
CSC 7260 Project Final Report                                                                                                                  Page 1 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

ABSTRACT 

The objective of this project is to survey coverage techniques for software testing and 

to apply these techniques to the author’s working environment, IBM System/390 

mainframes. We hope to explore the relationship between coverage and reliability 

with live testing data and failure statistics. 

We review the basic concepts on software testing, and more specifically on the 

coverage techniques. The theoretical background of control and data flow coverage is 

presented with the illustration by real-life programming examples. We show that the 

data flow coverage criteria can identify possible problematic paths that maps to the 

actual testing semantic required by Y2K compliance software testing. 

Then we look into the state-of-the-art coverage testing  tool ATAC (Automatic Test 

Analysis for C) developed by Bellcore in detail. We also survey coverage testing tools 

available in the mainframe industry. We found that the data flow coverage technique 

equipped by ATAC had not been applied to any of the mainframe testing tools. In 

viewing of that, we propose to develop a coverage testing tool ATACOBOL 

(Automatic Test Analysis for COBOL) for COBOL language on the mainframe 

platform. 

Up to the current implementation,  ATACOBOL is able to perform block coverage, 

decision coverage and all-uses measures. We extend the rules of data flow coverage 

criteria to adapt data structures that modern high-level languages usually employ. We 

applied ATACOBOL to measure the control and data flow coverage of some 

production test cases. Some basic relationships between coverage and reliability is 

reflected through the measurement. 



CSC 7260 Project Final Report                                                                                                                  Page 2 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

TABLE OF CONTENTS 
 
 

ABSTRACT ............................................................................................................................................ 1 

TABLE OF CONTENTS....................................................................................................................... 2 

1. INTRODUCTION .............................................................................................................................. 5 

1.1 SOFTWARE TESTING AND ITS IMPORTANCE..................................................................................... 5 
1.2 OVERVIEW OF SOFTWARE TESTING................................................................................................. 5 
1.3 OVERVIEW OF COVERAGE TECHNIQUE............................................................................................ 6 
1.4 BACKGROUND INFORMATION ABOUT THE AUTHOR’S WORKING ENVIRONMENT............................. 8 
1.5 ORGANISATION OF THIS REPORT...................................................................................................... 8 

2. BACKGROUND THEORY............................................................................................................. 10 

2.1 THE BASIS OF PROGRAM TESTING................................................................................................. 10 
2.2 THE NEED FOR PATH SELECTION CRITERIA ................................................................................... 10 
2.3 CONTROL FLOW COVERAGE.......................................................................................................... 11 

2.3.1 Block Coverage and Edge Coverage..................................................................................... 11 
2.3.2 A Real-Life Example Demostrating the Subsumption Relation between  Coverage and Edge 
Coverage........................................................................................................................................ 12 

2.4 DATA FLOW COVERAGE................................................................................................................ 13 
2.4.1 The Arise of Data Flow Coverage......................................................................................... 13 
2.4.2 Def/Use Pair .......................................................................................................................... 14 
2.4.3 The Def/Use Graph................................................................................................................ 15 
2.4.4 Family of Data Flow Selection Criteria................................................................................ 18 
2.4.5 Real-Life Y2K Example Demonstrating Advantage of Data Flow Coverage........................ 19 
2.4.6 Extented Example that Required All-DU-Paths Criteria ...................................................... 20 
2.4.6 Global Payments Systems Test .............................................................................................. 23 

3. SURVEY ON COVERAGE TESTING TOOLS............................................................................ 25 

3.1 ATAC (AUTOMATIC TEST ANALYSIS FOR C) ................................................................................ 25 
3.2 SURVEY ON COVERAGE TOOLS FOR COBOL IN MAINFRAME PLATFORM ..................................... 26 

3.2.1 Status of COBOL in the Mainframe Platform....................................................................... 26 
3.2.2 COBOL Coverage Tools on Mainframe................................................................................ 27 

4. IM PLEM ENTATION...................................................................................................................... 30 

4.1 OVERVIEW .................................................................................................................................... 30 
4.2 ENVIRONMENT SETUP ................................................................................................................... 30 
4.3 APS COBOL ................................................................................................................................ 31 
4.4 ATACOBOL ARCHITECTURE....................................................................................................... 32 
4.5 ATACOBOL CODE PARSER......................................................................................................... 33 
4.6 ATACOBOL INSTRUMENTER....................................................................................................... 43 
4.7 ATACOBOL RUNTIME ROUTINE ................................................................................................. 44 
4.8 ATACOBOL COVERAGE ANALYSER ........................................................................................... 45 

5. M EASUREM ENT ............................................................................................................................ 51 

5.1 SYSTEM DESCRIPTION ................................................................................................................... 51 
5.2 NUMBER OF C-USE AND P-USE AGAINST NUMBER OF FAULTS..................................................... 52 
5.3 DATA FLOW COVERAGE OF LIVE TEST CASES............................................................................... 56 

6. EVALUATION................................................................................................................................. 58 

6.1 EXPERIENCE IN USING ATAC ....................................................................................................... 58 
6.1.1 The applications of ATAC ..................................................................................................... 58 
6.1.2 Limitations of ATAC.............................................................................................................. 60 

