
Page 1

Abstract

Nowadays, electronic commerce on the Internet provides many new business

opportunities. The number of software applications for business on the Internet is

growing very quickly. To explore the capabilities of using the Common Object Request

Broker Architecture (CORBA) to develop distributed applications, a cinema tickets

reservation system was developed in this project. This system was implemented in Java

to make use of her portability, built-in threading, garbage collection and exception

handling etc..

Page 2

Acknowledgement

I would like to acknowledge my supervisor Professor Michael Lyu, who provided many

valuable opinions and guidance for me throughout the project.

Additionally, my partner Mr. Andy Kam deserves many thanks for discussing with me

and helping me in this project.

Finally, I would like to thanks all people who have helped me in this project.

Page 3

Table of Contents

 ABSTRACT

1 INTRODUCTION

2 NATURE OF DISTRIBUTED SYSTEM

 DISTRIBUTED SYSTEMS

 EXAMPLES OF DISTRIBUTED SYSTEMS

 COMMON CHARACTERISTICS OF DISTRIBUTED SYSTEMS

3 INTRODUCTION TO CORBA

 DISTRIBUTED SOFTWARE ENGINEERING USING CORBA

 CORBA OBJECT MODEL

 THE OMG INTERFACE DEFINITION LANGUAGE

 OBJECT MANAGEMENT ARCHITECTURE

4 SYSTEM REQUIREMENT

 SYSTEM DESCRIPTION

 SYSTEM REQUIREMENT AND CAPABILITIES

5 SYSTEM DESIGN

 IDL DESIGN AND DESCRIPTION

 USER INTERFACES

 DATABASE DESIGN

6 IMPLEMENTATION OF THE SYSTEM

 DEVELOPMENT ENVIRONMENT

 TOP-LEVEL VIEW

 SERVER OBJECTS

7 TESTING

8 DISCUSSION

9 CONCLUSION

 APPENDIX

Page 4

Chapter 1

Introduction

In these decades, our styles of living are changing rapidly, for example, in the past we

only have telephones at home but now most of us have a mobile phone with us so that

we can make a phone call to other person at any time, any where. A few years ago only

a few people know about Internet and at that time it is only for academic purpose. Now

Internet become a part of our daily life, we go there for chatting, shopping, searching

information, sending email, buying stock, entertaining and sharing information.

We live in a world with advanced technology. People try to make the advanced

technology more applicable to our daily lives. E-commerce is a direction people are

working for because we want to do business through the Internet. If we can solve the

existing problems of developing E-commerce

, there are many business opportunities for future.

To do business through the Internet, we need to solve some problems such as security,

heterogeneous between objects, authentication and law etc. Internet is a distributed

system where objects communicate with other to invoke their methods. To develop

E-commerce through Internet, applications need to use distributed transaction to

accomplish a service. A distributed transaction involves several objects to provide a

service in which all objects must commit or abort atomically. Moreover, objects in the

Internet are developed by different programming languages and reside at different

platforms.

Page 5

There are many solutions to these problems such as Socket programming, Microsoft’s

DCOM, JAVA RMI, RPC, CORBA etc. CORBA is a new technology in this area and it

provides good features to develop applications on Internet. It allows objects developed

in different language to communicate with others and it is platform independent. It

provides many services such as locating an object in the system. It monitors the

transactions to ensure that the transactions are either commit or abort as a whole. To

allow objects to use others' method, only the interfaces are required to be specified.

Client programs can use the interfaces to invoke other objects’ methods regardless their

implementation. It has the advantage that if the implementation was changed, no

change in the client programs are required.

To explore the capabilities of CORBA in the project, an online cinema tickets booking

center was developed by using CORBA and JAVA. The outline of the report is as

follows: Chapter 1 is the introduction. Chapter 2 is the nature of distributed system.

Chapter 3 is introduction to CORBA. Chapter 4 is the system requirement. Chapter 5 is

the system design. Chapter 6 is the implementation. Chapter 7 is the testing. Chapter 8

is the discussion. The chapter 9 is the conclusion.

Page 6

Chapter 2

Nature of Distr ibuted System

2.1 Distr ibuted Systems

The application developed in this project is on the world’s largest distributed system –

the Internet. Hence, before the introduction of CORBA and the application, I would like

to introduce the concepts and key properties of distributed system.

The outline of this chapter is as follows:

�
What is a distributed system?

�
Examples of distributed systems

�
Common characteristics

Firstly, a definition of distributed system is given. Then there is a comparison of it with

the centralized systems. For a better appreciation of the issues that are involved in

distributed systems, we will review several distributed systems that we have already

come across in our lives. Finally, we shall then elaborate on the common characteristics

of distributed systems.

Page 7

Figure 2.1 Distributed System Types (Enslow 1978)

The model of systems is involved hardware (processors), application and system

software (control) and application and system information (data). This is a three

dimensional model but which of these dimensions have to be distributed for the system

to be a distributed system?

For a system to be distributed, Enslow requires that distribution is transparent and

system users are unaware of the fact that the system is composed of multiple

processors.

According to the figure 1.1, Enslow's model (1978) is fairly rigid: A system is a fully

distributed system if and only if all dimensions are fully decentralized.

1. Full hardware decentralization includes multiple heterogeneous control units (as

opposed to a single control unit with multiple processors and multiple

homogeneous control units).

Page 8

2. Control must be provided by multiple units cooperating with each other rather

than in a master-slave relationship

3. Data must be partitioned and/or replicated, each part with its own local directory.

However, Enslow's definition is too restrictive in our opinion. Techniques of distributed

system construction should also be employed if only a single dimension is

decentralized.

Nature of Centralized System

To introduce the consequences of distributing a system, we compare its characteristics

to those of centralized systems.

In a centralized system, there is a single component that may be decomposed further.

However, its parts (such as classes in an object-oriented program) are not autonomous,

i.e. the component possess full control over them at all times. As there are no other

components, there is no need to provide an interface to the component.

If the component supports multiple users (e.g. a relational database), the users need to

share the complete component at all times. A centralized system runs in a single process.

There is no need to consider concurrency control and synchronization.

There is only a single point of control. The program counter of the processor, register

variable contents and the virtual memory occupied by the process determine the state of

the component.

Page 9

As a result, the system is either running or it is not. There is no such case where part of

the system or parts of its interconnection have failed and need to recover.

Nature of Distributed System

The components in a distributed system may be decomposed further. These

components are autonomous, i.e. they possess full control over their parts at all times.

The components, however, have to provide interfaces to be able to use each other.

In a distributed system, there may be components that are used by only some users but

are not used by others. It is an advantage to have these components residing on

machines that are local to the users that use them.

A distributed system runs in multiple processes. These processes are usually not

executed on the same processor. Hence it is necessary for inter-process communication

with other machines through a network. Different levels of abstraction (confer the

ISO/OSI reference model) are involved in this communication.

Unlike centralized system, distributed systems have multiple points of control, but

these are not totally independent. Components have to take into account that they are

being used by other components and have to react properly to requests.

There are multiple points of failure in a distributed system.

�
It may fail because a component of the system has failed.

�
It may fail if the network has broken down.

Page 10

�
It may also fail if the load on a component is so high that it does not respond within

a reasonable time frame.

However, the distributed system is more fault-tolerant than the centralized one.

2.2 Examples of distr ibuted systems

We now review some examples of distributed systems that can provide a better

understanding of what are to be tackled in the construction of distributed systems.

Local Area Network

Figure 2.2 Local area network

A local area network consists of a number of different computers. Workstations and

personal computers provide the front-end for network users. Different servers provide

Page 11

shared services.

One or several network file servers provide data storage services. Any workstation and

PC may henceforth store files on disks maintained by these file servers.

A local name server maps machine names to IP addresses, user names to user ids and

group names to group ids. Any machine can request a service to resolve a certain name.

One or several print servers control the access to shared printers. Workstations and PCs

have the server printing jobs for them.

