CSCI4230 Computational Learning Theory Lecturer: Siu On Chan Spring 2023 Based on Rocco Servedio's notes

Notes 4: Perceptron and Halving algorithms

1. Perceptron Algorithm

Update weights **additively** Learn well-separated (i.e. large margin) LTF with possibly negative weights Let $c(x) = \mathbb{1}(v \cdot x \ge \theta)$ be the unknown LTF **Normalization:** threshold $\theta = 0$ (halfspace through the origin) Reason: Add extra coordinate $x_{n+1} = 1$ to every instance

 $v \cdot (x_1, \dots, x_n) \ge \theta \qquad \Longleftrightarrow \qquad (v, -\theta) \cdot (x_1, \dots, x_{n+1}) \ge 0$

Normalization: Every sample x has unit length, i.e. ||x|| = 1 (recall $||x|| = \sqrt{x_1^2 + \cdots + x_n^2}$) Reason: By previous assumption $\theta = 0$; rescaling x doesn't change the sign of $v \cdot x$ **Normalization:** weight vector v has unit length

Perceptron

Initialize:w = 0On input x, output hypothesis $h(x) = \mathbb{1}(w \cdot x \ge 0)$ and get c(x)False positive (h(x) = 1, c(x) = 0):Update w as w - xFalse negative (h(x) = 0, c(x) = 1):Update w as w + x

On false positive, $w \cdot x$ is too big, so subtract x from w, so that $(w - x) \cdot x = w \cdot x - ||x||^2 = w \cdot x - 1$ On false negative, $w \cdot x$ is too small, so add x to w, so that $(w + x) \cdot x = w \cdot x + ||x||^2 = w \cdot x + 1$

Theorem 1. (Perceptron convergence) Let $c(x) = \mathbb{1}(v \cdot x \ge 0)$ be centered LTF with ||v|| = 1. Suppose all samples x have unit length, let margin δ be min $|v \cdot x|$ over all samples x received by the algorithm. Then Perceptron Algorithm learns c with at most $1/\delta^2$ mistakes

Claim 2. After M mistakes, $w \cdot v \ge \delta M$

Proof. True when M = 0 since w = 0Will show that every mistake increases $w \cdot v$ by $\ge \delta$ On false positive, $w \cdot v$ becomes $(w - x) \cdot v = w \cdot v - x \cdot v \ge w \cdot v + \delta$ On false negative, $w \cdot v$ becomes $(w + w) \cdot v = w \cdot v + x \cdot v \ge w \cdot v + \delta$

Claim 3. After M mistakes, $||w||^2 \leq M$

Proof. True when M = 0 since w = 0Will show that every mistake increases $||w||^2$ by ≤ 1 On false positive, $||w||^2$ becomes $||w - x||^2 = (w - x) \cdot (w - x) = ||w||^2 - 2\underbrace{w \cdot x}_{\geq 0} + \underbrace{||x||^2}_{=1}$

On false negative, $||w||^2$ becomes $||w+x||^2 = (w+x) \cdot (w+x) = ||w||^2 + 2\underbrace{w \cdot x}_{<0} + \underbrace{||x||^2}_{=1}$

 $\delta M \leqslant w \cdot v \underset{\text{Cauchy-Schwarz}}{\leqslant} \|w\| \underbrace{\|v\|}_{||v||} \leqslant \sqrt{M} \qquad \Box$

The above bound is tight!

Proof of Perceptron Convergence.

Claim 4. When $X = \{x \in \mathbb{R}^d \mid ||x|| = 1\}$ and $d \ge \lfloor 1/\delta^2 \rfloor$, any deterministic algorithm for learning LTF makes $\lfloor 1/\delta^2 \rfloor$ mistakes on certain sample sequences and LTF with margin δ

Proof. ith x^i sample is *i*th standard basis vector e_i (i.e. 1 at position *i* and 0 elsewhere) Number of samples is $n \stackrel{\text{def}}{=} \lfloor 1/\delta^2 \rfloor$ (as most *d* by assumption) All samples will be labeled as the opposite of algorithm's prediction Will find $v \in \mathbb{R}^d$ with $||v|| \leq 1$ that "correctly" classifies all e_i with margin δ , i.e.

