
Booking Service on Internet to demonstrate
Distr ibuted Transaction on CORBA

Kam Shu Kai

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Science

in

Computer Science

The Chinese University of Hong Kong
August 1999

The Chinese University of Hong Kong holds the copyright of this thesis.
Any person(s) intending to use a part or whole of the materials in the
thesis in a proposed publication must seek copyright release from the
Dean of the Graduate School.

ABSTRACT

In the earliest of 21st Century, no one will argue the fact that the world of trade

will be solely dominated by Electronic Commerce, complemented with advanced

distributed transaction technology. As one of this technology, the Common Object

Request Broker Architecture (CORBA) is an ideal middleware to integrate different

parts of a system on different hardware platforms, running in different operating

systems and developed on different programming languages. In this project,

distributed transaction characteristics on CORBA are demonstrated through the

implementation of a commercially applicable system, the Integrated Transaction

Service System (ITSS).

Results presented here show that the neutrality of Interface Definition Language

(IDL) and the object-oriented design approach of CORBA together with its services

can support the development of sizable multi-tiered system with the advantage of ease

of performance optimization, reusability, maintainability, scalability, portability and

interoperability. Moreover, several suggestions have been made on how to improve

the overall system performance. Although the study does not completely utilize all the

services provided by CORBA, the demonstration does sufficiently convince that it is

an excellent architecture for constructing the gigantic distributed system on Internet.

ACKNOWLEDGEMENT

 First of all, I would like to express my sincere gratitude towards my supervisor,

Prof. Michael R. Lyu, for his continual supports and efforts in giving me his

invaluable opinions, advices and suggestions throughout the first and second terms of

this final year project and the author can gain precious experience from him.

 Special thanks to Mr. Leung Kin Wai, Andrew, my partner with the same

project code and all my classmates who not only guide me throughout this project but

also share their wisdom with me and help me in solving problems that I encountered.

 Kam Shu Kai

 6th August, 1999

Table of Content

1. Introduction P.1

 1.1 Motivation P.1

 1.2 Aims of the Project P.2

2. Distr ibuted System P.4

 2.1 Introduction P.4

 2.2 Key Character istics of Distr ibuted system P.5

 2.3 Basic Design Issue P.8

3. CORBA P.10

 3.1 Background P.10

 3.2 Object Management Architecture P.11

 3.21 Object Request Broker (ORB) P.12

 3.2.1.1 Anatomy of a CORBA 2.0 ORB P.14

 3.2.2 CORBAservices P.16

 3.2.3 CORBAfacilities p.18

 3.2.4 CORBA Business Objects p.19

 3.3 Conclusion P.20

4. System Descr iption P.21

 4.1 Introduction P.21
 4.2 Terminology P.21

 4.3 System Requirement P.22

 4.4 Design Details P.24

 4.4.1 Workflow P.25

 4.4.2 Database Design P.41

5. Inter face Definition Language P.46

 5.1 Introduction P.46

 5.2 Design Details P.46

6. Implementation P.51

 6.1 System Overview P.51

 6.2 Client side of ITSS P.53

 6.2.1 Class Hierarchy and Methods Implementation of Client P.53

 6.2.2 System Requirement for client P.54

 6.3 Server side of ITSS P.54

 6.3.1 Server Objects Interactions P.54

 6.3.2 Server Software and Components P.56

 6.4 ITSS Client/Server Scenar io P.57

7. Testing and Result P.59

 7.1 Test Data P.59

 7.2 Test Plan P.61

 7.2.1 Test on Functions of each Screen and Exit P.61

 7.2.2 Test on Performance (Windows NT and Unix Workstation) P.65

 7.3 Test Result P.66

8. Discussion P.68

 8.1 Accuracy and Per formance P.68

 8.2 Design Strategy P.69

 8.3 Enhancement P.70

 8.4 Reusability P.71

 8.5 Scalability P.71

 8.6 Maintainability P.71

 8.7 Interoperability with other Systems P.71

 8.8 Ease of use P.72
 8.9 Comparative Advantages over other alternatives P.73

 8.10 Fur ther Enhancement on CORBA P.74

9. Conclusion P.76

Appendix I Reference P.77

Appendix I I User Guide P.79

1. Introduction

1.1 Motivation

 In the late 1980s, most programmers were still writing standalone multi-user

computer applications. Network applications were alien. In the early 1990s, no sooner

had the client/server distributed system and networking technology become

commercially mature and had it been proved to be more cost-effective than the

traditional centralized system, many new computer systems began to develop in this

direction. However, difficulties came along because of the integration of different

systems in which computer programs were written in many different languages and

were run on different operating system.

 Around 1991, the early members of Object Management Group (OMG)

proposed a sensible step, only a few years ahead of its time: instead of building

software as huge monolithic chunks and regarding network connections as unusual

features, software were designed as sets of independent components or objects that

could interoperate (not just cooperate) with other objects regardless of whether they

were located locally or remotely from them. In this architecture, network

interoperability comes naturally to every component; a big step taken in anticipation

of the networked world that lay ahead.

 In 1992, OMG defined the standard for an Object Request Broker (ORB), a

software component that resides with or near every client and object. An ORB

receives invocations from a client, and delivers these to a target object. If the client

and the target object do not reside on the same machines, there are two ORBs

involved: the client’s ORB sends the requests over the network to the ORB of the

target object, which delivers it to the object itself. Client and server codes stay simple,

concentrating on core business. Network complexity is dealt with by its ORB. This is

the fundamental idea behind the Common Object Request Broker Architecture

(CORBA). It is rapidly becoming the replacement protocol for the World Wide Web.

A web of ‘ interconnected’ ORBs will form the basis of how Electronic Commerce

and many other applications are conducted over the Internet.

1.2 Aims of the Project

 Around the world, many researchers and numerous commercial software

developing teams were focusing in this area [1]. In this project, an Integrated

Transaction Service System (ITSS) for a coliseum will be built on CORBA

architecture, through which on Internet organizations can reserve the venue to hold

their functions such as music concerts. In addition, an advertising service and a

booking service will be born with each of them. The date to be held, the prices for the

seats and the available vacancies can all be browsed. Correspondingly, buyers can

purchase tickets for such functions. Its main purpose is to demonstrate the distributed

transaction characteristics on CORBA. From the OMG News Fall 1998 [2], most of

the successful stories on CORBA told how its ability to leverage the legacy software

systems and easily integrating them with the next-generation software. This project,

on the contrary, pays emphasize on object reusability. The service is specially

designed for further extension to provide other services, e.g. traveling agency and job

advertisement, with a little additional effort.

Figure 1-1 A typical 3-tier client/server application model with CORBA

 Figure 1-1 above shows the design, a typical 3-tier client/server application

model on the Internet, with the help of CORBA. The Web-based client interacts with

its server on the Object Web as follows:

1. Web Browser downloads HTML page. In our design, the page includes reference

to embedded Java applets.

2. Web Browser retrieves Java applets from HTTP server. The HTTP server

retrieves the applet and downloads it to the browser in the form of bytecodes.

3. Web Browser loads applet. The applet is first run through the Java run-time

security gauntlet and then loaded into memory.

4. Applet invokes CORBA server objects. The Java Applet can include IDL-

generated clients stubs, which let it invoke objects on the ORB server.

Alternatively, the applet can use the CORBA Dynamic Invocation Interface (DII)

to generate server requests on-the-fly.

References:

[1] CORBA Success Stories, http://www.corba.org/

[2] OMG News Fall 1998, http://www.corba.org/

2. Distr ibuted System

2.1 Introduction

 A distributed system consists of
collection of autonomous computers,

connected through a network and

distributed operating system software,
which enables computers to coordinate

their activities and to share the resources
of the system - hardware, software and

data, so that users perceive the system as a
single, integrated computing facility [1].

Figure 2-1. A typical local area network

 The development of distributed system followed the emergence of high-speed

local area networks [Figure 2-1] at the beginning of the 1970s. In the early 1990s, the

availability of high-performance personal computers, workstations and server

computers has resulted in a major shift towards distributed systems and away

centralized and multi-user computers. This trend has been speeded by the

development of distributed system software, designed to support the development of

distributed applications. There are many examples of commercial application of

distributed system, such as the Database Management System, Automatic Teller

Machine Network, and the one having numerous computers connected with the

largest number of users everyday - World-Wide Web.

 In a centralized system, there is a single component which possesses full

control over its non-autonomous parts at all the times. If the component supports

multiple users, e.g. relational database, the users share the complete component at all

times. There is only a single point of control, which may be the bottleneck if the

workload is heavy. Consequently, there is only a single point of failure, the most

vulnerable point among all its weaknesses. The system is either running or not. If the

single autonomous component fails, the whole system will not work at all.

 From another aspect, a centralized system has some advantages. It runs in a

single process. There is no need to take concurrency control and synchronization into

account. Besides, as there are no other autonomous components, no interface is

required. Thus the design is comparatively simpler than that of distributed system.

 In distributed systems, there are multiple autonomous components that may be

decomposed further. They possess full control over their parts at all times. Interfaces

of these components must be provided for each other to use. There may be

components that are not shared by all the users and resources may not be accessible.

The users may use them indirectly. There are multiple points of control to avoid the

bottleneck of processing but these are not totally independent. Similarly, there are

multiple points of failure. If one of the machines fails, the processes running on it may

be restart on other machines.

 As compared with its counterpart, a distributed system runs in multiple

processes. These processes are usually not executed on the same processor. Hence

interprocess communication involves communication with other machines through a

network. The network may have a chance of failure and it takes extra time for

traveling through the network. Nevertheless, distributed systems are still more fault-

tolerant than a centralized one. In fact, the trade-off for its advantages comes from the

design of complex communication interface.

2.2 Key Character istics of Distr ibuted System

 Six key characteristics are primarily responsible for the usefulness of

distributed system. They are resource sharing, openness, concurrency, scalability,

fault tolerance and transparency. It should be emphasized that they are not automatic

consequences of distribution; system must be carefully designed in order to ensure

that they are achieved [1].

 Resource sharing is the ability to use any hardware, software or data anywhere

in the system. Resources in a distributed system, unlike the centralized one, are

physically encapsulated within one of the computers and can only be accessed from

others by communication. It is the resource manager to offers a communication

interface enabling the resource be accessed, manipulated and updated reliability and

consistently. There are mainly two kinds of model resource managers: client/server

model and the object-based model. Object Management Group uses the latter one in

CORBA, in which any resource is treated as an object that encapsulates the resource

by means of operations that users can invoke.

 Openness is concerned with extensions and improvements of distributed

systems. New components have to be integrated with existing components so that the

added functionality becomes accessible from the distributed system as a whole. Hence,

the static and dynamic properties of services provided by components have to be

published in detailed interfaces.

 Concurrency arises naturally in distributed systems from the separate activities

of users, the independence of resources and the location of server processes in

separate computers. Components in distributed systems are executed in concurrent

processes. These processes may access the same resource concurrently. Thus the

server process must coordinate their actions to ensure system integrity and data

integrity.

 Scalability concerns the ease of the increasing the scale of the system (e.g. the

number of processor) so as to accommodate more users and/or to improve the

corresponding responsiveness of the system. Ideally, components should not need to

be changed when the scale of a system increases.

 Fault tolerance cares the reliability of the system so that in case of failure of

hardware, software or network, the system continues to operate properly, without

significantly degrading the performance of the system. It may be achieved by

recovery (software) and redundancy (both software and hardware).

 Transparency hides the complexity of the distributed systems to the users and

application programmers. They can perceive it as a whole rather than a collection of

cooperating components in order to reduce the difficulties in design and in operation.

This characteristic is orthogonal to the others. There are many aspects of transparency,

including a) access transparency, b) location transparency, c) concurrency

transparency, d) replication transparency, e) failure transparency, f) migration

transparency, g) performance transparency and h) scaling transparency.

 Access transparency means that the operations or commands used for

accessing objects are identical regardless of local or remote data access. Location

transparency enables information objects to be accessed without the knowledge of

their physical locations. These two transparencies usually combine as the network

transparency.

 Concurrency transparency enables several processes to concurrently access

and update shared information without having to be aware that other processes may

be accessing the information at the same time. Replication transparency enables

multiple instances of information objects to be used to increase reliability and

performance without knowledge of the replicas by users or application programs, such

as Web pages mirroring.

 Failure transparency enables the concealment of faults. Users and applications

are allowed to complete their tasks despite the failure of other components. Migration

transparency, an added property of location transparency, allows the movement of

information objects within a system without affecting the operations of users or

application programs.

 Performance transparency allows the system to achieve a consistent and

predictable performance level as the loads vary. Scaling transparency allows

incremental growth of a system without change of its structure or application

algorithms. Again the World Wide Web is the best illustration.