Another component provides a gateway to the wide area network. As a user you need

not be aware which machine provides which service.

Database Management System

Figure 2.3 Database Management System

Many client applications want to access and update shared data in a database. The client

Page 12

applications might be banking systems, real-estate agencies, airline-ticket reservation

systems accessing data like balances of bank accounts, details of property that are for

sale or to let, or airfares and aircraft reservation data.

The database is physically distributed over several processors to take advantage of local

data accesses for increased performance of client applications.

Data may be replicated to reduce the impact of failures of a processor and/or the

network. This can also reduce the bottleneck of some heavy load databases.

Each processor runs a database monitor that implements the mapping between the

database seen by clients and the physical database stored on the different processors.

Database monitors have to cooperate with each other to implement client accesses to

remote data, updates of replicated data and concurrency control. The physical

distribution of data is therefore transparent to clients.

Automatic Teller Machine Network

Figure 2.4 ATM network

Page 13

To facilitate bank customers to withdraw cash from their bank account, an automatic

teller machine network is maintained by Banks and building societies. Besides the basic

requirement of cash withdrawal, customers also have high security, privacy and

reliability requirements. Moreover, customers may want to withdraw cash from their

account through a ‘ foreign’ teller machine.

Technically, a front-end computer controls one or several tellers. It transfers withdrawal

requests to the computer of the account holder's bank, it awaits the bank granting the

request, and it has to be interoperable with heterogeneous computer systems, for

example, Hang Seng Bank may have different account management systems than

HongKong Bank and Bank of China.

Each bank has fault-tolerant systems to quickly recover from failures of their account

holding computers. An example is the ‘Hot standby’ computer which maintains a copy

of the account database and can replace the main computer within seconds.

World Wide Web

Page 14

Figure 2.5 World Wide Web

A Web browser is a user interface to the world s biggest distributed system, the Internet.

A Web page includes links to other Web pages. These links are specified as URLs.

A URL is the name of a protocol (ftp, http, etc.), the name of a site

(gateway1.cse.cuhk.edu.hk) and the name of a file.

To follow a link to a remote Web page, your Web browser talks to the local name server

to resolve the symbolic site name into an IP address (137.189.88.153). Then it talks to

the http daemon running on that web site and requests the delivery of the Web page

addressed by the URL.

To obtain a file from a remote ftp site, your Web browser resolves the site name with the

local name server, it talks to the ftp daemon running on that site and performs an

anonymous login. Then it switches the daemon into an appropriate transfer mode and

obtains the file addressed by the file addressed in the URL.

To send an e-mail, your Web browser opens a new dialog window where you can enter

the addressee(s) and the e-mail text. Then it talks to the local sendmail daemon to have

it delivering the email to the sendmail daemons on the sites of your addressees.

2.3 Common character istics of distr ibuted systems

At a first glance constructing a centralized system appears to be much easier and it is

Page 15

really the case. So why do we bother about constructing distributed systems?

Apparently, some properties of a distributed system cannot be achieved by a centralized

system. Hence, it is worthwhile to keep those properties in mind during the design or

assessment of a distributed system.

The properties are as follows:

Resource shar ing: I can put all my publications on my Web site, hence sharing them

with all users of the Internet.

Openness: I have credit cards from Hang Seng Bank and Wells Fargo Bank in U.S.A.

and can use them at others’ tellers. These banks, however, would never develop a

common centralized teller system. It is because their systems are open and

interoperable that I have this flexibility.

Concurrency: Multiple database users can concurrently access and update data in a

distributed database system. The database system preserves integrity against concurrent

updates and users perceive the database as their own copy. They are, however, able to

see others’ changes after they have been completed.

Scalability: Distributed systems, such as the Internet, grow each day to accommodate

more users and to withstand higher load.

Fault tolerance: Two (distributed) account databases are managed by the bank to

quickly recover from a break-down.

Page 16

Transparency: When using a distributed system it appears to users as if it was

centralized.

We will discuss the above properties one by one in details.

Resources Shar ing

Hardware, software and data are the resources to be shared. It has to be defined who is

allowed to access shared data in a distributed system. For the sensitive information, an

access control policy has to be defined.

To implement this access control policy a resource manager is needed. As an example,

for the Web, the local http daemon takes the role of this resource manager. To control

access, it interprets a .htaccess file in the directory where a particular page is stored and

only grants access to those sites that are listed in that file.

A more complex resource manager is the database monitor we came across in the

DBMS example. Apart from access control, it provides the naming scheme for data (the

mapping of data to physical storage addresses) and controls concurrent accesses.

There are different models resource managers and resource users can be deployed in a

distributed systems architecture. In a client/server model, there are servers that provide

certain resources and clients who use them. Servers may themselves be clients and use

resources provided by other servers.

Page 17

In this project, we will extensively use a more sophisticated model, the object-based

model. In this model, any resource is considered as an object that encapsulates the

resource by means of operations that users of the resource can invoke. This model is

used by the Object Management Group (OMG) in the Common Object Request Broker

Architecture (CORBA).

Openness

Openness tries to address the following question: How difficult is it to extend and

improve a system?

As we all know in most cases, both functional extensions and improvements require

new components to be added and these components may have to use the services

provided by existing components.

Hence, the static and dynamic properties of services provided by components have to

be published in detailed interfaces. The new components have to be integrated into

existing components, so that the added functionality becomes accessible from the

distributed system as a whole.

In distributed systems, components may not always be running on the same platforms.

For instances, Hang Seng Bank, HongKong Bank, and Bank of China almost certainly

do not have the same type of hosts, it’s quite likely they use different programming

languages and have different networks. Despite of that, their automatic teller machines

have to be integrated.

Page 18

To achieve such a heterogeneous integration, often different data representation formats

have to be integrated. For example, if components running on a Windows-3.x PC have

to be integrated with components running on a Sun SparcStation, short integers on the

Sun have 64 bit, while they only have 16 bit on the PC.

Concurrency

Components in distributed systems are executed concurrently. There may be many

different people at different teller machines. Likewise, there are many different users

working in a local area network.

While these components access shared resources, the resources have to be protected

against integrity violations that may be introduced through concurrency.

As an example for a lost update, consider that you withdraw 50 dollars. This requires

the bank's account database to compute:

Debitbalance = balance-50; /* Opl * /

Balance = debitbalance; /* Op2 * /

If a clerk in the bank credits a check of 100 dollars the following computation has to be

done:

creditbalance = balance+l00; /* Op3 * /

balance = creditbalance; /* Op4 * /

Page 19

If these two modifications to your account are done concurrently the integrity of the

account data may be violated in two ways:

1. your debit may not be recorded (bad luck for the bank) if the schedule is (Op1, Op3,

Op2, Op4).

2. the credit of your check may not be recorded (bad luck for you) if the schedule is

(Op3, Op1, Op4, Op2).

These situations have by all means to be avoided. Concurrency control facilities (such

as locking) are needed in almost any concurrent system.

Scalability

Centralized systems often create bottlenecks as soon as a certain number of users are

reached. Distributed systems can be built in a way that these bottlenecks are avoided.

Then new processors can be added to accommodate new users.

For instances, the Internet grows every day by adding new sites. Other Internet sites are

not affected by these additions. They do not have to be changed.

However, components in distributed systems have to be designed in a way that the

overall system remains scalable. Sometimes it is required to relocate components, i.e.

to migrate them to new processors. Relocation is required to populate new processors

with components and to remove a certain amount of load from existing processors.

Page 20

Then it is important that no or only very little assumptions are made on the location of

components, both within the component itself and also within other components that

use the component. Otherwise these components having explicit location information

have to be changed whenever a component is relocated.

Fault Tolerance

Hardware, software and networks are not free of failures. They fail either because of

software errors, failures in the supporting infrastructure (power-supply or

air-conditioning), mis-use of their users or just because of aging hardware. The average

life time of hard disks are between two and five years, much less than the average

life-time of a distributed system.