 \forall "correct label sequence" $y \in \{1, -1\}^n$,

This forces $v_i = \delta y_i$ for all $i \leq n$ (e.g. $v = \{+\delta, -\delta, -\delta, +\delta\}$) Indeed $||v||^2 = \delta^2 ||y||^2 = \delta^2 n \leq 1$

2. Dual perceptron

 $y_i \delta = v \cdot e_i$

In Perceptron Algorithm w always ± 1 -sum of samples, i.e. \exists signs $\sigma_1, \ldots, \sigma_\ell \in \{1, -1\}$ s.t.

$$w = \sigma_1 x^{i_1} + \dots + \sigma_\ell x^{i_\ell}$$

Initially w = 0; Every mistake adds a new term $\sigma_j x^{i_j}$ to w

Memorizing all mistakes, on sample x,

$$w \cdot x = \sum_{1 \leqslant j \leqslant \ell} \sigma_j(x^{i_j} \cdot x)$$

Computable given inner products $x^{i_j} \cdot x$ between samples Now takes #mistakes time to compute w (slower) Can replace inner product \cdot with any **kernel function** K(,)

3. Halving Algorithm

Given any finite concept class \mathcal{C}

Halving Algorithm

K always contains all $c \in C$ consistent with all the labeled samples so far (initially K = C) Hypothesis h is the majority vote over concepts in K

Every mistake removes at least half of concepts from K **Claim:** Halving Algorithm makes $\leq \log |\mathcal{C}|$ mistakes Slow: |K| **per round** Hypothesis isn't from \mathcal{C} , but the majority over a subset of \mathcal{C}

4. RANDOMIZED HALVING ALGORITHM

-Randomized Halving Algorithm

K always contains all $c \in C$ consistent with all the labeled samples so far (initially K = C) Randomly choose a concept $c \in K$ to be the hypothesis h

Claim 5. On any sequence of samples x^1, \ldots, x^m labeled by any $c \in C$,

 $\mathbb{E}[\# mistakes of the algorithm] \leq \ln |\mathcal{C}| + O(1)$

Proof. Fix $c \in C$ and x^1, \ldots, x^m Suppose at some point |K| = rWe will bound $\mathbb{E}[\#$ future mistakes $] \leq M_r$ for some upper bound M_r defined below

Order concepts c_1, \ldots, c_r in K according to when they are eliminated by the sequence e.g. first eliminated batch c_1, \ldots, c_3 , next c_4, c_5 etc, finally $c_r = c$ never eliminated On first sample x^1 , Algorithm randomly chooses one of c_1, \ldots, c_r If c_r is chosen, no mistake (1/r chance)If chosen c_t makes mistake on x^1 (1/r chance for each t < r) c_1, \ldots, c_t (and possibly more) must be eliminated

K shrinks to (at most) size r - t, expect M_{r-t} more mistakes

$$M_r \leq \sum_{1 \leq t < r} \frac{1}{r} (1 + M_{r-t}) \qquad \iff \qquad rM_r \leq \sum_{1 \leq t < r} (1 + M_{r-t}) = r - 1 + M_1 + \dots + M_{r-1}$$

3

Similarly for r - 1: $(r - 1)M_{r-1} = (r - 2) + M_1 + \dots + M_{r-2}$ (*) Subtracting, $r(M_r - M_{r-1}) \leq 1$

$$M_r \leqslant \frac{1}{r} + M_{r-1} \leqslant \frac{1}{r} + \frac{1}{r-1} + M_{r-2} \leqslant \dots \leqslant \underbrace{\frac{1}{r} + \frac{1}{r-1} + \dots + \frac{1}{1}}_{\text{Harmonic number}} = \ln r + O(1)$$

In the above, we defined M_r by (*)

Constant factor improvement over deterministic halving:

 $\log |\mathcal{C}| / \ln |\mathcal{C}| = \log e = 1.44\dots$