CSCI4230 Computational Learning Theory

Lecturer: Siu On Chan

Spring 2023 Based on Rocco Servedio's notes

Notes 3: Winnow algorithms

1. LINEAR THRESHOLD FUNCTIONS (LTF)

Let $w \cdot x \stackrel{\text{def}}{=} \sum_{1 \leq i \leq n} w_i x_i$ (inner product between $w \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$) An **LTF** $f : \mathbb{R}^n \to \{0, 1\}$ has the form

$$f(x) = \begin{cases} 1 & \text{if } w \cdot x \geqslant \\ 0 & \text{otherwise} \end{cases}$$

θ

for some weight vector $w \in \mathbb{R}^n$ and threshold $\theta \in \mathbb{R}$

Every disjunction is LTF, e.g. for $x \in \{0,1\}^n$ $x_1 \lor x_2 \lor \overline{x}_3$ true $\iff x_1 + x_2 + (1 - x_3) \ge 1 \iff x_1 + x_2 - x_3 \ge 0$

Every 1-DL is LTF (why?)

2. WINNOW1

Update weights multiplicatively

Learn k-sparse (i.e. involves k literals) monotone disjunctions using LTF hypothesis $O(k \log n)$ mistakes

When k really small (e.g. 5) and n really big, $O(k \log n)$ is better than n (in Elimination Algorithm) -Winnow1_____

In fact non-zero w_i is always $1, 2, 4, 8, \ldots$ (power of 2) Observation: no w_i is ever negative Observation: in every promotion step, some x_i in c has its w_i doubled

Claim: Each w_i always < 2nReason: When w_i is doubled, x_i must be 1 and $w \cdot x < n$ Claim: #promotion steps $\leq k \log(2n)$ Reason: No x_i in c is ever eliminated, and is promoted $\leq \log(2n)$ times (k many such x_i)

Lemma 1. #*elimination* steps $\leq \#$ *promotion* steps + 1

 $\begin{array}{ll} \textit{Proof. Let } W = \textit{total weight} = \sum_{1 \leqslant i \leqslant n} w_i & (\textit{initially } n) \\ \textit{In each elimination step } W \textit{ decreases by } w \cdot x \geqslant n & (w_i \textit{ becomes } 0 \textit{ iff } x_i = 1) \\ \textit{In each promotion step } W \textit{ increases by } w \cdot x < n & (w_i \textit{ doubled iff } x_i = 1) \\ \textit{After } e \textit{ elimination steps and } p \textit{ promotion steps, } 0 \leqslant W \leqslant n - en + pn, \textit{ so } e \leqslant p + 1. \end{array}$

Winnow1 makes $\leq 2k \log(2n) + 1 = O(k \log n)$ mistakes on k-sparse monotone disjunction Variation: During promotion, instead of doubling w_i , can multiply w_i with $\alpha > 1$; Threshold θ need not be n; See Littlestone if interested

Can Winnow1 learn non-monotone disjunction? (False positive kills it e.g. $c(x) = \overline{x}_1, x^1 = 11$) Or LTF with nonnegative weights? (Not without new ideas such as Winnow2)

3. WINNOW2

Can assume threshold $\theta = 1$ (by rescaling w) An LTF $x \in \{0, 1\}^n \mapsto \mathbb{1}(w \cdot x \ge 1)$ is δ -separated if

 $\forall x \in \{0,1\}^n$, either $w \cdot x \ge 1$ or $w \cdot x \le 1 - \delta$

e.g. r-out-of-k threshold function

$$c(x) = \mathbb{1}(x_{i_1} + \dots + x_{i_k} \ge r) = \mathbb{1}\left(\frac{1}{r}x_{i_1} + \dots + \frac{1}{r}x_{i_k} \ge 1\right)$$

is 1/r-separated

Winnow2					
Initialize:	$w_1 = \cdots = w_n$	$= 1, \theta \text{ fixe}$	d to be n ,	α fixed to be $1 + \delta/\delta$	$^{\prime}2$
On input x ,	output hypothesis	$h(x) = \mathbb{1}(u)$	$v \cdot x \ge \theta$) and	d get $c(x)$	
False positiv	re $(h(x) = 1, c(x) =$	= 0: Fo	or every i s.t	$x_i = 1$	
Divide a	w_i by α (dem	otion)			
False negativ	ve $(h(x) = 0, c(x))$	= 1: F	or every i s.	t. $x_i = 1$	
Multipl	$y w_i by \alpha$ (pr	omotion)			

Claim 2. Winnow2 can learn δ -separated LTF with nonnegative weights $w \in \mathbb{R}^n$ with $O((\log n)\delta^{-2}\sum_{1 \le i \le n} w_i)$ mistakes

Proof in Littlestone §5

k-sparse monotone disjunctions are 1-out-of-k threshold functions Winnow2 learns k-sparse monotone disjunctions with $O(k \log n)$ mistakes (direct proof in Blum §3.2)