilon \qquad (\text{e.g. at most } \varepsilon^{-2}\delta^{-1}) \\ & \text{ or } \operatorname{poly}(n, 1/\delta, 1/\varepsilon) \text{ time if } X = \{0, 1\}^n \text{ or } \mathbb{R}^n \\ \text{Run time always} \geqslant m \qquad (\text{just to read the samples}) \end{split}$$

Algorithm A only knows $\mathcal{C}, \delta, \varepsilon$

A doesn't know \mathcal{D} (distribution independent learning)

A works under any \mathcal{D} (strong assumption!), but error is also evaluated under \mathcal{D}

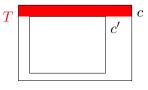
2. PAC LEARNING RECTANGLES

 $X = \text{the plane} = \mathbb{R}^2 \qquad \mathcal{C} = \text{axis-aligned rectangles} = \{R(x_1, y_1, x_2, y_2) \mid x_1, y_1, x_2, y_2 \in \mathbb{R}\}$ where $R(x_1, y_1, x_2, y_2) = \{(x, y) \in \mathbb{R}^2 \mid x_1 \leq x \leq x_2 \text{ and } y_1 \leq y \leq y_2\}$ $\mathcal{D} = \text{fixed distribution over } \mathbb{R}^2 \text{ (unknown)}$ -Algorithm-

Hypothesis h = smallest rectangle containing all positive samples (\emptyset if no positive samples)

Claim 1. Given any $c \in C$, if $m \ge (4/\varepsilon) \ln(4/\delta)$, with probability $\ge 1 - \delta$, the Algorithm outputs hypothesis h with $\operatorname{err}_{\mathcal{D}}(h, c) \le \varepsilon$.

Proof. $h \subseteq c$ always Want to show $h \triangle c = c \setminus h$ small under \mathcal{D} **Case 1:** c has probability mass at least $\varepsilon/4$ under \mathcal{D} Can decompose $c \setminus h$ as union of four strips: top, left, bottom, right



Left, bottom, right strips defined analogously c' = c with top, left, bottom, right strips removed

Claim: $c' \subseteq h$ with probability $\geq 1 - \delta$

Reason: if each strip contains a sample, then $c' \subseteq h$ top strip has no sample with probability $(1 - \varepsilon/4)^m$ same for other strips, union bound:

$$\mathbb{P}[\text{some strip has no sample}] \leq 4(1-\varepsilon/4)^m \leq 4(e^{-\varepsilon/4})^m \leq \delta$$

 $c' \subseteq h$ implies $\operatorname{err}_{\mathcal{D}}(h, c) \leqslant \varepsilon$

because each strip has probability mass $\varepsilon/4$ under \mathcal{D}

Case 2: c has probability mass less than $\varepsilon/4$ under \mathcal{D}

Then $c \setminus h$ must have probability mass less than ε

3. Hypothesis size

some concepts c(x) have a natural size (e.g. #bits needed to describe c) e.g. $\mathcal{C} = \text{DNF}$ formulae over $X = \{0, 1\}^n$ every boolean function $f: X \to \{0, 1\}$ can be represented as a DNF some as a 2-term DNF (e.g. $f(x) = (\overline{x}_1 \wedge \overline{x}_2 \wedge x_6) \vee (x_9 \wedge \overline{x}_4 \wedge x_2)$) some requires $\geq 2^{\sqrt{n}}$ terms $\operatorname{size}(f) = \operatorname{size} \operatorname{of} \operatorname{the smallest} \operatorname{representation} \operatorname{of} f \operatorname{in} \mathcal{C}$ e.g. when $\mathcal{C} = \{\text{DNF}\}$, sometimes size(f) may be #terms PAC learning Algorithm A is efficient if runs in time $poly(1/\delta, 1/\varepsilon, size(c))$ Redefinition: or poly $(n, 1/\delta, 1/\varepsilon, \text{size}(c))$ if $X = \{0, 1\}^n$ or \mathbb{R}^n c = target conceptin particular, A cannot output h with large size(h) Algorithm knows $\mathcal{C}, \delta, \varepsilon, \text{size}(c)$ Some \mathcal{C} may not have interesting size measure; size can be ignored e.g. monotone conjunctions have size $\leq n$

4. Efficient hypothesis

Often PAC learning Algorithm A outputs hypothesis $h:X\to\{0,1\}$ that is itself a **program** Not useful if h too slow

If $X = \{0, 1\}^n$ or \mathbb{R}^n , hypothesis *h* is **polynomially evaluatable** if *h* runs in poly(n) time PAC learning Algorithm *A* is **efficient** if it additionally outputs polynomially evaluatable hypothesis e.g. inefficient *A*:

stores all training samples in h

then h exhaustively searches for smallest DNF consistent with all training samples