Given that there are many processors in a distributed system, it is much more likely that

one of them fails than it is that a centralized system fails. Distributed system, therefore,

have to be built in a way that they continue to operate, even in the presence of failures

of some of its components.

A distributed system can even achieve a higher reliability than a centralized system if

distribution and replication is exploited properly. Two different means have to be

deployed to achieve fault tolerance: recovery and redundancy.

�
Components that are able to recover from failures have been built in a way that

they react in a controlled way if they rely on services of components that have

failed.

Page 21

�
Redundant hardware, software and data decreases the time that is needed after a

failure to bring a system up again.

Transparency

The complexity of distributed systems should be hidden from their users. They should

not have to be aware whether the system they are using is centralized or distributed.

Thus, it is transparent for the user that s/he is using a distributed system.

For the administrators of the system, however, this is not true. For them, it may well be

important (e.g. during load balancing) to know which component resides on which

machine.

To make life easier for an application programmer, s/he should also not have to be

aware that s/he is using distributed components.

There are many aspects of transparency such as access transparency, location

transparency, concurrency transparency, replication transparency, failure transparency,

migration transparency, performance transparency and scalability transparency.

Page 22

Chapter 3

Introduction to CORBA

3.1 Distr ibuted software engineer ing using CORBA

From the discussion in the last chapter, we have learned that any distributed system is

composed of distributed components. Now the question is: How can we effectively

engineer the components that comprise a distributed system?

A major part of the problem to engineer components for a distributed system is to find a

model for these components. We shall take an object-oriented approach and see

components as objects that provide services and encapsulate a component state.

The approach we have chosen to present in this topic has been developed by the Object

Management Group (OMG), a consortium of leading hardware and software vendors,

user organization and research institutions.

It has been developed as part of the OMG’s work on the Common Object Request

Broker Architecture (CORBA). We will discuss the CORBA object model, which is an

object-oriented component model for distributed and heterogeneous components.

The model is implemented in terms of IDL, the OMG Interface Definition Language

and we will discuss the design rationales of IDL in greater detail.

We have seen that distributed systems had multiple interacting components. Typically

Page 23

these distributed components are not homogeneous. They are running on different

hardware platforms with different operating systems, they have been implemented in

different programming languages and use different network protocols.

For a distributed system to appear as a single system to a user, as it is required by the

transparency property, these heterogeneous components have to inter-operate to

contribute to achieving the overall systems objectives.

In order to construct these components in an interoperable way, there has to be a

common component model.

1. The model has to define component states, i.e. the relationships the component has

with other components and the data the component can store.

2. It has to be expressive enough to describe the services a component offers to other

components and the services a component uses from other ones.

3. Finally, the component model has to provide primitives that can express how a

component interacts with other components.

3.2 CORBA Object Model

The component model of CORBA is based on the object-oriented paradigm. Hence

components are seen as objects. Object orientation seems appropriate due to its support

of data abstraction and reuse.

Page 24

Attributes of objects are used to model the externally accessible state of components;

this component state can thus be considered as the set of its current attribute values.

A component offers a set of services to other components. These define the

component's behavior. They are modeled in terms of operations exported by the object.

The interaction of a component with a remote component is modeled in CORBA in

terms of operation execution requests and responses to these requests.

Service executions may fail. These failures may be due to some problem common to

any distributed applications. In these cases failures may be described in a generic

fashion. Failures may also be due to some application specific problem. These

application specific failures have to be dealt with by the application. The CORBA

object model provides exceptions for this purpose.

3.2.1 Types of distr ibuted objects

Many different objects share the same static properties (attributes, operations and

exceptions). It is, therefore, unreasonable to have a designer of a distributed system

describing properties for each of these objects. They should rather be defined only once

for all ‘similar’ objects.

The OORBA object model, therefore, introduces the concept of object types. They are a

vehicle to define properties shared by all objects that are of that type.

Page 25

Types are also used for object creation: objects are instantiated from a type. The type

they are instantiated from is referred to as their type. Objects keep their type during

their whole lifetime.

The CORBA object model incorporates a static type system. This type system is used to

verify at compile time that an object has a certain property at run-time.

3.2.2 Attr ibutes

An object type may declare an attribute by characterizing the attribute name and its type.

The attribute name will be used by remote components to access or even update the

attribute's value. The domain of the attribute value is defined by the attribute type.

The attribute type can denote an object or a non-object type.

If it denotes an object type, the attribute value refers at run-time to an instance of that

object type. If it denotes a non-object type, the attribute contains at run-time a value of

that type.

An attribute determines whether or not other components may modify the attribute

value at run-time.

Attributes will be implemented in terms of operations. For modifiable attributes two

operations will have to be provided. The first operation will be used to set the attribute

value. The second operation will be used to read the value. For attributes that can only

Page 26

be read, the set-operation is not available.

3.2.3 Exception

The CORBA object model takes a rather simple approach. Exceptions are a mechanism

to inform a requester object about a failure.

Operation execution may fail due to a system error or due to an error specific for the

object. Failures that are specific to an object handled differently by additional operation

executions.

Exceptions may be raised explicitly by the service providing object or implicitly by the

distributed operating system. If no exception has been raised, the client knows that the

server has performed the request properly. An exception may have additional data that

informs the client object about the nature of a failure.

3.2.4 Operations

Operations that are exported by an object are defined in terms of a signature. Part of that

signature is an operation name. The name is used to identify the operation when the

operation execution is being requested by a requester.

Operations may be parameterized. Parameters are used to pass specific arguments to

the operation and to return results from the operation to the requester. The signature

defines whether the operation expects the requester to provide a value or whether the

Page 27

requester can expect the provider to return a parameter value or both.

Parameters are given a name and a type. The name can be considered as an informal

explanation of the parameter's semantics. The type constraints the domain of values that

can be passed through the parameter.

Operations return a value whose type is defined as part of the signature definition.

Again the type restricts the domain of values that can be returned from the operation to

the service requester. Operations also declare the set of specific exceptions that may be

raised during the operation execution.

3.2.5 Operation execution requests

Objects can request other objects to execute a particular operation. The object that

issues the request is called client object and the one that provides the operation is called

server object.

Server objects may be clients themselves, because they may rely on the operations

provided by other server objects. The operation execution request is expressed by

sending a message to an object. The message is identical to the name of the operation

that is to be executed.

The signature of the operation to be executed defines a contract between the client and

the server. The parameters define the types of values that are to be provided and the

types of values returned. The exceptions define which failures the requester has to

Page 28

expect.

It is important that the client reacts to these failures properly: They have to catch the

exception the server may have raised. Otherwise the client may not be aware that the

server has not executed the operation completely.

3.2.6 Subtyping

Different types of objects in the CORBA object model are arranged in a type hierarchy.

Common attributes, operations and exceptions of different types can be defined in a

common super-type. Subtypes then need not define these properties again but inherit

them from their super-types.

An object is a direct instance of a type, if and only if it has been instantiated from that

type. An object is an instance of all the supertypes of its type. A subtypes may add

specific properties to those inherited from a super-type.

The subtype relationship is transitive. This means that if a type B is a subtype of A and

another type C is a subtype of B then C is also a subtype of A.

A subtype may redefine the definition of a particular property. It may give an operation,

for instance, a slightly different behavior.

Sometimes operations are abstract (or deferred) and are not implemented by a type T,

but have to be implemented in all subtypes of T. Then other types can be sure that the

Page 29

operations exists in all instances of T. These abstract operations are often used to

implement call-backs.

3.3 The OMG Inter face Definition Language

The OMG has standardized an interface definition language (IDL) to express the

abstract concepts of the CORBA object model.

IDL is not bound towards a particular programming language. The IDL can be used to

declare the exported properties of object types.

IDL is not computational complete. It does not have concepts for defining variables and

algorithms as these should not be exposed at the Interface level.