 Designing under these six characteristics, a distributed system is capable to

benefit users in lower development cost, higher system performance and better

reliability over that from centralized system.

2.3 Basic Design Issues

 Related to its distributed nature, design issues need to be resolved. Specifically,

they are naming, communication, software structure, workload allocation and

consistency maintenance.

 Naming in distributed systems involves the following design considerations:

1) The choice of an appropriate name space for each type of resource. A name space

may be finite or it may be potentially infinite, and it may be structured or flat. All

of the resources managed by a given type of resource manger should have

different names, no matter where they are located. In objected-based systems as

in CORBA, all objects are uniformly named - they occupy a single naming space.

2) Resource must be resolvable to communication identifier. This is usually done by

holding copies of names and their translations in a name service.

 The performance and reliability of the communication techniques used for the

implementation of distributed systems are critical to their performance. A design issue

is to optimize the implementation of communication while retaining a high-level

programming model for its use.

 Openness is achieved through the design and construction of software

components with well-defined interfaces. Data abstraction is an important design

technique for distributed systems. Services can be viewed as the managers of objects

of a given data type; the interface to a service can be viewed as a set of operations. A

design issue is to structure a system so that new services can be introduced that will

work fully with the existing services element. The open services brings the

programming facilities of a distributed system up to the level for application

programming and leave the operating system kernel services to provide the most basic

of resources and services while protecting the basic hardware components from

inadmissible access.

 Design issue on workload allocation concerns how to deploy the processing

and communication and resources in a network to optimum effect in the processing of

a changing workload.

 Several consistency problems arise in distributed system, such as update of

data, replication of data, use of cache, failure and user interface. Their significance for

design is in their impact on the performance and application. Thus the maintenance of

their consistencies is important and perhaps the most difficult problem encountered in

the design.

 In additional to the issues above, typical user requirements must be considered

in design. They are the functionality, quality of service and reconfigurability. Since

distributed systems bring a richer variety of resources over the services across a

network, the functionality is required to define what the system should do for users.

On the other hand, quality of service defines the degree of the performance (fast

response), reliability (fault tolerance) and security (privacy) while reconfigurability

relates to its ability to accommodate changes on timescales., namely the short-term

one in run-time condition and the medium-to-long-term one with new hardware.

 Having addressed most of the design issues, CORBA provides an excellent

architecture [2], together with its basic CORBAservice [3], best suited for the

development of distributed system. The detail is described in depth in next chapter.

References:

[1] G. Coulouris, J. Dollimore and T. Kindberg: Distributed Systems: Concepts

and

Design (2nd ed). Addison-Wesley. 1994.

[2] Common Object Request Broker Archictecture, OMG, July, 1995.

[3] Common Object Services Specification, OMG 95-3-31, 1995

3. CORBA

3.1 Background

 The Object Management Group (OMG) was founded in May 1989 [1] by eight

companies: 3Com Corporation, American Airlines, Canon, Inc., Data General,

Hewlett-Packard, Philips Telecommunications N.V., Sun Microsystems and Unisys

Corporation. In October 1989, OMG began independent operations as a non-profit

corporation. Through the OMG's commitment to developing technically excellent,

commercially viable and vendor independent specifications for the software industry,

the consortium now includes over 800 members [2]. As OMG moves forward in

establishing CORBA as the "Middleware that's Everywhere" through its worldwide

standard specifications: CORBA/IIOP, Object Services, Internet Facilities and

Domain Interface specifications. OMG is headquartered in Framingham,

Massachusetts, USA, with international marketing partners in the UK, Germany,

Japan, India and Australia.

 OMG was formed to create a component-based software marketplace by

hastening the introduction of standardized object software. The organization's charter

includes the establishment of industry guidelines and detailed object management

specifications to provide a common framework for application development.

Conformance to these specifications will make it possible to develop a heterogeneous

computing environment across all major hardware platforms and operating systems.

Implementations of OMG specifications can be found on over 50 operating systems

across the world today. OMG's series of specifications detail the necessary standard

interfaces for Distributed Object Computing. Its widely popular Internet protocol

IIOP (Internet Inter-ORB Protocol) is being used as the infrastructure for technology

companies like Netscape, Oracle, Sun, IBM and hundreds of others. These

specifications are used worldwide to develop and deploy distributed applications for

Manufacturing, Finance, Telecoms, Electronic Commerce, Realtime systems and

Health Care.

 OMG defines object management as software development that models the

real world through representation of "objects." These objects are the encapsulation of

the attributes, relationships and methods of software identifiable program components.

A key benefit of an object-oriented system is its ability to expand in functionality by

extending existing components and adding new objects to the system. Object

management results in faster application development, easier maintenance, enormous

scalability and reusable software.

 The acceptance and use of object-oriented software is widespread and growing.

Virtually every major provider and user of computer systems in the world is either

using or planning to implement object-oriented tools and applications. Within the next

few years, revenue from the sale of object-oriented software is projected to exceed

billions of dollars in US.

3.2 Object Management Architecture

Figure 3-1 Main elements of the CORBA
architecture

 In the fall of 1990, the OMG first

published the Object management
Architecture Guide (OMG Guide). It was
revised in September 1992. The details of

the Common Facilities, however, were
added later in January 1995. Figure 3-1.

Shows the four main elements of the
architecture: 1) Object Request Broker

(ORB) defines the CORBA object bus; 2)
CORBAservices define the system-level
object frameworks that extend the bus; 3)
CORBAfacilities define horizontal and
vertical application frameworks that are
used directly by business objects; and 4)

Application Objects are the business
objects and applications - they are the

ultimate consumers of the CORBA
infrastructure. The following sections
provide a top-level view of the four
elements that make up the CORBA

infrastructure.

3.2.1 Object Request Broker (ORB)

 The Object request broker (ORB) is the object bus which allows objects to

transparently make requests to and receive response from other objects located locally

or remotely. The client is not aware of the mechanisms used to communicate with,

activate, or store the server objects. The CORBA 1.1 specifications introduced in

1991 specified the Interface Definition Language (IDL) [3], language bindings and

APIs for interfacing to the ORB. CORBA 2.0 specifies interoperability across vendor

ORBs.

 A CORBA ORB provides a wide variety of distributed middleware services.

The ORB lets objects discover each other at run time and invoke each other services.

An ORB is much more sophisticated than alternative forms of client/server

middleware, including the traditional Remote Procedure Calls (RPCs) [4], Message-

Oriented Middleware (MOM), database store procedures, and peer-to-peer services.

Benefits that every CORBA ORB provides:

Static and dynamic method invocations - A CORBA ORB allows developers to

statically define method invocations at compile time, or dynamically discover them at

run time. Hence, developers can get strong type checking at compile time or

maximum flexibility associated with late (run-time) binding. On the contrary, most

other forms of middleware only support static bindings.

High-level language bindings - A CORBA ORB allows developers to invoke methods

on server objects using their own choice. CORBA separates interface from

implementation and provides language-neutral data type that make it possible to call

objects across language and operating system boundaries. In contrast, other types of

middleware typically provide low-level, language-specific, API libraries. Also they do

not separate implementation from specification. The API is tightly bound to the

implementation, which makes it very sensitive to changes.

Self-describing system - CORBA provides run-time metadata for describing every

server interface known to the system. Every CORBA ORB supports an Interface

Repository (IR) that contains real-time information describing the functions a server

provides and their parameters. The clients use the metadata to discover how to invoke

services at run time. It also helps tools to generate code on-the-fly. The metadata is

generated automatically either by an IDL-language precompiler or by compilers that

know how to generate IDL directly form an OO language, e.g. Visigenic/Netscape’s

Caffeine generates IDL directly from Java bytecode. CORBA is the first and also the

most mature middleware to provide this type of run-time metadata and language-

independent definitions of all its services.

Local/remote transparency - An ORB can run in standalone mode on a laptop, or it

can be interconnected to every other ORB in the universe using CORBA Internet

Inter-ORB Protocol (IIOP) services. An ORB can broker inter-object calls within a

single process, multiple processes running within the same machine, or multiple

processes running across networks and operating systems. This is completely

transparent to objects

Built-in security and transactions - The ORB includes context information in its

messages to handle security and transactions across machine and ORB boundaries.

Polymorphic messaging -In contrast to other forms of middleware, an ORB does not

simply invoke a remote function. It invokes a function on a target object, which

means that the same function call will have different effects, depending on the object

receives it.

Coexistence with existing systems - CORBA’s separation of an object’s definition

from its implementation is prefect for encapsulating existing application. Using

CORBA IDL, a developer can make his own existing code look like an object on the

ORB, even if it is implementation in stored procedures. This enables CORBA an

evolutionary solution.

3.2.1.1 Anatomy of a CORBA 2.0 ORB

Figure 3-2 Block of elements in CORBA 2.0

 Figure 3-2 shows the client and server sides of a CORBA ORB. The light

areas are new to CORBA 2.0. The client does not have to be aware of where the

object is loaded, its programming language, its operating system, or any other system

aspects that are not part of an object’s interface.

On the client side:

The client IDL stubs provide the static interfaces to the object services. These

precompiled stubs define how clients invoke corresponding services on the servers.

From a client’s perspective, the stub acts like a local call. It is a proxy for a remote

server object. The stub perform marshaling so that the operations and the parameters

are encoded and decoded into flattened message formats to send to the server.

The Dynamic Invocation Interface (DII) allows the discovery of methods to be

invoked at run time. CORBA defines standard APIs for looking up the metadata that

defines the server interface, generating the parameters, issuing the remote call and

getting back the results.

The Interface Repository APIs let developers obtain and modify the descriptions of all

the registered component interfaces, the methods they support, and the parameters

they required. CORBA calls these description method signatures. The Interface

Repository is a run-time distributed database that contains machine-readable versions

of the IDL-defined interfaces. The APIs allow components to dynamically accessed,

tore, and update metadata information. This pervasive use of metadata allows every

components that lives on the ORB to have self-describing interface.

The ORB Interface consists of a few APIs to local services that may be of interest to

an application. For example, CORBA provides APIs to convert an object reference to

a string, and vice versa. These calls can be very useful if the object reference store and

communication is need.

On the server side

The Server IDL Skeletons provide static interfaces to each service exported by the

server. These skeletons, like the stubs on the client, are created using an IDL compiler.

The Dynamic Skeleton Interface (DSI), introduced in CORBA 2.0, provides a run-

time binding mechanisms for servers that need to handle incoming method calls for

components that do not have IDL-based complied skeletons. The Dynamic Skeleton

looks at parameter values in an incoming message to figure out the target object and

method. In contrast, normal compiled skeletons are defined for a particular object

class and expect a method implementation for each IDL-defined method. Dynamic

Skeletons are very useful for implementing generic bridges between ORBs. They can

also be used by interpreters and scripting languages to dynamically generate object

implementation. The DSI is the server equivalent of a DII. It can receive either static

or dynamic client invocations.

The Object Adapter sits on top of the ORB’s core communication services and

accepts request for service on behalf of the server’s objects. It provides the rum-time

environment for instantiating server objects, passing requests to them, and assigning

them object references. The Object Adapter also registers the classes it supports and

their run-time instances with the Implementation Repository (below). CORBA

specifies that each ORB must support a standard adapter called the Basic Object

Adapter (BOA). Servers may support more than one object adapter.

The Interface Repository provides a run-time repository of information about the

classes a server supports, the objects that are instantiated, and their IDs. It also serves

as a common place to store additional information associated with the implementation

of ORBs, including trace information, audit trails, security and other administrative

data.

The ORB Interface consists of a few APIs to local services that are identical to those

provided on the client side.

3.2.2 CORBAservices

 CORBAservices are collections of system-level services packaged with IDL-

specified interfaces. They are used to augment and complement the functionality of

the ORB. OMG has published standards for sixteen object services:

The Life Cycle Service defines operations for creating, copying, moving and deleting

components on the bus.

The Persistence Service provides a single interface for storing components

persistently on a variety of storage servers, including Object Databases (ODBMS),

Relational Databases (RDBMSs), and simple files.

The Naming Service components on the bus to locate other components by name; it

also supports federated naming contexts. The service also allows objects of be bound

to existing network directories or naming contexts, including ISO’s X.500, OSF’s

DCE, Sun’s NIS+ etc.

The Event Service allows components on the bus to dynamically register or unregister

their interest in specific events. The service defines a well-known object called an

event channel that collects and distributes events among components that know

nothing of each other.

The Concurrency Control Service provides a lock manager that can obtain locks on

behalf of either transactions or threads.

The Transaction Service provides two-phase commit coordination among recoverable

components using either flat or nested transactions.

