
CSCI4230 Computational Learning Theory Spring 2023
Lecturer: Siu On Chan Based on Rocco Servedio’s notes

Notes 3: Winnow algorithms

1. Linear threshold functions (LTF)

Let w · x def
=

∑
1⩽i⩽nwixi (inner product between w ∈ Rn and x ∈ Rn)

An LTF f : Rn → {0, 1} has the form

f(x) =

{
1 if w · x ⩾ θ

0 otherwise
for some weight vector w ∈ Rn and threshold θ ∈ R

1

0

Every disjunction is LTF, e.g. for x ∈ {0, 1}n

x1 ∨ x2 ∨ x3 true ⇐⇒ x1 + x2 + (1− x3) ⩾ 1 ⇐⇒ x1 + x2 − x3 ⩾ 0

Every 1-DL is LTF (why?)

2. Winnow1

Update weights multiplicatively
Learn k-sparse (i.e. involves k literals) monotone disjunctions using LTF hypothesis
O(k logn) mistakes
When k really small (e.g. 5) and n really big, O(k logn) is better than n (in Elimination Algorithm)
Winnow1

Initialize: w1 = · · · = wn = 1, θ fixed to be n
On input x, output hypothesis h(x) = 1(w · x ⩾ θ) and get c(x)
False positive (h(x) = 1, c(x) = 0): For every i s.t. xi = 1

Set wi = 0 (demotion, in fact elimination)
False negative (h(x) = 0, c(x) = 1): For every i s.t. xi = 1

Double wi (promotion)

In fact non-zero wi is always 1, 2, 4, 8, . . . (power of 2)
Observation: no wi is ever negative
Observation: in every promotion step, some xi in c has its wi doubled

Claim: Each wi always < 2n
Reason: When wi is doubled, xi must be 1 and w · x < n
Claim: #promotion steps ⩽ k log(2n)
Reason: No xi in c is ever eliminated, and is promoted ⩽ log(2n) times (k many such xi)

Lemma 1. #elimination steps ⩽ #promotion steps + 1

Proof. Let W = total weight =
∑

1⩽i⩽nwi (initially n)
In each elimination step W decreases by w · x ⩾ n (wi becomes 0 iff xi = 1)
In each promotion step W increases by w · x < n (wi doubled iff xi = 1)
After e elimination steps and p promotion steps, 0 ⩽ W ⩽ n− en+ pn, so e ⩽ p+ 1. □

1



2

Winnow1 makes ⩽ 2k log(2n) + 1 = O(k logn) mistakes on k-sparse monotone disjunction
Variation: During promotion, instead of doubling wi, can multiply wi with α > 1; Threshold θ need
not be n; See Littlestone if interested

Can Winnow1 learn non-monotone disjunction? (False positive kills it e.g. c(x) = x1, x
1 = 11)

Or LTF with nonnegative weights? (Not without new ideas such as Winnow2)

3. Winnow2

Can assume threshold θ = 1 (by rescaling w)
An LTF x ∈ {0, 1}n 7→ 1(w · x ⩾ 1) is δ-separated if

∀x ∈ {0, 1}n, either w · x ⩾ 1 or w · x ⩽ 1− δ

e.g. r-out-of-k threshold function

c(x) = 1(xi1 + · · ·+ xik ⩾ r) = 1

(
1

r
xi1 + · · ·+ 1

r
xik ⩾ 1

)
is 1/r-separated

Winnow2
Initialize: w1 = · · · = wn = 1, θ fixed to be n, α fixed to be 1 + δ/2
On input x, output hypothesis h(x) = 1(w · x ⩾ θ) and get c(x)
False positive (h(x) = 1, c(x) = 0): For every i s.t. xi = 1

Divide wi by α (demotion)
False negative (h(x) = 0, c(x) = 1): For every i s.t. xi = 1

Multiply wi by α (promotion)

Claim 2. Winnow2 can learn δ-separated LTF with nonnegative weights w ∈ Rn with
O((logn)δ−2

∑
1⩽i⩽nwi) mistakes

Proof in Littlestone §5

k-sparse monotone disjunctions are 1-out-of-k threshold functions
Winnow2 learns k-sparse monotone disjunctions with O(k logn) mistakes (direct proof in Blum §3.2)


	1. Linear threshold functions (LTF)
	2. Winnow1
	3. Winnow2