The OMG has standardized IDL programming language bindings for C, C++ ,

Smalltalk, Ada-95,Cobol and Java.

Objects whose interfaces have been declared in IDL can be implemented using these

programming language bindings. A language binding is also used to request the

execution of operations that are specified in IDL from a particular programming

language. The advantage of this approach is that programming language

interoperability is achieved.

3.4 Object Management Architecture

Page 30

Figure 3.1

The core of the object management architecture is an object request broker. It enables

an object to request an operation execution from another distributed object. The objects

can be very heterogeneous in the sense that they can be running on different hardware

platforms with different operating systems.

Objects that use an ORB are classified into application objects, CORBAservices

objects and CORBAfacilities objects.

A number of problems occur in almost any distributed system. Examples of these

problems are naming, trading, migration of components, concurrency control,

transactions and the like. Object based solutions to these problems have been

standardized by the OMG within the framework of the CORBAservices. It is expected

that every vendor of an object request broker provides implementations for these

services. This will accomplish portability and interoperability of application objects.

The OMG has started to define a number of component interfaces that may be useful

but will not necessarily needed in every distributed system. These component

interfaces are defined as CORBAfacilities. It is not mandatory for ORB vendors to

Page 31

provide these components.

Objects that are specific for a particular application are considered as application

objects. They can use or customize CORBAservices or CORBAfacilities objects and so

leverage and reuse the solutions the OMG has defined and ORB vendors have

implemented.

3.4.1 Accessing Remote Objects

Figure 3.2

The above figure displays the various modules that are involved in a server object from

a client.

Client stubs and server skeletons perform marshalling of operation parameters,

transform them into a common format and manage the synchronization between client

and server.

Page 32

Client stubs are used for statically defining operation invocation requests at compile

time. A dynamic invocation interface can be used to define operation invocation

requests dynamically at run-time.

Both client and server objects get access to ORB functionality through the ORB

interface. They need it, for instance, to initialize themselves properly and to get access

to CORBA services.

The object adapter implements different object activation strategies. These strategies

control the allocation of multiple or single objects to processes and determine whether

objects are always available or only started on demand.

The ORB core is in charge of implementing session, transport and network layers and to

hide these concerns from the formerly discussed modules.

3.4.2 Static vs. Dynamic Invocation

The static way of invoking a remote operation can only be used if the IDL interface is

available at the point in time when the client is being developed. This is because the

client stubs that are derived from the IDL interface are to be linked with the client

program.

This is, however, not always applicable. There are application domains where generic

clients are built before specific server objects become available. An example would be

an object browser that can display an object's attributes.

Page 33

The dynamic invocation interface provides facilities for objects to define requests at

run-time. A request can be created for any object. Then a name of an operation to be

executed can be determined and the operation parameters can be set. After that the

operation request can be issued and the operation results can be obtained from the

request.

A disadvantage of this dynamic invocation interface is that it is not type safe. The

interface itself does not provide any guidance as to the operations and attributes that are

available for an object or the numbers and types of their parameters.

Clients can limit the unsafeness of dynamic invocations by using an interface repository.

The interface repository keeps information about the interfaces of an object and can be

used to query which operations and attributes an object supports and can be used to find

out about their types and parameters. Entries into the interface repository are made by

the IDL compiler during stub generation.

3.4.3 ORB Inter face

Among other things, the ORB interface defines the object type Object, the root of the

object type hierarchy. Object defines a number of operations for object identification

purposes that are explained later.

The ORB interface provides an operation to startup the object request broker.

Page 34

Also the ORB interface standardizes the way clients register themselves with the ORB

and servers to obtain an identifier of the object adapter to register the server with the

object adapter.

Finally, it provides a programming interface to the interface repository that can be used

to traverse and query the set of object types.

3.4.4 Object Identification

Objects are uniquely identified by object identifiers. They are the principle way to

access object attributes and to execute an object’s operations. Hence object identifiers

achieve location transparency.

Object identifiers are persistent, i.e. once an object identifier has been assigned to an

object the object will retain that identifier throughout its lifetime, irregardless whether

ORB or object server are stopped.

Object identifiers can be externalized (converted into a character string) by means of

operations exported from type Object. This is needed, for instance, to transmit an object

identifier to a remote component through communication outside the ORB.

To obtain the object identifiers of remote components, the following ways can be

employed.

1. The principle way is to use a naming or trading service. Naming is a technique that

Page 35

maps external names to object identifiers (like the white pages of a telephone

directory) and trading is a technique that enables clients to find objects by the

services their operations implement (similar to the yellow pages).

2. Object identifiers can be obtained by reading an attribute whose type is a subtype

of Object.

3. Object identifiers can be obtained as a result of an operation execution, or through

an out or inout parameter of an operation if these types are subtypes of Object.

4. Finally, object identifiers can be obtained by internalizing an externalized object

reference.

3.4.5 Activation Strategies

CORBA standardizes the operations of the basic object adapter (BOA). An BOA

implementation has to be provided by any CORBA compliant object request broker.

The BOA defines four different object activation strategies, which define how objects

are allocated to processes.

1. Shared server strategy (A) one process or thread accommodates multiple objects.

Operation execution requests are queued while the process performs an operation

of one of the objects.

Page 36

2. Unshared server strategy (B) each object is executed in its own process or thread.

Operation execution requests only have to be queued if another operation of the

same object is currently being executed.

3. Server per method strategy (C) each method of each object is executed in its own

process or thread. Requests only have to be queued if the method of that object is

currently being executed.

4. Persistent server strategy (D) - activation is done outside the ORB, for instance

manually by an administrator or automatically through the operating system. The

process would then run until it is stopped explicitly.

With the first three strategies, the basic object adapter starts the processes/threads as

soon as the ORB has transferred a request. Implementations therefore have to be

registered with a so called implementation repository. Processes and threads are

deactivated by the BOA as soon as no requests are to be handled anymore.

3.4.6 Request vs. Notification

In IDL operations the client awaits the completion of the operation on the server and the

quality of service is at most once.

For notifications where the semantics of the client is fully independent of the result of

the operations, it is not be necessary to wait until the server has handled the notification.

This is the case if operations do not

Page 37

�
have return values (i.e. their return value is void),

�
have out or inout parameters and

�
raise specific exceptions.

In these cases the semantics of the further execution of the client does not depend on the

server and the client may continue immediately after the ORB has accepted the request

from the client. Then, however, only a maybe quality of service can be achieved.

The ORB cannot decide itself, whether to execute an operation as a request or a

notification, because it does not know the quality of service an object implementation

wants to achieve. Therefore IDL has a language construct oneway that can be used to

declare that the operation is executed as a notification.

3.4.7 Failures

The invocation of a remote operation through an object request broker may fail for

reasons: servers may collapse, request or reply messages may be lost.

In case of failures in CORBA, a client is informed about a failure in terms of an

exception. The exception gives a very precise account as to why an operation execution

request has not been handled properly.

Clients may exploit this knowledge to decide whether they want to retry the operation

execution request or to report the request to an administrator or to the user.

Page 38

CORBA distinguishes between generic and application specific failures. Recall that

generic failures are defined in the CORBA standard and application specific failures are

defined through exceptions in IDL

The different programming language bindings for IDL will have to deal with

exceptions and enable programmers of both servers and clients to deal with exceptions.

Server programmers will have to determine in object implementations when to throw

exceptions. Client programmers must be able to catch both, application specific and

generic exceptions.

Page 39

Chapter 4

System Requirement

4.1 System Descr iption

Figure 4.1 is a flow chart describing the booking center. From the chart, you can see

that if the user want to use the system, he/she must registered with it. If the user is a new

customer, then he/she can perform online registration. There is no online registration

for cinema manager. If the cinema want to add, remove and change manager, she must

contact us personally.

If the user login as cinema manager, there are two things he/she can do. Firstly, the

manager can select a film registered in the booking center and add the schedule of

showing to the cinema for booking. Secondly, if the manager want to create an

unregistered film for booking, he/she can register the film with the booking center

before creating the showing schedule for booking.