The Relationship Service provides a way to create dynamic associations between

components that know nothing or each other. It also provides mechanisms for

traversing the links that group these components. You can use the service to enforce

referential integrity constraints, track containment relationships, and for any type of

linkage among components.

The Externalization Service provides a standard way for getting data into and out of a

component using a stream-like mechanism.

The Query Service provides query operations for objects. It is a superset of SQL. It is

base on the upcoming SQL3 specification and the Object Database Management

Group’s (ODMG) Object Query Language (OQL).

The Licensing Service provides operations for metering the use of components to

ensure fair compensation for use. The service supports any model of usage control at

any point in a component’s life cycle. It supports charging per session, per node, per

instance creation and per site.

The Properties Service provides operations that let developers associate named values

(or properties) with any components. Using this service, the properties can be

associated with a component’s state, e.g. a title or date.

The Time Service provides interface for synchronizing time in a distributed object

environment. It also provides operations for defining and managing time-triggered

events.

The Security Service provides a complete framework for distributed object security. It

supports authentication, access control lists, confidentiality and non-repudiation. It

also manages the delegation of credentials between objects.

The Trader Service provides a “Yellow Pages” for objects; it allows objects to

publicize their services and bid for jobs.

The Collection Service provides CORBA interfaces to generically create and

manipulate the most common collections.

The Startup Service enables requests to automatically start up when an ORB is

invoked.

 All these services enrich a distributed component’s behavior and provide the

robust environment in which it can safely live and play.

3.2.3 CORBAfacilities

 CORBAfacilities are collections of IDL-defined frameworks that provide

services of direct use to application objects. The two categories of common facilities,

horizontal and vertical, define rules of engagement that business components need to

effectively collaborate. In October 1994, the OMG issued the Common Facilities

Request for Proposal 1 (RFP1) to obtain technology submissions for compound

documents. In March 1996, OMG adopted OpenDoc as its compound document

technology (Distributed Document Components, DDCF). DDCF specifies

presentation services for components and a document interchange standard based on

OpenDoc’s Bento.

 The Common Facilities that are currently under construction include mobile

agents, data interchange, business object frameworks and internationalization. Like

the highway system, Common Facilities are an unending project. The work will

continue until CORBA defines IDL interfaces for every distributed service today, as

well as ones that are yet to be invented.

3.2.4 CORBA Business Objects

 Business objects provide a natural way for describing application-independent

concepts such as customer, employee, account, payment and patient. They encourage

a view of software that transcends tools, applications, databases, and other system

concepts. The ultimate promise of object technology and components is to provide

these medium-grained components that behave more like the real world does. A

business object, by definition, independent of any single application, is an application-

level component that can be used in unpredictable combinations. It represents a

recognizable everyday life entity. In contrast, system-level objects represent entities

that make sense only to information systems and programmers.

 In the CORBA model, a business object consists of three kinds of objects:

a) Business objects encapsulate the storage, metadata, concurrency and business rule

associated with an active entity. They also define how the object reacts to

changes in the views.

b) Business process objects encapsulate the business logic at the enterprise level. In

traditional Model/View/Controller (MVC) systems, the controller is in charge of

the process. In the CORBA model, short-lived process functions are handled by

the business object. Long-lived processes that involve other business objects are

handled by the business process object. The process object typically acts as the

glues that unites the other objects. For example, it defines how object reacts to a

change in the environment.

c) Presentation Objects represent the object visually to the user. Each business

object can have multiple presentations for multiple purposes. The presentations

communicate directly with the business object to display data on the screen. The

OMG also recognizes that there are non-visual interfaces to business objects.

 Typically, a business object may have different presentation objects spread

across multiple clients. The business object and the process object may reside in one

or more servers. The beauty of a CORBA-based architecture is that all the constituent

objects have IDL-defined interfaces and can run on ORBs [Figure3-3]. It does not

matter if the constituent objects run on the same machine or on different machines. As

far as clients are concerned, they are dealing with a single business object component,

even though it may be factored into objects running different machines. A well-

designed business object builds on the CORBA services. For example, the

concurrency and transaction services can be used to maintain the integrity of the

business object’s state.

Figure 3-3. The anatomy of a Client/Server Business Object

3.3 Conclusion

 Undoubtedly CORBA is the most suitable architecture for distributed systems

to be built on. It is more complete and mature than other similar middlewares.

Distributed CORBA objects modeled as business objects are an excellent fit for 3-tier

client/server architecture. They provide scalable and flexible solutions for

intergalactic client/server environments and for the Internet and Intranets. More

importantly, business objects are evolutionary. The existing applications are preserved.

They can be encapsulated and developer can incrementally add new intelligence, one

component at a time.

References:

[1] Background of OMG http://www.omg.org/omg/background.html

[2] Member of OMG http://www.omg.org/cgi-bin/membersearch.pl

[3] IDL defined by OMG http://www.omg.org/library/idlindx.html

[4] RPC http://www-lc.llnl.gov:8080/library/all/SR-2089_9.0/

4. System Descr iption

4.1 Introduction

In a distributed system, there may be multiple clients simultaneously

communicating with the same server or one client may communicate with multiple

servers, or even multiple clients simultaneously communicating with multiple servers.

On Internet, however, the first case occurs more frequently. To demonstrate

transaction on CORBA, a booking service is provided through the Internet which

enables a party to purchase a service, advertises it and then sells it to other parties. As

an example named before, an organization (first party) can book the venue of a

coliseum to hold concert and then sell tickets to the public (second party). Specially

designed in object-oriented approach, the booking service can be easily extended for

Integrated Transaction Service System (ITSS). Types of venue may include cinema,

swimming pool, tennis court, gymnasium etc. Other kinds of advertisement can be

posted and transactions can be made through the system. The overall system design is

defined in detail below.

4.2 Terminology

Before the full description of the system, some terms which will be extensively

used later in this chapter are defined first.

System - refer to the software product for the Internet transaction – ITSS

Service - a general term which includes both service and goods provided by the

system and other sellers

User - refer to those who are using the system. A user can have two roles, namely

seller (service producer) and buyer (service consumer). A user may be a buyer and a

seller at different situation

User Identity - simply denoted as UserId, together with a password is given to the user

who have registered

Registered - refer to a person or a party who has already successfully applied for the

use of the system. One must register before he/she can use the system.

Transaction - refer to the “buy and sell” of a service between two parties in which

payment is transferred from one’s bank account to the other’s

Organization - refer to the seller of a service who have rented a venue for an activities.

These activities usually imply a music concert, talk show or a match.

Super User – refer to the one who has special rights other than the ordinary users have.

4.3 System Requirement

The system provides an Integrated Transaction Service on Internet. Users may be

organizations or individual ticket-buyers. They have to apply in person (for security

purpose) for a user account before they can use the service. An account together with

the corresponding password will then be given. In the homepage of the system, a

friendly graphical user interface is provided for the user to interact with. A user has to

type in his UserId and password every time before his/her entry to the system. After

the authentication, the user will be invited to a screen for browsing information as

well as purchasing service.

At the highest level, the system basically provides many kinds of places such as

coliseum, stadium, sport centers for different activities. On one hand, an organization

can book the vacant venues for its activities. The venue fee will be deducted from the

users’ bank account. Beside, the organization is invited to fill an advertisement and

the system can automatically build a service to sell tickets. On the other hand, users

(spectators) can browse the information about the programs and buy tickets they like,

such as music concerts, football matches or tennis competitions, without any wastage

of time in long queues. Consequently, the cost of the fees will be transferred from the

ticket-buyers’ bank accounts to the organizations’ bank accounts. Organizations can

query for what activities they hold and similarly buyers can query for the tickets they

have purchased. Also they can browse their personal information and change their

password, user name, contact telephone number, mailing address and Email address.

Organizations are allowed to book venues even if they have enough money in bank.

Similarly, user must have enough money in bank before they can purchase the tickets.

Error message boxes [Figure 4-1] and notification boxes will be shown appropriately

for invalid data entry or important notifications. Moreover, the system should support

multiple accesses and allow multiple servers running on different machines for fault

tolerance as well as performance optimization. Below is a checklist for the system

functions.

a. access of multiple users

b. only registered user can access the system

c. system still works even in case of any failure of some machine so that users

should not be aware of

d. users can browse their personal information and change their password and some

others non-sensitive information

e. users can purchase services easily by clicks on items they want

f. users can query for what they have brought

g. users can see the total cost of the service they have chosen in a transaction and

their bank balance simultaneously

h. users are asked to confirm/reconsider before any transaction they make

i. users are notified for any error they make

j. user can see the balance after any transaction

k. users are notified if a new service is added on real time

l. only the role of ‘super user’ can browse all the transactions and make

cancellations

Figure 4-1 Some Error message boxes/notification boxes

4.4 Design Details

 The system consists of ten screens. They are the a) Opening Screen, b) the

Main Screen, c) the Venue Booking Screen, d) the Seat Reservation Screen, e) the

Service Transaction Screen, f) the Reservation Transaction Screen, g) the List Service

Screen, h) List Reservation Screen, i) the Information Update Screen and j) Change

Password Screen. Their functions are described below.

Figure 4-2 Screen for ITSS

4.4.1 Workflow

Main Screen
(Selection)

Opening Screen
(Authentication)

Seat Reservation
Screen

Information Update
Screen

Change Password
Screen

Venue Booking Screen

Service Transaction
Screen

Reservation
Transaction

Screen

List Reserve
Screen

List Service
Screen

a) Opening Screen

i. An introduction of the service and a brief description on how to use the

service is shown [Figure 4-3].

ii. User has to type in his/her UserId and the corresponding password

(which will be returned in echo character ‘ * ’) in order to proceed.

Figure 4-3 Opening Screen for ITSS

b) Main Screen

i. The screen consists of a Venue List, a Program List and the following

six buttons [Figure 4-4]:

a) ‘Book Venue’ button,

b) ‘Reserve Seat’ button,

c) ‘List Program’ button,

d) ‘List Reserve’ button,

e) ‘Update Info.’ Button,

f) ‘Change Pass.’ Button.

ii. The Venue List consists of all the venues that are available. Each row

represents a venue item, including its name and its location. User can

select a venue and click on the ‘Book Venue’ button to go to the Venue

Booking screen to book a venue and add a new service (program).

iii. The Program list contains all the activities that are organized in the

venue selected in the Venue List and will be held in dates that are not

earlier than current date. Each row represents a program, showing its

title and the date it held. User can select a program and click on the

‘Reserve Seat’ button to go to the Seat Reservation screen for that

service where he/she is interested in to reserve the seats.

iv. User can click on ‘List Program’ button to view all the program/service

held by him/her. The super user can view all.

v. User can click on ‘List Reserve’ button to view all the seats reserved by

him/her. Again, the super user can view all.

vi. User can click on the ‘Change Info.’ button to go the Information Update

Screen.

vii. User can click on the ‘Change Pass.’ button to go the Change Password

Screen.

viii. The Program List will be re-populated automatically if a new

program/service is successfully added.

Figure 4-4 Main Screen for ITSS

c) Venue Booking Screen

i. The screen [Figure 4-5] consists of the followings. 1) The details of the

venue, including its name and location, a brief description of what kinds

of activities that can be hold, opening and closing hours and the venue

fee. 2) The Date Available List shows the available period within 30

days. 3) A Zone List for setting the fee for each zone. 4) A group of text

boxes for the organizer to fill in the details of the program, including the

Title, the start time and the end time, description and the enquiry

telephone number. 4) A ‘Submit’ button and a ‘Cancel’ button.

ii. User must fill in all the boxes correctly and select at least one date and at

least set the fee for the first zone. (Refer to user guide for details)

iii. User has to click the ‘Submit’ button if he/she has finished. All the

fields’ validations are checked at this moment. Error message will be

displayed appropriately to notify the user if any validation fails. If all the

validation and correct, it will go to the Service Transaction Screen for

confirmation.

iv. User can click the ‘Cancel’ button to go back to the Main Screen and

ignore the changes.

d) Service Transaction Screen

i. The screen on Figure 4-6 exactly displays what the user has entered in

the Venue Booking Screen. The Date List show only those being chosen.

Also the total fee for the dates is shown.

ii. User can click the ‘Confirm’ button to make transaction. It will then be

back to the main screen no matter if it is success or not. Notification will

be shown to inform the result. The bank balance will be displayed for

successful transaction.

iii. User can click the ‘Reconsider’ button for reconsideration. It will go

back to the venue Booking Screen.

