CSCI4230 Computational Learning Theory Lecturer: Siu On Chan

Notes 1: Introduction; Learning Models

Textbook: An Introduction to Computational Learning Theory, Michael J. Kearns and Umesh V. Vazirani

This course (and notes) will mostly follow Servedio's, Diakonikalas', and Kanade's Theory course — homeworks & exams about **proofs**; no programming Pre-requiste: Discrete Math, Probability, math maturity

1. INTRODUCTION

This course focuses on (binary) classification problem in supervised learning

Input: training samples $(x^1, y^1), \ldots, (x^n, y^n)$ Output: hypothesis $h \subseteq X$

 $\begin{array}{ll} x^i: \text{ an instance/features; } & y^i \in \{0,1\}: \text{ category} \\ \text{e.g. } x^i \text{ are emails; } & y^i \in \{\text{spam, not spam}\} \\ \text{e.g. } x^i \text{ are documents; } & y^i \in \{\text{English, not English}\} \end{array}$

samples x^i belong to **instance space** X (typically $X = \{0, 1\}^n$ or \mathbb{R}^n) assume samples are classified according to unknown **concept** $c \subseteq X$ i.e. $y^i = \mathbb{1}(x^i \in c)$ Here $\mathbb{1}$ denotes the indicator function c belongs to known **concept class** \mathcal{C} (some collection of subsets of X) Want output hypothesis h to be close to unknown concept cWill also think of c and h as $X \to \{0, 1\}$ (indicator functions)

2. EXAMPLES OF PROBLEMS (CONCEPT CLASSES) 2.1. *k*-DNF (disjunctive normal form) formulae.

boolean variables x_1, x_2, \ldots, x_n **literals** $x_1, \overline{x}_1, x_2, \overline{x}_2, \ldots, x_n, \overline{x}_n$ (a variable or its negation) k-DNF formula: disjunction of terms, each term being conjuction of at most k literals 3-DNF e.g. $(x_1 \wedge \overline{x}_5 \wedge \overline{x}_9) \vee (\overline{x}_4 \wedge x_7 \wedge x_8)$ 1-DNF (also called **disjunction**) e.g. $x_1 \vee \overline{x}_8 \vee \overline{x}_4 \vee x_2$

2.2. k-term DNF formulae.

k-term DNF formula: disjunction of *k* terms, each being conjuction of (any number of) literals 2-term DNF e.g. $(x_1 \wedge x_2 \wedge \overline{x}_3 \wedge x_4) \lor (\overline{x}_2 \wedge x_6 \wedge \overline{x}_7)$

2.3. *k*-CNF (conjuctive normal form) formulae. *k*-CNF formula: conjunction of terms, each term being disjuction of at most *k* literals 1-CNF (also called conjunction) e.g. $x_1 \wedge \overline{x}_8 \wedge \overline{x}_4 \wedge x_2$ 3-CNF e.g. $(x_1 \vee \overline{x}_5 \vee \overline{x}_9) \wedge (\overline{x}_4 \vee x_7 \vee x_8)$ Every *k*-term DNF is equivalent to *k*-CNF, because \vee distributes over \wedge , i.e.

 $(u \land v) \lor (x \land y) = (u \lor x) \land (u \lor y) \land (v \lor x) \land (v \lor y)$

But some $k\text{-}\mathrm{CNF}$ has no equivalent $k\text{-}\mathrm{term}$ DNF when $k\geqslant 2$

3. Overview of some models

3.1. Probably Approximately Correct (PAC) model.

Valiant'84 seminal paper "A Theory of the Learnable" Assume instances x drawn from an unknown but fixed distribution D over XRandom instances, hence more realistic than worst case instances

3.2. PAC model with random noise.

Random classification noise: each sample's label y^i is corrupted independently with probability η , for some fixed $\eta > 0$

3.3. Online model.

Examples arrive online; classify each example before the next arrives

Sequence of examples may be worst case or random

3.4. Active learning.

Learning algorithm can choose example x and query c(x)

Questions we will ask:

- (1) Given concept class C, how many samples suffice to learn $c \in C$? e.g. $C = \{$ conjunctions $\}$
- (2) How many samples are needed?
- (3) Given random samples, how to efficiently learn $c \in C$? Even with enough samples to information-theoretically learn $c \in C$, there may not be efficient algorithm