If the user login as a customer, there are also three things he/she can do. Firstly, he/she

can select films to add comments to them or view the comments of those films.

Secondly, he/she can select films for booking, the payment of booking can be made by

credit card. Thirdly, the customers can check their booking information.

Page 40

Figure 4.1 Booking Center

Registered
users?

Login as customerLogin as manager

Cinema
manager? New customer

registration

Booking
Information

Select Film

Add commentMake booking

Check/Make
booking

User login

Create films in
booking center

Select films from
booking center

Add film to cinema
for booking

� � � � 	�
 � � 	
 ��� ��� 	 ��
 � � 	
 ��� � � � �
� � ��� � � �

Films exist in
booking center?

��� 	 ���
 � ���
� � �
 � �
 � �

� � �

 � � 	
 ���

� � � �

� � � �

� � � �

Page 41

4.2 System Requirement and Capabilities

From the system description, we can summarize the following system requirements.

!
Support multiple cinemas

!
Support multiple films within booking system

!
Support multiple customers booking films

!
Support customers booking multiple films

!
Support the capabilities for a person to login as a customer or cinema manager

!
Support the capabilities for a person to register as a new customer

!
Support the capabilities for cinema to create films in booking center

!
Support the capabilities for cinema manager to add films to cinemas for booking

!
Support the capabilities to enumerate films in booking center

!
Support the capabilities to acquire seats’ status in arenas of cinemas and prompt the

customer if the film is fully booked

!
Support the capabilities to check the bookings of customers

!
Support the capabilities to add comments to films

!
Support the capabilities to retrieve comments of films

!
Support the capabilities to use credit card for ticket payment

!
Support the capabilities for the booking center to refresh the grade of a film

Page 42

Chapter 5

System Design

5.1 IDL Design and Descr iption

To accomplish the requirement of the system, the servers need to provide a number of

operations and attributes for the clients to access. The utilization of CORBA

architecture to implement the systems requires us to define the sets of operations and

attributes by mean of an interface language, the Inter face Definition Language (IDL).

The IDL of the systems are described in the next pages.

The interface definitions of the server object are listed below:

/ / Ti cket Booki ng. i dl

modul e Ti cket Booki ng {

/ / 1. except i on decl ar at i ons.

 except i on I nval i dCust omer Except i on{ } ;

 except i on I nval i dSeat Except i on{ } ;

/ / 2. st r uct ur e f or f i l ms’ i nf or mat i on.

 st r uct cr eat eFi l mSt r uct

 {

 s t r i ng t i t l e;

 s t r i ng di r ect or ;

Page 43

 s t r i ng cast i ng;

 shor t hr ;

 shor t mi n;

 s t r i ng ct gy;

 s t r i ng l ang;

 s t r i ng desc;

 } ;

/ / 3. st r uct ur e f or a st r i ng.

 st r uct f i l mNameSt r uct

 {

 s t r i ng name;

 } ;

/ / 4. st r uct ur e f or cust omer ’ s i nf or mat i on.

 st r uct cr eat eCust omer St r uct

 {

 s t r i ng uname;

 s t r i ng hki d;

 s t r i ng addr ;

 s t r i ng emai l ;

 s t r i ng hphone;

 s t r i ng ophone;

 s t r i ng cdt yp;

 s t r i ng cdnum;

 shor t expyyear ;

Page 44

 shor t expymt h;

 shor t expyday;

 s t r i ng i ssucomp;

 s t r i ng user i d;

 s t r i ng user pwd;

 } ;

/ / 5. st r uct ur e f or cr eat i ng f i l m’ s showi ng schedul e.

 st r uct cr eat eScheSt r uct

 {

 s t r i ng c i nemaname;

 s t r i ng ar enname;

 s t r i ng f i l mname;

 s t r i ng showdt ;

 s t r i ng showt me;

 s t r i ng pr i ces;

 s t r i ng seat st us;

 } ;

/ / 6. st uct ur e f or booki ngs’ i nf or mat i on.

 st r uct bookSt r uct

 {

 s t r i ng f i l mname;

 s t r i ng c i nemaname;

 s t r i ng ar enname;

 s t r i ng showdt ;

Page 45

 s t r i ng showt me;

 s t r i ng bookdt ;

 s t r i ng bookt me;

 s t r i ng bookseat ;

 s t r i ng pr i ces;

 } ;

/ / 7. Ar r ay of st r i ng and schedul e st r uct ur e.

 t ypedef sequence<f i l mNameSt r uct > f i l mNameSeq;

 t ypedef sequence<cr eat eScheSt r uct > cr eat eScheSeq;

/ / 8. I nt er f ace def i ni t i on and si gnat ur es of met hods of / /

t he Booki ngCent er ser ver obj ect .

 i nt er f ace Booki ngCent er {

/ / 8a.)

bool ean aut hent i cat eBooker (i n st r i ng booker I d, i n

st r i ng pwd) r ai ses(I nval i dCust omer Except i on) ;

/ / 8b.)

bool ean cr eat eFi l m(i n cr eat eFi l mSt r uct

cr eat eFi l mDat a) ;

/ / 8c.)

 f i l mNameSeq al l Fi l mName() ;

/ / 8d.)

bool ean cr eat eCust omer (i n cr eat eCust omer St r uct

cr eat eCust omer Dat a) ;

/ / 8e.)

Page 46

bool ean cr eat eSche(i n cr eat eScheSeq cr eat eScheDat a) ;

/ / 8f .)

 f i l mNameSeq get Ci neName(i n st r i ng f nDat a) ;

/ / 8g.)

f i l mNameSeq get Ar enaName(i n st r i ng f nDat a, i n st r i ng

cnDat a) ;

/ / 8h.)

f i l mNameSeq get Dat es(i n st r i ng f nDat a, i n st r i ng

cnDat a, i n st r i ng anDat a) ;

/ / 8i .)

f i l mNameSeq get Ti mes(i n st r i ng f nDat a, i n st r i ng

cnDat a, i n st r i ng anDat a, i n st r i ng aDat e) ;

/ / 8j .)

bool ean makeBooki ng(i n st r i ng user I d, i n f i l mNameSeq

seat Dat a, i n st r i ng af i l m, i n st r i ng aCi nema, i n st r i ng

aAr ena, i n st r i ng aDt , i n st r i ng aTi me, i n st r i ng

aPr i ce, out st r i ng r eason)

r ai ses(I nval i dSeat Except i on) ;

/ / 8k.)

st r i ng get Seat St at us(i n st r i ng af i l m, i n st r i ng

aCi nema, i n st r i ng aAr ena, i n st r i ng aDt , i n st r i ng

aTi me) ;

/ / 8l .)

st r i ng get Fi l mPr i ce(i n st r i ng af i l m, i n st r i ng aCi nema,

i n st r i ng aAr ena, i n st r i ng aDt , i n st r i ng aTi me) ;

/ / 8m.)

Page 47

bookSt r uct get Booki ng(i n l ong bookRef , i n st r i ng

user I d) ;

/ / 8n.)

 l ong get MaxBookRef (i n st r i ng user I d) ;

/ / 8o.)

 cr eat eFi l mSt r uct get Fi l mI nf o(i n st r i ng f i l mName) ;

/ / 8p.)

bool ean cr eat eComment (i n st r i ng f i l mName, i n st r i ng

comment , i n l ong gr ade) ;

/ / 8q.)

 l ong get MaxComment Ref (i n st r i ng f i l mName) ;

/ / 8r .)

st r i ng get Comment (i n st r i ng f i l mName, i n l ong

cmmt Ref) ;

/ / 8s.)

 l ong get AvgGr ade(i n st r i ng f i l mName) ;

/ / 8t .)

st r i ng aut hent i cat eCi nema(i n st r i ng manager I d, i n

st r i ng passwor d) ;

/ / 8u.)

 f i l mNameSeq al l Ar enaName(i n st r i ng c i nemaName) ;

/ / 8v.)

 bool ean l ogout (i n st r i ng user I d) ;

/ / 8w.)

 bool ean l ogout Man(i n st r i ng manager I d) ;

 } ;

Page 48

} ;

This is a point by point explanation of the meaning of the IDL.