Figure 4-5 Venue Booking Screen

Figure 4-6 Service Transaction Screen

e) Seat Reservation Screen

i. The screen on Figure 4-7 shows the details of the service (program)

chosen, including the followings:

1) title,

2) organizer,

3) date,

4) start and end time

5) enquiry telephone for details

6) a zone choice and its corresponding fee

7) a seating plan consist of the seats of the zone chosen

8) a selection list to show the zone, seat number and the price

9) bank account of the user

10) total fee of the seats chosen

ii. User can click the zone choose any zone available. The corresponding

fee and the seating plan will be shown. The seat that has already been

reserved will be disabled for click and displayed in reverse color. User

can reserve a seat by a click on it. It will be added to the selection list.

Also the total fee will be accumulated. To cancel a selected seat, user

can double click on that item in the selection list. The total fee will be

adjusted accordingly.

iii. A maximum of 20 seats can be chosen at a time. Also if the bank

account does not have enough, no more seats can be reserved.

iv. User has to click the ‘Submit’ button if he/she has finished. At least one

seat must be reserved.

v. User can click the ‘Cancel’ button to go back to the Main Screen neglect

the changes.

Figure 4-7 Seat Reservation Screen

f) Reservation Transaction Screen

i. The screen on Figure 4-8 shows the selection list, the bank account and

the total fee as the previous one.

ii. User can click ‘Confirm’ button to make transaction. It will then be back

to the main screen no matter if it is success or not. Notification will be

shown to inform the result. The bank balance will be displayed for

successful transaction.

iii. User can click the ‘Reconsider’ button for reconsideration. It will go

back to the Seat Reservation Screen.

Figure 4-8 Reservation Transaction Screen

g) List Service Screen

i. The screen on Figure 4-9 lists the program/service held by the user.

The program title and the hold date are shown. Only the super user can

see all the programs and make cancellation.

ii. User can click the ‘Return to Selection’ button to return to the main

screen

Figure 4-9 List Service Screen

h) List Reservation Screen

i. The screen on Figure 4-10 lists all the seats reserved by the user. It

shows the program title, the seat number and the transaction date. Again

only the super user can see all the reservations and make cancellation.

ii. User can click the ‘Return to Selection’ button to return to the main

screen.

Figure 4-10 List Reservation Screen

i) Information Update Screen

i. The screen on Figure 4-11 shows the user’s information: User Identity,

User Name, User Telephone, User Address, User Email Address, User

Bank Account Number and the Bank Balance.

ii. Only the User Name, User Telephone, User Address and User Email

Address are allowed to be changed and they are all compulsory except

the User Email Address.

iii. User can click ‘Ok’ button to confirm. The editable fields are checked.

Error message will be displayed for any invalid entry. If success, the new

information will be updated and it will be back to the Main screen.

iv. User can click the ‘Cancel’ button to ignore the changes. It will be back

to the Main screen.

Figure 4-11 Information Update Screen

j) Password Change Screen

i. The screen on Figure 4-12 shows a brief description about changing the

password. User is required to type in the old password, the new

password and retype it again for security.

ii. User can click ‘Ok’ button to confirm. Error message will be displayed

for invalid entry. If valid, the new password will be in effect instantly

and it will be back to the Main screen.

iii. User can click the ‘Cancel’ button to ignore the change. It will be back

to the Main screen.

Figure 4-12 Change Password Screen

The overall system is summarized on Figure 4-2. Access to the web site will

directly go to the Opening screen. Valid input of the UserId and password will lead to

the Main screen, which is the responsible for selection of all functions. Venue

booking or seat reservation will then comes to the Service Transaction Screens or the

Reservation Transaction Screen where user can confirm to make transaction or cancel

to ignore. The overall work flow is completed.

4.4.2 Database Design

Figure 4-13 Screens and tables for ITSS

(The box on the lower right corner besides each screen shows the related tables)

Main Screen
(Selection)

Opening Screen
(Authentication)

Seat Reservation
Screen

Information Update
Screen

Change Password
Screen

Venue Booking Screen

Service Transaction
Screen

Reservation
Transaction

Screen

List Reserve
Screen

List Service
Screen

TABLE : USERS

TABLE : VENUE,
SERVICE,
SESSIONS

TABLE : USERS

TABLE : USERS
TABLE : USERS,
SERVICE, FEE,
TRANSACTION,

SESSIONS

TABLE : USERS,
VENUE,

SESSIONS

TABLE : USERS,
SERVICE, FEE,
TRANSACTION,

SESSIONS

TABLE : USERS,
SERVICE, FEE,

SESSIONS

TABLE : USERS,
SERVICE,
SESSIONS

TABLE : USERS,
SERVICE,

TRANSACTION,
SESSIONS

The database consists of seven tables to store the information for the ITSS. Figure

4-13 shows the screens with the related tables on its bottom right. Field Names in

Bold Type suffixed with (P) are primary keys. Field Description indicated with

‘display only’ implies that they are not allowed to be altered through the Internet

Service for security reasons. Unique Indexes for each table are formed implicitly by

the Primary Keys and other indexes added for performance improvement are shown

later in the implementation part.

(i) Table Name: VENUE (Venue Information table)

Field Name Field Definition Field Descr iption

VenueRefNo (P) CHAR(4) Venue Reference Number

Open CHAR(4) Venue Open Hour

Close CHAR(4) Venue Close Hour

Venue CHAR(40) Venue Name

Location CHAR(50) Venue Location

Description VARCHAR2(400) Venue Description

VenueFee NUMBER(6,0) Venue Fee for a Unit of time

Seat NUMBER(5,0) Number of seats

Zone CHAR(2) Number of zones

Zrow NUMBER(2,0) Number of seats in a row

Zcolunm NUMBER(2,0) Number of seats in a column

Unit CHAR(1) ‘D’ day, ‘HD’ for half day or ‘H’ hour

(ii) Table Name: ZONE (Zone table)

Field Name Field Definition Field Descr iption

VenueRefNo (P) CHAR(4) Venue Reference Number

Zone (P) CHAR(2) Zone Number

SeatMarker NUMBER(5,0) To mark the largest seat no. within the zone

 (iii) Table Name: USERS (User Personal Information table)

Field Name Field Definition Field Descr iption

UserId (P) CHAR(8) User Identity; display only

UserPass VARCHAR2(10) User Password

UserName VARCHAR2(30) User Name; compulsory

UserTel CHAR(10) Contact telephone number; compulsory

UserAddress VARCHAR2(60) Mailing address; compulsory

UserEMail VARCHAR2(30) EMail address; optional

UserBankAccNo CHAR(14) User Bank Account Number; display only

UserBankAccBal NUMBER(9,2) Organization Account Balance; display only

(iv) Table Name: SERVICE (Service Information table)

Field Name Field Definition Field Descr iption

RefNo (P) NUMBER (12,0) Program/Service Reference Number generated by

system to uniquely identify a service/program

VenueRefNo (F) CHAR(4) Denote the place where the program is held;

reference to the VENUE table

Title CHAR(50) Program Title; compulsory

StartTime CHAR(4) Start time of the program; Compulsory with

format HHMM, from 0000 to 2359; must not be

earlier than open hour of venue

EndTime CHAR(4) End time of the program; Compulsory with format

HHMM, from 0000 to 2359; must be later than

close hour of venue and > StartTime

UserId(F) CHAR(8) User identity; who has booked the venue

TranDt Date Transaction Date; when the venue is booked

EnquiryTel CHAR(10) Enquiry Telephone No.; compulsory for enquiry

purpose

Description VARCHAR2(200) Description of the service for advertisement;

compulsory; length more than 200 will be

truncated

(v) Table Name: SESSIONS (Sessions table)

Field Name Field Definition Field Descr iption

RefNo (P) NUMBER(12,0) Program/Service Reference Number

SessNo(P) CHAR(10) Format: YYYYMMDDXX where YYYY

represents the year, MM is the month, DD is the

day and XX is the sequence no.; to identify

different sessions under the same service title

(vi) Table Name: FEE (Fee Information table)

Field Name Field Definition Field Descr iption

RefNo (P) NUMBER(12,0) Program/Service Reference Number

Zone (P) CHAR(2) Zone no.

Fee NUMBER(4,0) Fee for a seat of a program/service under a zone

(vii) Table Name: TRANSACTION (Ticket Transaction table)

Field Name Field Definition Field Descr iption

RefNo (P) NUMBER(12,0) Program/Service Reference Number

SessNo (P) CHAR (10) Sessions No.

Seat (P) NUMBER(5,0) Seat No.

UserId(F) CHAR(8) Identify who reserves the ticket

TranDt Date Transaction Date; when the seat reserved

4.4 Development Tools

The Integrated Transaction Service system will be developed on SolarisTM UNIX

environment. VisiBroker for Java version 3.4 is used to build the CORBA

architecture. It provides pure Java implementation of ORB and a complete IDL-to-

Java language binding. In addition, it has a useful utility, the gatekeeper, which is an

IIOP proxy server and can be used to warp IIOP (Internet Inter-ORB Protocol)

messages, into HTTP message. The front end is written with Java Applets. The server

side is also written in Java, which is deliberately chosen for its platform independence

properties and its powerful Abstract Window Tools (AWT) for GUI. The Oracle8

Server, Release 8.0.5.0.0, a powerful database server, is used for storage of the

persistence data. In additional to supports for traditional Relational Database, its

object option supports Object-Relational Database (*). Developers can define their

own data type. Varying arrays and nested table can be constructed. The server side

connects to database server through Java DataBase Connectivity (JDBC). The system

is designed in the Object-Oriented approach. Beside it handles well for concurrency

control for multiple updates and failures recovery. The client can be run on any web

browser on Internet.

Remark:

VisibrokerTM and VisigenicTM are registered trademarks of Visigenic Software, Inc.

SolarisTM and Java TM are registered trademark of Sun Microsystems.

Oracle 8TM is a registered trademark of Oracle Inc.

(*) Object-Relational feature is only exists in the “ i” version and not used in this

project

5. Inter face Definition Language

5.1 Introduction

Interface Definition Language (IDL) is a generic term for a language that lets a

program or object written in one language communicate with another program written

in an unknown language. In distributed object technology, it is important that new

objects be able to be sent to nay platform environment and discover how to run in that

environment.[1] The purpose of an IDL is to define a protocol between client and

server processes so that they can communicate with each other at a level higher than

simple byte strings in a heterogeneous networking environment. Each IDL has a

specification, typically specified in BNF form, and a compiler. The compiler or the

generator takes as its input an IDL file and generates code, usually C/C++/Java. The

compiler also generates the necessary client and server stubs.

The OMG IDL is the language used to describe the interfaces that client objects

call and object implementations provide. An interface definition written in OMG IDL

completely defines the interface and fully specifies each operation’s parameters. An

OMG IDL interface provides the information needed to develop clients that use the

interface’s operations. Clients are not written in OMG IDL, which is purely a

descriptive language, but in languages for which mappings from OMG IDL concepts

have been defined. The mapping of an OMG IDL concept to a client language

construct will depend on the facilities available in the client language. For example,

an OMG IDL exception might be mapped to a structure in a language that has no

notion of exception, or to an exception in a language that does. As a core part in

CORBA applications, IDL must be carefully designed.

5.2 Design Details

The following is the IDL for the ITSS. It contains two modules: the Client and

the InterenetTran. For the Client module, it has only one interface with one operation

for callback purpose. The server-side can use the ‘ inform’ operation to notify the

client. The InterenetTran module is the main part of the system. It populates the

interface with operations for the client to invoke. It has two interfaces: BookDispenser

and Book. The BookDispenser object is responsible for validation of the users’ ID and

password and registration of valid clients. It also allocates and releases the Book

object to serve the client. The Book object provides a list of functions to serve the

client. Besides, several structs and sequences are defined for the ease of manipulation.

/ / Book. i dl
modul e Cl i ent
{
 i nt er f ace Cl i ent Cont r ol
 {
 / / t o i nf or m t he c l i ent i f new changes
 bool ean i nf or m(i n st r i ng message) ;
 } ;
} ;

modul e I nt er net Tr an
{
 except i on BookExcept i on
 {
 s t r i ng r eason;
 } ;

 t ypedef st r i ng SessLi st [10] ; / / Dat es (sessi ons) booked,

/ / at most 10
 t ypedef unsi gned l ong FeeLi st [99] ; / / at most 99 zones
 t ypedef unsi gned l ong Seat Li st [20] ; / / at most 20 seat s

 s t r uct VenueSt r uct
 {

s t r i ng VenueRef No;
 s t r i ng Venue;
 s t r i ng Locat i on;
 } ;

 s t r uct VenueDet ai l St r uct
 {
 s t r i ng VenueRef No;
 s t r i ng Open;
 s t r i ng Cl ose;
 s t r i ng Venue;
 s t r i ng Locat i on;
 s t r i ng Descr i pt i on;
 unsi gned l ong VenueFee;
 unsi gned l ong Seat ;
 s t r i ng Zone;
 unsi gned l ong ZRow;
 unsi gned l ong ZCol umn;
 s t r i ng Uni t ;
 } ;

 t ypedef sequence<VenueSt r uct > VenueSeq;

 s t r uct ZoneSt r uct
 {

 s t r i ng Zone;
 unsi gned l ong Seat Mar ker ;
 } ;
 t ypedef sequence<ZoneSt r uct > ZoneSeq;
 s t r uct User St r uct
 {

 s t r i ng User I d;
 s t r i ng User Pass;
 s t r i ng User Name;
 s t r i ng User Tel ;
 s t r i ng User Add;
 s t r i ng User Emai l ;
 s t r i ng User BankAccNo;
 doubl e User BankAccBal ;
 } ;

 s t r uct Ser vi ceSt r uct
 {
 l ong l ong Ref No;
 s t r i ng SessNo;
 s t r i ng VenueRef No;
 s t r i ng Ti t l e;
 } ;

 t ypedef sequence<Ser vi ceSt r uct > Ser vi ceSeq;

 s t r uct Ser vi ceDet ai l St r uct
 {
 l ong l ong Ref No;
 s t r i ng SessNo;

 s t r i ng VenueRef No;
 s t r i ng Ti t l e;
 s t r i ng St ar t Ti me;
 s t r i ng EndTi me;
 s t r i ng Or gani zer ; / / hel d by whi ch or gani zat i on

 s t r i ng Enqui r yTel ;
 s t r i ng Descr i pt i on;
 } ;

 s t r uct Seat Det ai l St r uct
 {
 unsi gned l ong Seat ;
 unsi gned l ong ZRow;
 unsi gned l ong ZCol umn;
 } ;

 s t r uct FeeSt r uct
 {
 s t r i ng Zone;
 unsi gned l ong Fees;
 } ;

 t ypedef sequence<FeeSt r uct > FeeSeq;

 s t r uct Tr anSt r uct
 {
 l ong l ong Ref No;
 s t r i ng SessNo;
 s t r i ng Ti t l e;
 unsi gned l ong Seat ;
 s t r i ng Tr anDt ; / / whi ch dat e t he user r eser ve
 } ;
 t ypedef sequence<Tr anSt r uct > Tr anSeq;

 s t r uct Seat St r uct
 {
 unsi gned l ong Seat ; / / t he seat no.

 } ;

 t ypedef sequence<Seat St r uct > Seat Seq;

 s t r uct SessNoSt r uct
 {
 s t r i ng SessNo;
 } ;

 t ypedef sequence<SessNoSt r uct > SessNoSeq;

 i nt er f ace Book
 {
 VenueSeq get VenueLi st () ;
 VenueDet ai l St r uct get Venue(i n st r i ng VenueRef No) ;
 ZoneSeq get ZoneLi st (i n st r i ng VenueRef No) ;
 User St r uct get User (i n st r i ng User I d) ;
 doubl e get User BankAccBal (i n st r i ng
User I d) ;
 Ser v i ceSeq get Ser vi ceLi st (i n st r i ng VenueRef No) ;
 Ser v i ceSeq get Ser vi ceLi st Al l () ;
 Ser v i ceSeq get Ser vi ceLi st User I d(i n st r i ng User I d) ;

Ser vi ceDet ai l St r uct get Ser vi ce(i n l ong l ong Ref No, i n st r i ng
SessNo) ;

 Seat Det ai l St r uct get Seat (i n st r i ng VenueRef No) ;
 Seat Seq get Seat Li st (i n l ong l ong Ref No, i n
st r i ng

SessNo) ;
 FeeSeq get FeeLi st (i n l ong l ong Ref No) ;
 Tr anSeq get Tr anLi st (i n st r i ng User I d) ;
 Tr anSeq get Tr anLi st Al l () ;
 SessNoSeq get SessNoLi st (i n st r i ng VenueRef No) ;
 bool ean set User (i n User St r uct User) ;
 bool ean set Pass(i n st r i ng User I d, i n st r i ng
Passwor d)
 r ai ses (BookExcept i on) ;

bool ean addSer vi ce(i n st r i ng VenueRef No,

 i n st r i ng Ti t l e,
 i n st r i ng St ar t Ti me,
 i n st r i ng EndTi me,
 i n st r i ng User I d,
 i n unsi gned l ong VenueFee,
 i n st r i ng Enqui r yTel ,
 i n st r i ng Descr i pt i on,
 i n SessLi st ss l i s t ,
 i n FeeLi st f l i s t , out st r i ng r esaon) ;

 bool ean addTr an(i n l ong l ong Ref No, i n st r i ng
SessNo,

i n st r i ng User I d, i n Seat Li st s t l i s t ,
i n unsi gned l ong Tot al , out st r i ng r eason) ;

 bool ean cancel Book(i n l ong l ong Ref No, i n st r i ng
SessNo,

out st r i ng r eason) ;
 bool ean cancel Res(i n l ong l ong Ref No, i n st r i ng
SessNo,
 i n unsi gned l ong Seat , out st r i ng r eason) ;

 } ;

 i nt er f ace BookDi spenser
 {
 bool ean r egi st er (i n st r i ng User I d,

i n Cl i ent : : Cl i ent Cont r ol c l i ent Obj Ref)
 r ai ses (BookExcept i on) ;
 voi d not i f yOt her (i n st r i ng User I d, i n st r i ng Happen)

r ai ses (BookExcept i on) ;
 bool ean i sVal i d(i n st r i ng User I d, i n st r i ng User Pass,

out st r i ng message)
 r ai ses (BookExcept i on) ;
 Book r eser veBookObj ect (i n st r i ng User I d)

r ai ses (BookExcept i on) ;
 voi d r el easeBookObj ect (i n Book BookObj ect)

r ai ses (BookExcept i on) ;
 } ;

} ;

Reference:

[1] http://whatis.com/idl.htm

6. Implementation

6.1 System Overview

As discussed before, the ITSS is a 3-tier Client/Server application, a special type

of client/server architecture consisting of three well-defined and separate processes,

each running on a different platform:

a. The user interface, which runs on the user's computer (the client).

b. The functional modules that actually process data. This middle tier runs on a server

and is often called the application server.

c. A database management system (DBMS) that stores the data required by the middle

tier. This tier runs on a second server called the database server.

Web client Application server

 ITSS
Database

ORB

ORB

Web Pages
&

ORB Classes

Internet

(2) Get Applet

(1) Get HTML Page

HTTP
Server

CORBA
Server

(4) Invoke method

(3)

(5) Return values

IIOP

HTTP

 BookAdmin

DBMS Server

BookClient

 BookDB

 BookDispenser

Figure 6-1 The top-level architecture of the 3-tier ITSS

(For simplicity, the callback service for the server to inform the client is not shown)

 The figure above shows the overall architecture of the system. It
consists of the following objects. The front tier is a client called
BookClient, which is responsible for handling the user interface. It
contains a ClientControl thread to listen for any notification from the
server. It starts to run after the user has successfully logon. The middle-
tier server consists of four main classes: 1) a BookDispenser that manages

a pool of server objects, 2) a helper object of the class SelectIDBookDB
which is dedicated for BookDispenser to communicate with the database
server (only for validation of the login ID), 3) a pool of server objects of
the class Book, and 4) a pool of helper objects of the class BookDB –
these are the worker objects for Book objects to communicate with the
database server through persistent JDBC connections. The third tier
consists of the JDBC databases – this is where the persistent state is
stored.

The interactions between the client and application server and database
server is illustrated as follows:
1. Web browser downloads HTML –– the page includes reference to

embedded the client Java applet.
2. Web browser retr ieves Java applet and ORB classes from HTTP

server –– The HTTP server delivers the applet and ORB classes into
the browser in the form of Java bytecodes.

3. Web browser loads and star ts applet –– The applet is first run
through the Java run-time security gauntlet and then loaded into
memory.

4. Applet invokes CORBA server objects –– The Java applet includes
IDL-defined objects. Invoking methods on these objects will be
directed to the server implementation through IIOP. In fact, the client
does not communicate with the object server directly due to the Java
sandbox model restriction. The Gatekeeper makes it possible for the
client to invoke an object server on a host other the one from which
the applet originated. The Gatekeeper also wraps IIOP messages into
HTTP message while transmitting through Internet.

5. CORBA server return result values –– The return value of the
method and values of parameters defined to be “out” type are sent to
client through IIOP. Again, the IIOP messages are wrapped in HTTP
messages during the transmission.

6.2 Client side of ITSS
Written in Java, the BookClient, which provides a user-friendly

interface, acts as the front-end of ITSS. It extends the java.applet.Applet
and implements ActionListener and I temListener to trap the event
created due to the users’ action. It consists of ten different Panels objects
for display of different layouts on each screen, a control thread to receive
commands from the server and a dialog to display error or notification
messages.

6.2.1 Class Hierarchy and Methods Implementation of Client

The init() method of the applet performs the following functions: 1)
creates a new CardLayout object, 2) creates ten new panel object, 3)
adds the panels to the CardLayout, 4) initializes the ORB, 5) locates a
BookDispenser object on the server.

When there is a click on the button which is trapped by the

Actionlistener , an ActionEvent is created. The method
actionPer formed is implemented to process the actions appropriately.
Similarly, the I temEvent created by a click on Choice or List objects are
trapped by the I temListener . Correspondingly, the method
itemStateChanged is implemented to process the actions.

If the user has successfully logon the ITSS, the client will invoke

reserveBookObject to obtain a reference to a CORBA Book server object.
If it succeeds, the control thread will run immediately, with a higher
priority than the normal one. It acts as the server for the BookDispenser
on the client side. It initializes the ORB and the BOA as other servers. It
then registers itself to the BookDispenser.

The BookPanels is the superclass of all the panel classes. It sets the

background color, automatically creates the GridBagLayout and
GridBagConstraints and provides a generic addGBComponent method
that places an AWT component inside a grid.

The client side is only responsible for the display of information to

the client and processes all users’ actions. All interactions with the
database as well as the processing of data are left for the application
server to handle so as to maintain a thin client. The client simply invokes

the operations defined on the IDL to get the work done by the server.

Finally, the browser calls the destroy method when the applet

terminates. This method in turn invokes the releaseBookObject on the
BookDispenser server. If the user has been allocated a Book object, the
resources will then be released to the pool of available objects, which is
part of the OLTP etiquette.

6.2.2 System Requirement for client

To start the ITSS client, one needs the followings:
a. Java-enabled Web browser, preferably Netscape Communicator 4.X

or Internet Explorer 4.X or above, may be run on either a Windows
NT or a Unix Workstation

b. Java plug-in, version 1.1.2 or above, which depends on browser
c. Internet connection for network communication

6.3 Server side of ITSS

Again written in Java, the CORBA server objects, being the heart of
the system, provide the middle tier. As shown in Figure 6-1, they interact
with both the client applets on the front-end and the Oracle database on
the back-end. The interfaces to the server objects are defined in CORBA
IDL. The main task of the server objects is to implement the operations in
the IDL.

6.3.1 Server Objects Interactions

The two main server objects are the BookDispenser and the Book
object. Both are IDL-defined CORBA objects. The first one acts as
application server objects that encapsulate interactions with clients and
the second one is the data object that encapsulate the JDBC database.

The BookDispenser is a broker of server objects. It prestarts and

manages a pool of server object-pairs, which it then allocates to clients on
demand. Each server object (Book) runs in its own thread and maintains a
permanent connection to a JDBC. The BookDB is a Java-only object; it is
not a remote object. The number of object-pairs can be set at the start of
the server.

The BookServer provides the main method for the server. It provides
the following functions: 1) initializes the ORB, 2) obtains a reference to
the BOA, 3) creates a new BookDispenser object and passes it the size of
the server pool, 4) invokes obj_is_ready to register the newly created
BookDispenserImpl object, 5) invokes the impl_is_ready to tell the ORB
this server is ready for business.

The BookDispenserImpl implements the IDL-defined BookDispenser

interface. It contains an array of BookStatus and ClientControl. The class
constructor creates a pool of BookImpl objects and stores their references
in an array of Bookstatus objects. Finally, it invokes the obj_is_ready to
register each newly created object with the ORB. The class implements
five IDL-defined methods (operation): isValid, reserveBookObject,
register, notifyOther and releaseBookObject.

 The BookStatus implements a structure with three fields: the ref as
the reference to which Book object is serving the client, the userId to
identify the user and the inUse to store the status of the Book object.

 The ClientContrrol is to provide a reference to the client control
thread for the BookDispenser to notify. The ClientControl on the client
side register itself to tell the BookDispenser that it is ready for request.

 The BookImpl implements the IDL-defined Book interface. The class

constructor creates a new BookDB object and then connects to it. The object is

preconnected to the database. The methods implemented by this class are already

shown in chapter 5. Each of these methods serves a client request with a

corresponding helper method on the BookDB object.