1. Exception declarations – it defines two exceptions, invalid customer and invalid

seat. The server object will throw these exceptions as long as the clients require the

server to process on a customer or seat which is actually not existed.

2. CreateFilmStruct defines a structure, which contains a film’s information. This

structure allows the clients to pass films’ information to server for films creating, it

also let clients to retrieve information of films from the server.

3. FilmNameStruct defines a structure that contains only a string. When it is used

together with filmNameSeq, which is a sequence of FilmNameStruct, allows

clients and server to pass array of string to and forth.

4. CreateCustomerStruct defines a structure that contains information for

registering a new customer to the cinema tickets reservation system.

5. CreateScheStruct is a structure for creating the showing schedule of films by a

cinema manager. It contains important information such as show date, show time

and prices.

6. BookStruct is a structure for customers to make booking or retrieve their

bookings’ information from the server. It contains important information to the

clients such as show date, show time and their booked seats.

Page 49

7. CreateScheSeq defines an array of CreateScheStruct which allows the cinema

managers to create more than one schedule at a time. FilmNameSeq was explained

in point 3.

8. BookingCenter server object – it is the heart of the system. It is responsible for all

methods invoked by the clients and all interactions with the database. All server

methods will be explained now.

8a.) Method authenticateBooker passes a user’s ID and password to the server for

authentication. If the password is correct, the method will return true to the clients,

otherwise it will return false. If the user had not registered to the system, it will

raise a invalid customer exception.

8b.) Method createFilm passes a film’s data to the server for film creation. If film

creation is successful, it returns true, otherwise it will return false.

8c.) Method allFilmName returns all films’ names of films registered in the server. It

returns all films’ name by a string array.

8d.) Method createCustomer passes the personal particulars to the server for new

customer registration. If the registration is successful, it returns true, otherwise it

will return false.

8e.) Method createSche passes an array of schedule to the server to create showing

schedule. If the schedule creation is successful, it returns true, otherwise it will

Page 50

return false.

8f.) Method getCineName passes a film’s name to server to get the names of all

cinemas that are showing this film.

8g.) Method getArenaName passes a film’s name and a cinema’s name to the server to

get the names of all arenas that are showing this film by the cinema.

8h.) Method getDates passes a film’s name, a cinema’s name and an area’s name to the

server to get the exact showing dates.

8i.) Method getTimes passes a film’s name, a cinema’s name, an area’s name and a

date to the server to get the exact showing times.

8j.) Method makeBooking passes the user ID, the seats’ label a film’s name, a

cinema’s name, a arena’s name, a date, a time and the price/seat to the server to

make booking. If the booking is successful, it returns true, otherwise it will return

false. If the booking failure was due to the seats had been occupied, it will return

the reason of failure. If the seat label is invalid, it will raise an invalid seat

exception.

8k.) Method getSeatStatus passes a particular film’s name, a cinema’s name, a arena’s

name, a date, a time to the server to get the current seats’ status.

8l.) Method getFilmPr ice passes a particular film’s name, a cinema’s name, a arena’s

name, a date, a time to the server to get a seat’s price of a film.

Page 51

8m.) Method getBooking passes a booking reference number and a user’s ID to get a

booking’s information from the server.

8n.) Method getMaxBookRef gets the maximum booking reference of a user.

8o.) Method getFilmInfo gets a film’s information by its name.

8p.) Method createComment passes a film’s name, the comment and the grade given

by the user too the server to create a comment. It returns true if success, otherwise

it returns false.

8q.) Method getMaxCommentRef gets the maximum comment reference of a film.

8r.) Method getComment gets a comment of a film by a comment reference number.

8s.) Method getAvgGrade gets the average grade of a film from the server.

8t.) Method authenticateCinema passes a manager’s ID and password to the server

for authentication.

8u.) Method allArenaName gets the names of arenas of a cinema.

8v.) Method logout passes a user’s ID to the server to logout. It returns true if success,

otherwise it returns false.

Page 52

8w.) Method logoutMan passes a manager’s ID to the server to logout. It returns true if

success, otherwise it returns false.

Page 53

5.2 User Inter faces

For the client to interact with the system, some user interfaces are required in the

system. The screen design is shown in the following figure.

Figure 5.1 Screen Flow

Login screen

Customer screenManager screen
New customer

dialog

Create film screen

Buying coupons
screen

Add comment
screen

Make booking
screen

CINEMA MANAGER NEW CUSTOMER

REGISTERED
CUSTOMER

Page 54

User interfaces are the front-end that responsible for the interaction between users and

the system. It allows users to perform input and retrieval of information. This section

will introduce the system’s user interfaces in detail.

Figure 5.2

Figure 5.2 shows the login screen of the cinema ticket reservation system. As the

Page 55

system allows general users to buy tickets or cinema manages to create and schedule

films for show on behalf of cinemas. Hence, it allows the login of a user or a cinema

manager. If a new user comes to visit this web page, he/she can register as a new user by

pressing the Join Us button. After pressing the Join Us button, a dialog figure 5.3 will

show up for the new user to fill in some personal information. If the new user has

completed filling the information and pressed the OK button, he/she can use the system

immediately with the new user ID and password. He/she can cancel the registration by

pressing the Cancel button.

Figure 5.3

After a user has login the system, figure 5.4 is the first screen shown up. From this

screen, the user can select a film to see its information. Besides, the official information,

users can know more about the films by viewing the comments posted by other users.

The Overall Grade shows the average grade of this film given by all users. Point 5

Page 56

represents excellent, point 1 represents bored, then the user will has some idea about

this film. The user can click the Last or Next buttons to retrieve a comment. The user

also can post a new comment by clicking the Add Comment button.

Figure 5.4

Page 57

Figure 5.5 is the screen for the user to post comment and grade to a film. The user can

press OK button to post it or press Cancel button to cancel.

Page 58

Figure 5.5

From figure 5.4, if the user presses the Buy Tickets button, the screen below will show

up. To buy tickets, the users need to select a film first, secondly, he/she needs to select a

cinema, then a area of that cinema. After that he/she need to select a date and time. If all

selection has been made, he/she can go to the seating plan by clicking the Seating Plan

button.

Page 59

Figure 5.6

Figure 5.7 show the seating plan the user selected. The top shows the information of the

show. The middle shows the seats, seats available are yellow in color while seats

booked are in deep blue color. To select a seat, the user just need to click on that seat, its

color will change to deep blue and the seat’s label will be added to the list at lower left

corner. The total amount of all selected seats will accumulate automatically. The user

can deselect a seat by clicking on that seat again. The user click Confirm Booking

button to confirm or Cancel button to cancel all selection.

Page 60

Page 61

Figure 5.7

After buying tickets, the user can check the booking by pressing the Booking

Information button. Figure 5.8 is the booking information screen that shows all the

booking made by a user, the latest booking shown first and the oldest booking shown

last. The user can click the Last or next buttons to view the booking details. The charges

of booking of the user will be settled monthly by credit card payment.

Page 62

Figure 5.8

The cinema managers can login into the system to schedule the films’ show on behalf

on a cinema. A film must be registered before it can be scheduled. Hence, when a

manager login, the first screen show up contains information of all registered films.

Figure 5.9 is the screen that allows the manager to select a film and view its

information.

Page 63

Figure 5.9

If the manager cannot find the film for scheduling from the previous screen, then he/she

needs to create the film. Figure 5.10 is the screen for film creation and registration. The

managers just need to fill in the information of a new film and press the OK button.

Cancellation of film creation can be done easily by pressing the Cancel button.