 The BookDB and the SelectIDBookDB are database-encapsulator classes. They

handle all the interactions with JDBC. They provide the flexibility for accessing

different database servers. In ITSS, however, only one database server is employed.

The concurrency control in ITSS (a multi-users system) is done by employing

the 2-phase locking technique provided by the database. In ITSS, it uses the table lock

for an insert and the row lock for an update. When a transaction commits or rollbacks,

all locks are released. The locks on resources are acquired in a particular order. With

this careful design, deadlocks are avoided.

6.3.2 Server Software and Components

Comparatively, the server side is much more complicated than the client. The

software includes:

a. Inprise VisiBroker for Java 3.4
b. Apache Web 1.3.3
c. Oracle8 Server, Release 8.0.5.0.0
d. Java Development Kit 1.1.4

The followings have to be done to ensure the application server works properly:

a. the Web server and database server are already up and running

b. load the necessary data to the database

c. starts osagent

d. starts Gatekeeper on the host running the web server

e. starts the object implementation server (BookServer)

Further details for setting up the server are written in the user guide.

The VisiBroker ORB Smart Agent (osagent) is an ORB-specific
utility program provided by VisiBroker. It provides some ORB-specific
functions such as ORB domains, object implementation, fault tolerance
and object migration from one host to another. It is necessary to start the
osagent before using any VisiBroker functions.

Because of the sandbox security model imposed by Java applet, we
need an IIOP proxy server on the Web server host. The IIOP proxy server
provides IIOP tunneling over a HTTP connection and routes the messages
to and from other hosts on the server side network as requested by the
client. Because there is only HTTP communications between the client
program and the IIOP proxy, the client applet is able to run within a
firewall protected network.
6.4 ITSS Client/Server Scenar io

The following scenario shows how the objects of the 3-tier ITSS
system interact with each other.

 ITSS
Database

Client Application server DBMS Server

BookClient BookServer

BookDispense
r

Book
BookDB/
SelectIDBookDB

………..

getVenueList

releaseBookObject

reserveBookObject

inform

register

notifyOther

isvalid

getVenue

getZoneList

getUser

getZoneList

getVenue

getZoneList

getUser

………..

isvalid

JDBC

ClientControl

Figure 6-2 The ITSS Client/Server Scenario

1. The Server creates a dispenser object. The BookServer creates a

BookDispenserImpl object and passes it the size of the server pool.
2. The BookDispenser prestar ts a pool of server objects. The

BookDispenser prestarts a pool of server objects and stores their
references in an array of BookStatus objects. It also invokes
obj_is_ready to register each newly created BookImpl object with the
ORB.

3. The server object creates its JDBC helper . Each BookImpl object
creates a BookImpl helper. This is the worker object that encapsulates
JDBC. This object runs within the same thread as its creator.

4. The server object connects to the database. Each BookImpl object
invokes connect on its BookImpl to open a JDBC connection with a
ITSS database.

5. The client connects to the BookDispenser. The BookDispenser will
validate the user login and check if the user Id has already used.

6. The client requests a server object. The client invokes

reserveBookObject on the BookDispenser to obtain a server object.
7. The client creates the ClientControl thread. If the allocation of a

server object is success, the client will create and starts the
ClientContorl thread.

8. The ClientControl thread registers itself to the BookDispenser.
The ClientControl invoke the register on the BookDispenser to listen
for any notification.

9. The client invokes the operations provided by the server object.
When the client navigates through the screens, the IDL-defined
operations on the server object are invoked.

10. Notify other client objects. When a new program/service is
successfully added, the client invokes notifyOther on the
BookDispenser to notify other concurrent users.

11. Inform the client objects. The BookDispenser invokes inform on the
ClientControl to notify the client objects. The ClientControl object
will then display the notification message on the client applet.

12. Release the server object. The client invokes releaseBookObject on
the BookDispenser to return the server object to the pool. The
resources will then be available for another client.

7. Testing and Result

7.1 Test Data

The following test data are inserted before the testing procedure. They include the

venue information and their corresponding zone information. Beside, twelve user

records are created. For those fields which are not significant and too long to be

shown are marked with (*).

(i) Table Name: VENUE (Venue Information table)

Field Name Record 1 Record 2 Record 3 Record 4 Record 5

VenueRefNo 0001 0002 0003 0004 0005

Open 1200 1200 1200 1200 1200

Close 2330 2300 2300 2300 2300

Venue
Hong Kong

Coliseum

Queen

Elizabeth

Stadium

Ko Shan

Theatre –

Auditorium

Hong Kong

Cultural

Centre –

Grand Theatre

Hong Kong

Cultural

Centre -

Concert Hall

Location * * * * *

Description * * * * *

VenueFee 200000 60000 34000 31000 35000

Seat 12600 3600 1200 1800 2100

Zone 42 12 4 6 7

Zrow 12 12 12 12 12

Zcolunm 25 25 25 25 25

Unit D D D D D

Table 7-1 Testing Data for Venue Table

The creation of Zone record is done by a batch Java program. A total of 71 zone

records are inserted, equal to the sum of all zone values above (42 + 12 + 4 + 4 + 6 +

7 = 71).

(ii) Table Name: Users (User Information table)

Field Name Record 1 Record 2 Record 3

UserId Superusr 00000001 00000002

UserPass Superusr 97082721 97082722

UserName Blank * *

UserTel Blank 25102761 25102762

UserAddress Blank * *

UserEMail Blank * *

UserBankAccNo Blank * *

UserBankAccBal 0 20,000.00 20,000.00

Field Name Record 4 Record 5 Record 6

UserId 00000003 00000004 00000005

UserPass 97082723 97082724 97082725

UserName * * *

UserTel 25102763 25102764 25102765

UserAddress * * *

UserEMail * * *

UserBankAccNo * * *

UserBankAccBal 20,000.00 20,000.00 20,000.00

Field Name Record 7 Record 8 Record 9

UserId 00000006 00000007 00000008

UserPass 97082726 97082727 97082728

UserName * * *

UserTel 25102765 25102767 25102768

UserAddress * * *

UserEMail * * *

UserBankAccNo * * *

UserBankAccBal 20,000.00 20,000.00 20,000.00

Field Name Record 10 Record 11 Record 12

UserId 00010001 00010002 00010003

UserPass 97092721 97092722 97092723

UserName
Yiu Wing Ent. Co.

Ltd

Rich Elite

International Ltd

Hong Kong BasketBall

Association

UserTel 25112766 25112767 25112768

UserAddress * * *

UserEMail * * *

UserBankAccNo * * *

UserBankAccBal 2,000,000.00 2,000,000.00 2,000,000.00

Table 7-2 Testing Data for Users Table

7.2 Test Plan

The testing perform on each logical part as well as each functional part. Records

are selected, updated, inserted and deleted. To simulate the real situation, multiple

users are concurrently invoking the same server to test its accuracy and performance,

including how long the response time is and how well it resolves the problem of two

parties simultaneously booking the same venue or reserving the same seat.

7.2.1 Test on Functions of each Screen and Exit of the System

a) Opening Screen:

valid user Id and valid user password;

valid user Id and invalid user password;

invalid user Id;

already logon user Id;

password appears in ‘ * ’

click on ‘Start Over’ button;

click on ‘Submit’ button

b) Main Screen:

Venue List display;

Program/Service List display;

 selection of the first item in Venue List at the beginning;

 selection of the first item in Program/Service List at the beginning if exists;

 click on items of Venue List;

 click on items of Program/Service List;

 click on ‘Book Venue’ button;

click on ‘Reserve Seat’ button;

click on ‘List Program’ button;

click on ‘List Reserve’ button;

click on ‘Update Info.’ Button;

click on ‘Change Pass.’ Button;

c) Venue Booking Screen:

Heading Description display;

 validation of Title;

 validation of Start time;

 validation of End time;

 validation of Description;

 validation of Enquiry Telephone ;

 selection of Date List;

 setting of Fee List;

click on ‘Submit’ button;

click on ‘Cancel’ button;

d) Seat Reservation Screen:

Heading Description display;

 Program/Service, Zone, Fee and seating plan combination;

click on available seat;

click on reserved seat;

Bank Account display;

adding of the Total Fee;

item added on Seat List;

double click on Seat List;

item removal on Seat List;

disable/enable of seats button;

click on ‘Submit’ button;

click on ‘Cancel’ button

e) Service Transaction Screen:

display of all text fields;

display of date chosen;

display of the Total Fee;

click on ‘Confirm’ button;

click on ‘Reconsider’ button ;

addition of new programs/services and subtraction from user’s Bank Account;

result of transaction displayed in notification message;

for successful transaction, callback received by all other existing users together

with the refresh on the Program/Service List

f) Reservation Transaction Screen:

display of seat chosen;

display of Bank Account;

display of the Total Fee;

click on ‘Confirm’ button;

click on ‘Reconsider’ button ;

addition of new reservations and transfer from reservation party’s Bank Account

to organizer’s Bank Account

result of transaction displayed in notification message

g) List Service Screen:

Program/Service List display;

enable/disable of ‘Cancel’ button;

click on ‘Return to Selection’ button;

 click on items of Program/Service List;

click on ‘Cancel’ button;

cancellation of existing programs/services and payment refund to Venue-

booker’s Bank Account;

result displayed in notification message

h) List Reservation Screen:

Reservation List display;

enable/disable of ‘Cancel’ button;

click on ‘Return to Selection’ button;

 click on items of Reservation List;

click on ‘Cancel’ button;

cancellation of existing reservation and payment refund from Venue-booker’s

Bank Account to reservation party’s Bank Account;

result displayed in notification message

i) Information Update Screen:

display of and edit on User ID;

display of and edit on User Name;

display of and edit on User Telephone;

display of and edit on User Address;

display of and edit on User Email;

display of and edit on Bank Account No.;

display of and edit on Bank Account Balance;

validation of User Name;

validation of User Telephone;

validation of User Address;

click on ‘Ok’ button;

update of user’s information;

click on ‘Cancel’ button

j) Change Password Screen.

click on ‘Ok’ button;

update of user’s password;

combination of correct and incorrect Old Password, New Password and Retype

Password;

click on ‘Cancel’ button

k) Others

maximum number of user reached;

release of book object on exit;

first come first serve policy for simultaneous booking/reservation

7.2.2 Test on Per formance (Windows NT and Unix Workstation)

Response times for the following items are measured.

1. initial loading of Opening Screen

2. validation of User ID and Password

3. initial loading of Main Screen

4. display of Main Screen (return from other screens)

5. refresh of Program List on Main Screen

6. display of Venue Booking Screen (from Main Screen)

7. display of Venue Booking Screen (from Service Transaction Screen)

8. display of Seat Reservation Screen (from Main Screen)

9. display of Seat Reservation Screen (from Reservation Transaction Screen)

10. display of Service Transaction Screen (ignored as no network involved)

11. service transaction

12. display of Reservation Transaction Screen (ignored as no network involved)

13. reservation transaction

14. display of List Service Screen

15. cancellation of Service

16. display of List Reservation Screen

17. cancellation of Reservation

18. display of Information Update Screen

19. update of users’ information

20. display of Change Password Screen

21. update of users’ password

22. Callback/Notification time

7.3 Test Result

All the functions listed in 7.2.1 are performed precisely for situations of both

single user and multiple users (up to ten) concurrently invoke the same server. The

result for 7.2.2 is listed on Table 7-3 below. The application server process is run on

any Solar/Sparc Workstation while the client works on any other Workstations. With

a total of twelve concurrent users, each having a minimized workload on the client

computer, the average of ten times for each item is taken.

I tem Response Time Unix Workstation Windows NT

1 initial loading of Opening Screen 30 32

2 Validation of User ID and Password 5 < 2

3 initial loading of Main Screen 3 to 4 (*) 2 to 3

4
display of Main Screen (return from other

screens)
< 1 < 1

5 refresh of Program List on Main Screen < 2 < 1

6
display of Venue Booking Screen (from Main

Screen)
< 2 < 1

7
display of Venue Booking Screen (from

Service Transaction Screen)
< 1 < 1

8
display of Seat Reservation Screen (from Main

Screen)
10 3

9
display of Seat Reservation Screen (from

Reservation Transaction Screen)
2 to 3 1

10
display of Service Transaction Screen (ignored

as no network involved)
N/A N/A

11 service transaction 2 < 1

12
display of Reservation Transaction Screen

(ignored as no network involved)
N/A N/A

13 reservation transaction 2 < 1

14 display of List Service Screen < 1 < 1

15 cancellation of Service < 1 < 1

16 display of List Reservation Screen < 2 < 1

17 cancellation of Reservation < 2 < 1

18 display of Information Update Screen < 1 < 1

19 update of users’ information < 1 < 1

20 display of Change Password Screen < 1 < 1

21 update of users’ password < 1 < 1

22 Callback/Notification time < 2 < 1

Table 7-3 Testing Result for Response time (measure in seconds)

The result shows that the initial loading of Opening Screen (Item 1) and the

display of Seat Reservation Screen from Main Screen (Item 8) take a longer time. The

other parts of the system work much better, with an average response time within 1 to

2 seconds. In general, the performance on Windows NT seems better than that of

Unix Workstation.

Besides, the performance on Unix Workstation fluctuates in a large range than

that of Windows NT. The validation of User ID and Password (Item 2) is the most

significant, ranging from 1 second to 17 seconds. It is most likely due to the network

traffic. Moreover, there may be some background process being run by other users

during the testing.

8. Discussion

 The chapter is divided into ten
sessions. The accuracy and performance of
ITSS will be discussed first, followed by
design strategy and enhancement. It then

comes to the reusability, scalability,
maintainability and interoperability with
other Systems. At last, issues on the ease
of use, advantages over other alternatives
and further enhancement on CORBA are

addressed.

8.1 Accuracy and Per formance

With a total of six thousand lines of code, the transaction system (ITSS) is still

relatively small as compared to a real-life commercial system but it is implemented

thoroughly at least. It does precisely perform what has been defined in Chapter 4, the

system description. The testing result on 7.2 shows that most of the basic functions for

data manipulation, including selection, deletion, insertion and modification of records

in a database can be successfully done through the Internet with CORBA as Interface.

Furthermore, multiple updates/inserts are skillfully handled in the system and callback

service is also introduced.

The performance of the response time in Table 7-3 shows that the result is

satisfactory. Most of them are less than 1 second, which is excellent for real-time

transaction. However, the starting time (Item 1) is quite long, up to about 30 seconds.

This is expected because of the loading of the Java applet to the client web browser.

Beside, the structs used by the client defined in IDL are transferred as well.

The display of Seat Reservation Screen from Main Screen (Item 8), is the second

bottleneck. It is because of the removal and creation of seat button objects severely

lengthens the display time. Again, this is due to the nature of Java applet. Another

point to notice is that it takes 10 seconds long for the Unix Workstation to load the

screen, while its counter part, the Windows NT, takes only 3 seconds. Both use the

netscape web browser. The most likely reason is that the time for creation of peers is

longer in the Sun Sparc than in the Windows NT. Another reason may be due to the

busy network traffic. In general, the response time on Unix Workstation is longer than

the Windows NT.

It is supposed that the transaction time for delete and insert of new service or

reservation should be longer than the selection time because they involves more table

updates and inserts. However, they are more or less the same. Actually, the most

crucial factors are the number of times of transfer through the network and the nature

of the protocol. It can be suggested by the initial loading of Main Screen (Item 3),

involving two method calls, namely a) the selection of Venue and b) the selection of

the service corresponding to the selected venue, which takes nearly twice the times as

other selection. The ORBs which the objects communicate with are interconnected

through IIOP, a protocol based on TCP/IP, which is very efficient for data transfer

through the network.

8.2 Design Strategy

In the design architecture, the BookDispenser acts as a Transaction Processing

monitor (TP monitor) to maintain a pool of server objects, which are assigned to the

client on demand. TP monitor is a program that monitors a transaction as it passes

from one stage in a process to another. The TP monitor's purpose is to ensure that the

transaction processes complete or, if an error occurs, appropriate action is taken. TP

monitors are especially important in three-tier architectures that employ load

balancing because a transaction may be forwarded to any of several servers. In fact,

many TP monitors handle all the load balancing operations, forwarding transactions to

different servers based on their availability. In ITSS, a pool of server objects has been

prestarted to save the connection time to the remote database. Resources are

reallocated after a client has left. In ITSS, however, the number of concurrent users is

limited to 20 for a server. To make it prefect, it should be able to start a new server on

another machine and direct the client to connect it. Also the inter-server

communication must be handled.

Although the number of concurrent users in this test is only 12, it is sufficiently

large to support the real situation. In real case, there may be hundreds of users

simultaneously logon the system and invoke the functions on the server. However the

system is able to maintain its high performance because each client’s invocations can

be handled by a different server on different machines for load balancing. In addition,

most of times they are browsing the information rather than inserting/updating the

same records. The probability of conflict to occur is very small. Besides, as each

server only needs to serve one client, no queuing is required. Under the multi-tiered

architecture, the thin client – fat server concept can be employed. Clients handle only

the user-interface and leave the work of data processing to the application servers,

which can be run on different machines to share the workload. Therefore the overall

efficiency can be enhanced. Besides, the concept has a major impact on portability as

it essentially reduces the client to be cheaper to port to different platforms. Any

changes of complicated transaction logic will need only to modify the application

server.

All the messages passing are two-way except for the callback service. The

callback/notification time (Item 22 on Table 7-3) is taken after the 1st party (who adds

a new service) has received the resultant message of its booking. Since this is a Uni-

directional communication, the sender need not wait for acknowledgement. The

BookDispenser receives the message and then sends it to all the concurrent users.

Again this is a one-way communication. The performance is nearly the same for

hundred of concurrent users. For the case of multiple servers, it has to notify other

servers on other machines and this may double the response time.

8.3 Enhancement

Beside the multiple servers discussed above, there are two more areas for

improvement, a) use of multiple databases on different servers and b) use of Object-

Oriented Database.

For reliability purpose, it should have replicas of one database on a different

machine. Simultaneous updates of two databases can be facilitated by the transaction

service of CORBA, which implements the two-phase commit protocol. The use of

Object-Oriented Database can complement the object-oriented design approach of

CORBA so that an object can be saved in as a whole instead of breaking it down. This

is especially important for the extent of scale of a system through inheritance. Another

advantage is the decrease in locking granularity. Locking on several tables can be

replaced by locking on a single object. In ITSS, with traditional relational database,

insert or update may involve locking on several tables. The throughput is significantly

lowered when the number of concurrent users increased to a thousand.

8.4 Reusability

One of the main aims of this project is to demonstrate the reusability. Although

another system based on ITSS has not been implemented, it is foreseeable and can be

trivially deduced. The inherence property of interface can extend the system to

support various functions. For example, a stock center can be built. The Book

interface can be extended to Stock for buying and selling of stock shares with the

override of some operations. For the client side, little modification on objects can be

made to accommodate the change such as the functional screens.

8.5 Scalability

As a key characteristic of distributed system, it should be accommodate more

users and/or to improve the corresponding responsiveness of the system. In ITSS,

with the use of multiple servers as discussed in 8.2, nearly no component has to be

changed when the scale of a system increases, such as the number of users. Even if

other kinds of databases are used instead of Oracle, only the BookDB class, which is

responsible to manage transactions, needs modification.

8.6 Maintainability

The ease of maintenance of the system comes from the virtue of CORBA. No or

little network maintenance is required. It is handled solely by the ORB. The

developers on the client side need not worry about what kind of programming

languages or operating system the server run on and where the server locates.

Similarly, the server side developers need not care the similar problems. The effect of

change of vendor’s product can be minimized. As a result, the possibility of teamwork

is increased and the overall administration for large system becomes easier.

8.7 Interoperability with other Systems

Interoperability is defined as the ability of two or more systems or components to

exchange information and to use the information that has been exchanged [1]. For any

other systems with CORBA features (CORBA objects), they can communicate with

each other through the IDL. As a good example, in ITSS, the ClientControl interface

in the client side allows the server to callback. In CORBA world, it is possible for an

object to interoperate with other objects simply by populating its interface.

8.8 Ease of use

The popularity of a programming language or architecture depends on its ease of

use. CORBA is a complex specification, and considerable effort may be required to

develop expertise in its use. A number of factors compound the inherent complexity

of the CORBA specification. a) While CORBA defines a standard, there is great

latitude in many of the implementation details. ORBs developed by different vendors

may have significantly different features and capabilities. Thus, users must learn the

way by which the vendors implement the specification and their value-added features

(which are often necessary to make a CORBA product usable). b) While CORBA

makes the development of distributed applications easier than with previous

technologies, this ease of use may be deceptive. The difficult issues involved in

designing robust distributed systems still remain (e.g., performance prediction and

analysis, failure mode analysis, consistency and caching, and security). c) Facility

with CORBA may require deep expertise in related technologies, such as distributed

systems design, distributed and multi-threaded programming and debugging; inter-

networking; object-oriented design, analysis, and programming. In particular,

expertise in object-oriented technology may require a substantial change in

engineering practice, with all the technology transition issues that imply.

Programming language support. IDL is a "least-common denominator" language.

It does not fully exploit the capabilities of programming languages to which it is

mapped, especially where the definition of abstract types is concerned.

The implementation code usually written in a low-level language (such as C++

or Java) is another limitation. Currently, no popular visual toolset (such as

PowerBuiler or Visual Basic) for CORBA is widely available yet. The complexity

increases with the size of system. As a result, it raises the development cost.

Nevertheless, a large and growing number of implementations of CORBA are

available in the marketplace, including implementations from most major computer

manufacturers and independent software vendors. CORBA ORBs are also being

developed by university research and development projects, for example Stanford's

Fresco, XeroxPARC's ILU, Cornell's Electra, and others.

8.9 Comparative Advantages over other alternatives

A CORBA object reference is a very powerful unit of distributed service

negotiation. It points to an object interface, a set of related methods (attributes can be

replaced by a pair of set() and get() operations) that operate on an individual object. In

contrast, an RPC only returns a reference to a single function. Furthermore, CORBA

interfaces can be aggregated via multiple-inheritance. Also CORBA objects are

polymorphic, i.e. the same call behaves differently depending on the object type that

receives it. RPC does not support them at all.

CORBA integrates excellent with Java, a purely OO programming language

which is powerful for building multi-thread systems. In ITSS, adding a thread running

on the client to listen for the callback from server is simple. Besides, CORBA also

works well with C++, with which many existing objects built.

 CORBA objects are self-describing and introspective. In ITSS, the dynamic

invocation is avoided for its performance. In fact, CORBA’s dynamic facilities

including Naming Service, Trading, Service, DII, DSI, and Interface repository

provide a solid foundation for the dynamic discovery and invocation of services on

the intergalactic network so that flexible and agile system can be created. DCOM [2]

is the only other alternative to support this property.

 The major computing companies including Sun, JavaSoft, IBM, Netscape,

Apple, Oracle, Sybase and HP have chosen CORBA IIOP as the common way to

connect distributed objects across the Internet and Intranets. By the end of 1998,

CORBA became almost as ubiquitous as TCP/IP.

Unlike DCOM, CORBA is not controlled by a single vendor. Consequently, it is

always able to obtained CORBA’s ORB from more than one vendor. Other than

Visibroker, Iona Orbix is also another provider. Besides, CORBA is not platform-

specific. It can be run on all major hardware platforms and different operating

systems. Its open standard makes it in advantage over DCOM [3].

8.10 Fur ther Enhancement on CORBA

 The OMG is still enriching CORBA [4]. CORBA 3, the first major addition to

the Common Object request Broker Architecture form OMG since the IIOP protocol

added interoperability in 1996, will be released in the coming months. The

specification included in the designation CORBA 3 divided nearly into three major

categories: a) Java and Internet Integration, b) Quality and Service Control and c) The

CORBAcomponent architecture.

For Java and Internet Integration, three specifications enhance CORBA

integration with the increasingly popular language and the Internet. First of all,

CORBA 3 adds a Java-to-IDL mapping to the traditional IDL-to-Java mapping. This

new mapping defines IDL interfaces for a Java objects with two effects: It lets Java

programmers use the OMG standard protocol IIOP for their remote invocations and it

allows Java servers to be invoked by CORBA clients written in any CORBA-

supported programming language. The second one is the firewall specification. The

CORBA 3 firewall Specification defines transport-level firewalls, application-level

firewalls and a bi-directional GIOP connection useful for callbacks and event

notifications. Because standard CORBA connections carry invocations only one-way,

a callback typically requires the establishing of a second TCP connection for this

traffic heading in the other direction, which is a no-no to virtually every firewall in

existence. Under the new specification, an IIOP connection is allowed to carry

invocations in the reverse direction under certain restrictive conditions that do not

compromise the security at either end of the connection. The third one is the

Interoperable Naming Service, which defines one URL-format object reference,

iioploc, that can be typed into a program to reach defined services at a remote

location, including the Naming Service. A second URL format, iiopname, actually

invokes the remote Naming service using the name that the user appends to the URL,

and retrieves the named object. For example, an iioploc identifier

iioploc://www.omg.org/NameServiece would resolve to the CORBA Naming Service

running on the machine whose IP address corresponded to the domain name

www.omg.org.