Page 64

Figure 5.10

Figure 5.11 shows the screen for scheduling. The manager first select a film and an

arena, then he/she need to fill in the future range of showing dates. Afterwards, the

manager need to fill in the available showing times within each showing date.

Moreover, the managers also need to fill in the price per seat before pressing the OK

button to confirm the schedule. Managers can cancel the scheduling simply by pressing

the Cancel button.

Page 65

Figure 5.11

Page 66

5.3 Database Design

The following database tables are used to store the data of the application.

Table: Film

A record in this table stores the information of a film.

Primary key (filmrefno)

Attr ibute Type Length

filmrefno int not null 38

title char not null 50

director char not null 50

casting varchar2 not null 200

hr smallint not null 38

min smallint not null 38

ctgy char not null 2

lang char not null 100

description varchar2 not null 3000

Table: Customer

A record in this table stores the information of a customer.

Primary key (userid)

Attr ibute Type Length

username char not null 50
hkid char not null 20
addr varchar2 not null 200
email char not null 50
hphone char not null 10
ophone char not null 10
cdtyp char not null 20
cdnum char not null 16
expyyear smallint not null 38

Page 67

expymth smallint not null 38
expyday smallint not null 38
isscomp varchar2 not null 200
userid char not null 20
userpwd char not null 20

Table: Schedule

A record in this table stores the information of a showing schedule.

Primary key (scheduleno)

Attr ibute Type Length

scheduleno int not null 38
cinemaname char not null 50
arenaname char not null 20
filmname char not null 50
showdt char not null 10
showtime char not null 15
price char not null 10
seatstus char not null 300

Table: Booking

A record in this table stores the information of a booking.

Attr ibute Type Length

userid char not null 20
bookref int not null 38
filmname char not null 50
cinemaname char not null 50
arenaname char not null 20
showdt char not null 10
showtime char not null 15
bookdt char not null 10
booktime char not null 15
bookseat char not null 1000
totprice char not null 10

Table: Comment

A record in this table stores the information of a comment.

Page 68

Attr ibute Type Length

commentrefno int not null 38

title char not null 50

commt varchar2 not null 3000

grade int not null 38

Table: Cinema

A record in this table stores the information of a cinema.

Attr ibute Type Length

cinemaname char not null 50

arenaname char not null 20

managerid char not null 20

managerpwd char not null 20

Page 69

Chapter 6

Implementation of the system

6.1 Development environment

The system was developed using Java to implement both the client side and the server

side. Inprise VisiBroker for Java 3.4 was used as the ORB product. VisiBroker provides

pure Java implementation of ORB and a complete IDL-to-Java language binding.

Moreover, VisiBroker comes with an interesting and useful utility – the Gatekeeper. It

is an IIOP proxy and can be used to wrap IIOP messages into HTTP messages. I used

SGI as the development platform. The client was tested on Windows and UNIX

platform with Netscape Communicator 4.5 and 4.61.

6.2 Top-level view

The Cinema Tickets Reservation System consists of the following components:

Database server – all persistent data includes films’ information, customers’

information and cinemas’ information are stored in a relational database for permanent

storage. I use Oracle8 release 8.0.5 as the database management system. Java DataBase

Connectivity (JDBC) was used as an interface for the communication between the

server object and the database. The database is the third-tier, only the server object will

interact with it and it is therefore transparent to the clients.

Page 70

Object server – the object server provide services to the clients. The clients use those

services by method invocation, it need the help of IIOP proxy which will be explained

later. It must be started up and running before the clients can start to use the services,

once the server object is up, it is connected to the database server.

Web server - It lets clients to download web pages and the client applet through HTTP.

I IOP proxy –– There is a security restriction, known as “sandbox security restriction” ,

imposed on each Java applet that the applet is allowed to have network communication

only with the host from which the applet is originated. This restriction

is fatal to a distributed system since the essence of distributed computing comes from

the cooperation of hosts on a network. A solution to this restriction is to use IIOP proxy

on the web server host and let it routes all IIOP messages on behalf of the applet. From

the view of applet, it is only communicating with the web server host. However, to

other CORBA objects, the applet is perceived as if it resides on the same with network

Virtual Machine
ORB

Server

Skeleton Code

Object

ORB

Client Applet

 Virtual

Proxy

WWW Server

IIOP Gateway

Virtual Machine
IIOP

Download

IIOP

Download

I IOP gateway

Page 71

and they do not aware that they are communicating with an applet. The VisiBroker

version of the IIOP proxy, named Gatekeeper, have an extra function built-in––HTTP

tunneling. This function allows the client to be executed in a firewall-protected network.

The idea of IIOP proxy is illustrated in the figure 6.1.

Figure 6.1

Client applet – This is the front-end to the users. For the cinema tickets reservation

system, this is the only visible part to users. It is mainly used to accept user command,

transform the user request into invocations of remote methods and displayed the result

return from the object server.

The top-level system architecture is shown on the following diagram.

Web client Application server

Database

ORB

ORB

Web Pages
&

ORB Classes

Object Implementation

Internet

(2) Get Applet

(1) Get HTML Page

HTTP
Server

CORBA
Server

(4) Invoke method

(3)

(5) Return values

Data Manager

IIOP

HTTP

Quote Source

Figure 6.2

Page 72

1. Web browser downloads HTTP page –– In our case, the page includes reference

to embedded client Java applet.

2. Web browser retr ieves Java applet and ORB classes from HTTP server ––

The HTTP server retrieves the applet and ORB classes into the browser in the form

of Java bytecodes.

3. Web browser loads and star ts applet –– The applet is first run through the Java

run-time security gauntlet and then loaded into memory.

4. Applet invokes CORBA server objects –– The Java applet includes IDL-defined

objects. Invoking methods on these objects will be directed to the server

implementation through IIOP. In fact, the client does not communicate with the

object server directly due to the Java sandbox model restriction. The Gatekeeper

makes it possible to let client to invoke an object server on a host other the one

from which the applet originated. The Gatekeeper also wraps IIOP messages into

HTTP message while transmitting through Internet.

5. CORBA server return result values –– The return value of the method and

values of parameters defined to be “out” type are sent to client through IIOP. Again,

the IIOP messages are wrapped in HTTP messages during the transmission.

6.3 Server Objects

The cinema tickets reservation system is implemented as a 3-tier client/server

application, Java-driven client applets invoke operations on the CORBA middle-tier

server object via an IIOP ORB. The server object provides the business logic and stores

their persistent data in a JDBC-compliant SQL database.

Page 73

In the 3-tier application CORBA clients talk to CORBA server objects. The server

objects in turn talk to one DBMS via JDBC. A new applet class called Client provides

the client. The middle-tier server consists of three main classes: 1) a

BookingCenterMain that start and manage a server object, 2) a server object of class

BookingCenter Impl, and 3) a helper object of the class BookDb – this worker object

with persistent JDBC connection. The third tier consists of the JDBC database – this is

where the persistent state is stored.

Here are the Java classes a 3-tier cinema tickets server supports:

BookingCenterMain provides the main method for the server. It provides the

following functions: 1) initializes the ORB, 2) obtains a reference to the BOA, 3)

invokes obj_is_ready to register the newly created BookingCenter Impl object, and 4)

invokes impl_is_ready to tell the ORB this server is ready for business.

BookingCenter Impl implements the IDL-defined interface. The class constructor

creates a new BookDb object and then connects to it. The object is preconnected to the

database. The class implements all IDL-defined methods. Each of these methods

services a client request with a corresponding helper method on the BookDb object.

BookDb is a database-encapsulator class: it handles all the interactions with JDBC. The

class provides twenty-two methods: connect, closeConnection, createFilm, getFilms,

createCustomer, createSchedule, getBookerPwd, getCinemaNames, getArenaNames,

getDates, getTimes, getSeatStatus, serSeatStatus, getFilmPrice, insertBooking,

getMaxBookRef, getBooking, getFilmInfo, createComment, getMaxCommentRef,

Page 74

getComment, getAvgGrade. Notice that the last twenty methods have a one-to-one

correspondence to their BookingCenter Impl counterparts.

Page 75

Chapter 7

Testing

This section shows some test cases and the expected results for testing the correctness

and efficiency of the system. As all the testing conditions and expected results are

satisfied, the correctness of the system is quite satisfactory. The speed of the system is

fine if running on UNIX machine, but it runs even faster on Windows NT with

Netscape browser version 4.07.

Test Cases Conditions Result

1 Correct login ID and password Login successfully

Test Cases Conditions Result

2 Wrong password Login fail, display message Customer

password incorrect, please checks.

Page 76

Figure 7.1

Test Cases Conditions Result

3 Users or managers not registered Login fail, display message Manager

ID not found

Page 77

Figure 7.2

Test Cases Conditions Result

4 Users or managers login two

clients concurrently

First login success, second login fail,

display message Manager has already

login.

Page 78

Figure 7.3

Test Cases Conditions Result

5 Select different film Display different films’ details

Test Cases Conditions Result

6 Select last/next comment Display different comments

Test Cases Conditions Result

7 Add a new comment and grade Other users can view the comment

Page 79

and grade immediately

Test Cases Conditions Result

8 Click on seats Seats’ labels are added to list and total

amount = no. of seat clicked "

price/seat. Seats’ color changed to

deep blue

Figure 7.4

Page 80

Test Cases Conditions Result

9 Click on previous selected seats Seats’ labels are removed from list

and total amount is reduced correctly.

Seats’ color changed to yellow

Figure 7.5

Test Cases Conditions Result

10 Two users select same seats one The first user who press confirm

Page 81

after another button success while the second one

fail. Correct booking information

displayed for the first user.

Figure 7.6

Page 82

Figure 7.7

Page 83

Figure 7.8

Test Cases Conditions Result

11 Cinema managers create a new

film

New film available for scheduling

Test Cases Conditions Result

12 Scheduling for a film New schedule available for users to

select

Page 84

Chapter 8

Discussion

This section will discuss some pros and cons of CORBA and Java.

#
A solid distr ibuted object foundation: A CORBA object reference is a very

powerful unit of distributed service negotiation. It points to an object interface –

that is, a set of related methods that operate on an individual object. In contrast, an

RPC only returns a reference to a single method.

#
Callbacks: we were able to usr CORBA callbacks very effectively to control

clients from server side. You can also use callbacks to create client applications

(and applets) that dynamically receive content, state, news, status, alerts, and

instructions from their servers.

#
Excellent CORBA/Java Integration: CORBA interfaces map nicely to their Java

counterparts.

#
A modern 3-tier client/server foundation: CORBA objects make ideal server

objects in a 3-tier (or n-tier) distributed architecture. They provide a middle-tier

object-to-object infrastructure that you can use to encapsulate data from multiple

sources. In addition, you can use CORBA IDL encapsulate existing systems and

connect them to the ORB.

#
CORBA works just fine from within applets: Applets make wonderful

Page 85

downloadable clients. A Java applet can interact directly with CORBA server

objects. In addition, CORBA server objects can call back the applet to update its

state.

$
You can create multi-panel applets using AWT: the clients created in this project

shows that you can create very functional stacks of business forms using AWT’s

card layout mechanism. In addition, you can give these panels a professional look

using the grid bag layout mechanism. Our applet was able to navigate the panels

and invoke CORBA methods to populate the fields.

$
A por table operating system for servers: The Java language offers many

operating system features. It lets you write very portable server objects. For

example, Java provides automatic garbage collection and powerful error-handling

facilities. With Java, you do not have to re-target your code to obtain facilities on a

variety of server platforms.

Despite CORBA is quite powerful, there are still some questions on it.

$
Where’s the load balancing? Is there a ORB that can distribute server loads

across multiple processors and provide a single system to the clients. The ORB

should be able to pre-start server object and cache their state.

$
Where’s the fault-tolerance? Is there a ORB that provides automatic switchover

during failure to an object replica.

Page 86

Chapter 9

Conclusion

Nowadays, more and more systems are developed in a distributed fashion. In the

expansion of a distributed system, expandability and interoperability between software

are certainly the key issues. CORBA provides sound solution to many areas of

distributed system, so in the long run, CORBA may play an important role in the

distributed software industry.

In this report, I have examined the CORBA and how it facilitates the construction of

modern distributed systems. I have developed a sample cinema tickets reservation

3-tier system using CORBA and Java for demonstration. I have used some time to learn

how to adopt the CORBA into a distributed system. As CORBA is quite powerful in

developing distributed system, so I believe it worth to take some time on learning it.

Although most of the desired functions are provided in the system, there are some areas

of improvement to the system. 1) The server can use the callback facility to periodically

update the seats' status to the clients. This can improve the accuracy and efficiency of

tickets selling as the server actively notifies the clients about the seats' status. 2) The

server can be started on demand. With this improvement the server need not to be

running all the time to wait for the request of clients. On the other hand, if there are

requests come from the clients, the server will wake up to serve the requests.

Page 87

Appendix

User Guide

%
Managers can login the system to register films and schedule show times.

Managers just need to input correct manager ID, password and click button GO to

login. If there is a typing mistake, managers can press the Clear button to clear the

input fields.

Page 88

Figure A.1

&
Managers can know more about a film before creating the schedule by selecting a

film to view its information, comment and overall grade. Managers can select a

film from the choice besides the select a film label.

Page 89

Figure A.2

Page 90

Figure A.3

'
If managers cannot find a film to schedule for show, that film need to be registered

first. To create a new film, managers can press the Create Film button. A screen

like figure A.4 will show up. Managers can fill in a film’s information and press

OK button to complete the creation. Managers can cancel the creation by pressing

the Cancel button.

Page 91

Figure A.4

(
Managers can make schedule for film shows through screen A.5. First, managers

can select a film and a showing arena. Secondly, managers can input the start and

end available booking dates of the film. Thirdly, managers can input the times of

each day one row after another. The maximum time slot for each day is nine.

Finally, managers need to input a price/seat and press OK to complete. Managers

can cancel the scheduling by pressing Cancel button.

Page 92

Figure A.5

)
When managers has completed the films creation and scheduling, they can logout

by pressing the logout button.

)
Users can login if they have registered to the system by inputting the user ID,

password and click the GO button. New users can register to the system by

pressing the Join Us button.

Page 93

Figure A.6

*
To complete the registration, new user need to fill in all fields in screen A.7 and

press the OK button. To cancel the registration, users can press the Cancel button.

Page 94

Figure A.7

+
Users can select a film to view its information, comment and overall grade from the

choice besides the Select a Film label.

Page 95

Figure A.8

,
Users can view all comments of a film by pressing the last/Next comment button.

Users also can add comment to a film by pressing the Add comment button.

Page 96

Figure A.9

-
To add comments, users just need to fill in the comments, vote a grade for the film

and press the OK button. Users can cancel the action by pressing the Cancel button.

Page 97

Figure A.10

.
If users want to buy tickets, they can click the Buy Tickets button. A new screen

such as figure A.11 will show up. Users should select the film first, then they can

select the cinema and arena. Afterwards, they can select the show date and show

time. When all choices are selected, they can press the Seating Plan button to go to

the seating plan.

Page 98

Figure A.11

/
In the seating plan, users can click on a seat to select it or click on a selected seat to

deselect it. If seats are selected, their color will change to deep blue, their labels

will be added to the list named Selected Seats, the total amount will be adjusted

accordingly. When the desired seats are selected, users can press the Confirm

button to complete the tickets buying procedure. Users can cancel the tickets

buying procedure by pressing the Return button.

Page 99

Figure A.12

0
After users have bought tickets, they can view the information of bookings made

by them by pressing the Booking Information button. The detail booking

information is shown as in figure A.13.

Page 100

Figure A.13

1
Users can logout the system by pressing the logout button at any screen.