Though they have not yet been voted by the time of writing this document, these

specifications taken together add a new dimension of capability and ease-of-use to

CORBA, which will ensure that CORBA continues to play an ever-increasing role in

computing world of future.

References:

[1] Institute of Electrical and Electronics Engineers. IEEE Standard Computer

Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York, NY:

1990.

[2] DCOM (Distributed Components Object Model), a product of Microsoft

[3] Client/Server Programming With Java and CORBA by Robert Orfali and Dan

Harkey P.328-329

[4] OMG in Motion – June ’99 edition (http://www.omg.org/)

9. Conclusion

Through the work of our project, we proved that CORBA is undoubtedly the best

architecture to provide the bridge for connection between the client side on the Web

and the application server on host. Its formidable power comes from its independence

of hardware platform, free choice of operating system, neutrality in language

implementation and open standard. A sample application, ITSS, is implemented to

successfully demonstrate distributed transaction on CORBA. Moreover, we make

some suggestions for improvement of system as well as the extension of the system to

accommodate all kinds of transaction.

In fact, CORBA can result in distributed systems that can be rapidly developed and

can reap the benefits that result form using high-level building blocks provided by

CORBA, such as maintainability and adaptability. As an industry standard, it also has

the advantage of flexibility in response to changes in market conditions and

technology advances.

On the contrary, the complexity of CORBA has some drawbacks. Suggested by

research and development team leaders, training is essential even for the already

experienced programmers [1]. Besides, they must have distributed computing

concepts and have to confront with the lack of visual tools for development.

However, the benefit from CORBA is still over its disadvantages by a great deal. In

the near future, it is expected to be the leading standard architecture for distributed

system development.

Reference:
[1] Mowbray, T.J. & Brando, T. "Interoperability and CORBA-Based Open

Systems." Object Magazine 3, 3 (September/October 1993): 50-4.

I . Reference

Though not quoted in previous chapters, the following list of papers, books and

web sites have given valuable ideas and inspiration for the author to accomplish this

project.

References :
[1] Baker, S. "CORBA Implementation Issues." IEEE Colloquium on Distributed

 Object Management Digest 1994 7 (January 1994): 24-25.

[2] Brando, T. "Comparing CORBA & DCE." Object Magazine 6, 1 (March

1996):

 52-7.

[3] Pineapplesoft Link, January 1998

http://www.pineapplesoft.com/newsletter/archive/19980101_3tier.html

[4] OMG archive for list: experts (by date)

 http://www.omg.org/archives/experts/

[5] CORBA http://mordor.cs.hut.fi/~cls/corba_basics/

Casper Lassenius HUT

[6] Software Technology Review

 http://www.sei.cmu.edu/str/descriptions/corba_body.html

[7] Deng, R.H., et al. "Integrating Security in CORBA-Based Object

Architectures,"

50-61. Proceedings of the 1995 IEEE Symposium on Security and Privacy.

Oakland, CA, May 8-10, 1995. Los Alamitos, CA: IEEE Computer Society Press,

1995.

[8] Foody, M.A. "OLE and COM vs. CORBA." UNIX Review 14, 4. (April 1996):

 43-45.

[9] Jell, T. & Stal, M. "Comparing, Contrasting, and Interweaving CORBA and

 OLE," 140-144. Object Expo Europe 1995. London, UK, September 25-29,

 1995. Newdigate, UK: SIGS Conferences, 1995.

[10] Kain, J.B. "An Overview of OMG's CORBA," 131-134. Proceedings of

 OBJECT EXPO `94. New York, NY, June 6-10, 1994. New York, NY: SIGS

 Publications, 1994.

[11] Mowbray, T.J. & Brando, T. "Interoperability and CORBA-Based Open

 Systems." Object Magazine 3, 3 (September/October 1993): 50-4.

[12] Roy, Mark & Ewald, Alan. "Distributed Object Interoperability." Object

Magazine 5, 1 (March/April 1995): 18.

[13] Steinke, Steve. "Middleware Meets the Network." LAN: The Network

Solutions

 Magazine 10, 13 (December 1995): 56.

[14] Tibbets, Fred. "CORBA: A Common Touch for Distributed Applications." Data

 Comm Magazine 24, 7 (May 1995): 71-75.

[15] Wallnau, Kurt & Wallace, Evan. "A Situated Evaluation of the Object

 Management Group's (OMG) Object Management Architecture (OMA),"

 168-178. Proceedings of the OOPSLA'96. San Jose, CA, October 6-10, 1996.

 New York, NY: ACM, 1996. Presentation available [online] FTP.

 <URL: ftp://ftp.sei.cmu.edu/pub/corba/OOPSLA/present> (1996).

[16] Watson, A. "The OMG After CORBA 2." Object Magazine 6, 1 (March 1996):

 58-60.

[17] Mowbray, T.J. & Brando, T. "Interoperability and CORBA-Based Open

Systems." Object Magazine 3, 3 (September/October 1993): 50-4.

[18] INPRISE VisiBroker Product Documentation

 http://www.inprise.com/techpubs/books/vbj/vbj33/pdf_index.html

[19] TP Lite vs. TP Heavy

http://www.byte.com/art/9504/sec11/art4.htm

[20] Dickman, A. "Two-Tier Versus Three-Tier Apps." Informationweek 553

(November 13, 1995): 74-80.

[21] Bernstein, Philip A. "Middleware: A Model for Distributed Services."

 Communications of the ACM 39, 2 (February 1996): 86-97.

[22] "Middleware Can Mask the Complexity of your Distributed Environment."

 Client/Server Economics Letter 2, 6 (June 1995): 1-5.

[23] Brando, T. "Comparing CORBA & DCE." Object Magazine 6, 1 (March

1996):52-7.

I I . User Guide

The purpose of this user guide is for those who would use the booking service of

the Integrated Transaction Service System (ITSS), both venue booking and seat

reservation. The system must be set up according to the readme.txt before use.

Operation Details

All the users are eligible to book venue, reserve seat and browse the venues they

book and seats they reserve. Only the super user has the right to browse the all the

bookings and the reservations. Moreover, he has the right to cancel bookings and

reservations. There is a limit on maximum of number of concurrent users.

Error/Notification message dialog boxes will be displayed to notify the user.

Press ‘Ok’ to close the message boxes.

A. Opening Screen

When you access the site, an opening screen is shown as in Figure 1. Read the

fancy description about the system before you enjoy using the system. Type in the

User ID and the Password and then press ‘Submit’ to logon the screen. You can press

‘Start Over’ to clear the User ID and the Password. A User ID can be used to logon

once a time. There is a limit on maximum number of users. If it exceeds, you have to

wait until another user logout. Valid User ID and Password will lead you to the Main

Screen.

 Figure 1 Opening Screen

B. Main Screen

The screen shows the Venue List and Program List [Figure 2]. The Venue List

shows all the venues for booking while the Program List shows all the corresponding

programs hold on that venue. In the Venue List, the venues are displayed in

alphabetical order of the venue name. In the Program List, you can see the program

title and the date when it holds. The number in parentheses is the session number. The

programs are displayed in alphabetical order of the program title and the date. Click

on a venue item will show the all the corresponding programs in the Program List.

Any newly added programs by other user will be shown immediately.

Press ‘Book Venue’ to book the venue selected or press ‘Reserve Seat’ to reserve

the seat for the program selected. It has no effect if there is no program in the list.

Press ‘List Program’ or ‘List Reservation’ to the browse the program you hold or the

seat you reserve.

To modify your personal information, you can press ‘Update Info.’ or if you want

to get a new password, press ‘Change Pass.’ .

Figure 2 Main Screen

C. Venue Booking Screen

You will see the screen as shown in Figure 3. The name, location and other

details of the venue are displayed. You are invited to enter the program title, the start

time and end time. The time format must be in HHMM, where HH repersnets the hour

and MM is the minute. The start time must not be earlier than the open hour of the

venue and the end time must not be later than the close hour. The end time must be

later than the start time. Also, they must be in correct hour/minute format. Add the

descriptions for your program. The maximum length is 200. If exceeds, it will be

truncated. The Enquiry Telephone is compulsory. It must consist only digits. The

above details will be posted in the advertisement.

The Date List shows all the available dates within 30 days. By default the first

date is selected. You can select or deselect the date by a click on the item. At least one

date must be chosen and at most ten dates is allowed at a time. The Fee list on the

right allows you to set the fee for the zones. Enter the fee and then press ‘Set’ to set

the fee for that zone selected. You must at least set the fee for the first zone. Those

fees that are not set will follow the one above.

Finally, press ‘Submit’ to confirm. It will lead you to the service transaction

screen. You can press ‘Cancel’ to go back to the Main Screen.

Figure 3 Venue Booking Screen

D. Service Transaction Screen

The screen [Figure 4] shows the details you have previously entered in the

Venue Booking Screen. User can double-check for the correctness before

confirmation. Note that the Date List shows only those chosen.

If you think it is ok, you can press ‘Confirm’ to make transaction. It is your

responsibility to ensure that you have money for the transaction. If the you do not has

enough money in your bank account, it will be rejected. If some other user has booked

the venue of same dates at almost the same time, it will again be rejected.

It will return to the Main Screen. If the transaction is success, the users’ bank

account balance will be shown. All other concurrent users will be notified. If it fails,

the corresponding reason will be shown. Press ‘Reconsider’ to go back to the Venue

Booking Screen for reconsideration.

Figure 4 Service Transaction Screen

E. Seat Reservation Screen

The fancy screen is shown as in Figure 5. The program title, the organizer and the

other program detail are displayed. By default, the first zone is chosen. The

corresponding fee and the seating plan are displayed.

You can click on the Zone Choice to select seats from other zones. The seats

which have been reserved are in reserved color. To select a seat, place the mouse

cursor on the seat followed by a click. The selected seat together with its zone number,

seat number and its price will be shown on the Seat List. Also the fee will be added up

to the total fee. Double click the item in the Seat List to deselect a seat.

Only 20 seats can be reserved at a time. If the total fee exceeds the balance in

Bank Account, no more seats can be chosen. Finally, press ‘Submit’ to go to the

Reservation Transaction Screen or press ‘Cancel’ to go back to the Main Screen.

Figure 5 Seat Reservation Screen

F. Reservation Transaction Screen

The screen shows the seat list which contain all the seats you have chosen.

[Figure 6]. User can double-check before confirmation. Below the list shows your

bank account and total fee.

Press ‘Confirm’ to make transaction. The transaction will be success if the no

other user has reserved the seats just before. It will return to the Main Screen. If the

transaction is success, your bank account balance will be shown. If it fails, the

corresponding reason will be shown. Press ‘Reconsider’ to go back to the Seat

Reservation Screen for reconsideration.

Figure 6 Reservation Transaction Screen

G. List Service Screen

The screen [Figure 7] shows all the programs you have booked. For the super

user, all the programs will be shown. The programs are listed in alphabetical order of

the program title and the Hold Date. Press ‘Return to Selection’ to go back to the

Main Screen.

The ‘Cancel’ button is enabled only for the super user. Select the program title

and press ‘Cancel’ to cancel the booking. It will return to the Main Screen. If it is

success, the User ID with its balance will be shown in a notification message. If it

fails, a warning message will tell the reason.

Figure 7 List Service Screen

H. List Reservation Screen

The screen [Figure 8] shows all the reservations you have reserved. For the super

user, all the reservations will be shown. The reservations are listed in alphabetical

order of the program title, seat number and transaction date. Press ‘Return to

Selection’ to go back to the Main Screen.

The ‘Cancel’ button is enabled only for the super user. Select the reservation and

press ‘Cancel’ to cancel the reservation. It will return to the Main Screen. If it is

success, the organizer’s balances and the ticket-buyer’s balance will be shown in a

notification message. If it fails, a warning message will tell the reason.

.

Figure 8 List reservation Screen

I. Information Update Screen

The screen [Figure 9] shows all the users’ personal details (except the password.

You can modify only the User Name, user Telephone, User Address and User Email.

They are compulsory except the User Email.

Press ‘Ok’ to make modification. It will return to the Main Screen or press

‘Cancel’ to ignore modification. It will also return to the Main Screen.

Figure 9 Information Update Screen

J. Password Change Screen

The screen shows as in Figure 10. To change the password, you have to type in

the old password, the new password and retype the new password for confirmation.

The old password must be one you logon the system. The new password must not

be the same as the old one and the retyped one must match with the new password.

Press ‘Ok’ to make change. It will return to the Main Screen or press ‘Cancel’ to

ignore change. It will also return to the Main Screen.

Figure 10 Change Password Screen