6.2 EXPANDING THE DATA FLOW COVERAGE DEFINITION TO C.......................................................... 63 



CSC 7260 Project Final Report                                                                                                                  Page 3 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

6.2.1 Handling Global Variables................................................................................................... 63 
6.2.2 Handling Array Elements...................................................................................................... 64 
6.2.3 Handling Pointers................................................................................................................. 66 
6.2.4 Handling Structure................................................................................................................ 67 
6.2.4 Handling Union..................................................................................................................... 68 

6.3 EXPERIENCE IN USING ATACOBOL............................................................................................. 68 
6.3.1 Using ATAC to Measure ATACOBOL................................................................................... 68 
6.3.2 The Usefulness of  Enhanced Rules on Data Structures........................................................ 69 
6.3.3 Comparing ATACOBOL, ATAC and ASSET......................................................................... 70 
6.3.4 Suggested ATACOBOL Further Development ...................................................................... 71 

7. DISCUSSION.................................................................................................................................... 73 

7.1 ANOTHER TYPE OF DEF/USE IN ASSEMBLY LANGUAGE  ADDRESSING USE............................... 73 
7.2 EFFECT OF UNEXECUTABLE PATH TO DATA FLOW COVERAGE CRITERIA...................................... 74 
7.3 COMPLEXITY OF DATA FLOW COVERAGE...................................................................................... 76 

7.3.1 Complexity of Data Flow Coverage Criteria ........................................................................ 76 
7.3.2 Complexity of Data Flow Coverage Measurement................................................................ 79 

7.4 COMPARISON OF THE FAULT-DETECTING ABILITY OF COVERAGE CRITERIA ................................. 80 
7.4.1 Problem of Empirical Comparison of Effectiveness.............................................................. 80 
7.4.2 Problem of Analytical Comparison of Effectiveness............................................................. 81 
7.4.2 PROBBETTER Relation of Coverage Criteria...................................................................... 81 

7.5 CODE COVERAGE AND RELIABILITY .............................................................................................. 81 
7.5.1 Inadequacy of Operational Profile in Reliability Estimation................................................ 81 
7.5.2 Overestimation of Reliability due to Saturation Effect.......................................................... 83 

7.6 DEVELOPING AND USING ATACOBOL IN CROSS-PLATFORM APPROACH: PROS AND CONS ........ 85 
7.7 INCORPORATION OF COVERAGE METRICS TO ARMOR................................................................. 87 
7.8 POTENTIAL BY-PRODUCTS OF ATACOBOL ................................................................................. 88 
7.9 VISUAL-AID FOR COVERAGE ANALYSIS ........................................................................................ 88 
7.10 COVERAGE ANALYSIS FOR PROGRAM VERSION CHANGES.......................................................... 90 
7.11 DATA FLOW COVERAGE: TO USE OR NOT TO USE? .................................................................... 91 

8. SCHEDULE ...................................................................................................................................... 94 

8.1 PROJECT IMPLEMENTATION SCHEDULE......................................................................................... 94 
8.2 RESOURCES................................................................................................................................... 94 

8.2.1 Hardware............................................................................................................................... 94 
8.2.2 Software................................................................................................................................. 95 
8.2.3 Human Resources.................................................................................................................. 95 

9. CONCLUSION................................................................................................................................. 96 

10. REFERENCE ................................................................................................................................. 97 

APPENDIX A ATACOBOL PROGRAM  SPECIFICATIONS..................................................... 101 

A.1 MODULE SPECIFICATIONS........................................................................................................... 101 
A.1.1 Normaliser .......................................................................................................................... 101 
A.1.2 Router.................................................................................................................................. 101 
A.1.3 Variable Table Builder........................................................................................................ 102 
A.1.4 Data Flow Graph Builder ................................................................................................... 102 
A.1.5 Def-Use Path Searcher ....................................................................................................... 102 
A.1.6 Coverage Analyser .............................................................................................................. 103 

A.2 FILE LAYOUTS............................................................................................................................ 103 
A.2.1 Program Primitive Structure............................................................................................... 103 
A.2.2 Control Flow Information File............................................................................................ 104 
A.2.3 Variable Table File............................................................................................................. 104 
A.2.4 Data Flow Information File (Def)....................................................................................... 104 
A.2.5 Data Flow Information File (C-Use) .................................................................................. 104 
A.2.6 Data Flow Information File (P-Use) .................................................................................. 105 
A.2.7 Data Flow Information File (DCU).................................................................................... 105 
A.2.8 Data Flow Information File (DPU) .................................................................................... 105 



CSC 7260 Project Final Report                                                                                                                  Page 4 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

APPENDIX B ATACOBOL TUTORIAL ........................................................................................ 106 



CSC 7260 Project Final Report                                                                                                                  Page 5 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

1. INTRODUCTION 

 

1.1 Software Testing and I ts Importance 

The product of any engineering activity must be shown to be correct according to its 

requirements throughout its development. Software testing is the dynamic verification 

and validation of developed software system. Software is to experiment with the 

behaviour of the system. Verification answers the question: “Are we building the 

product right?”  while validation answers the question “Are we building the right 

product?” .  

Software testing shows the presence of bugs and to locate errors, so as to assure the 

correctness and reliability of a software system. For many modern systems, including 

networking and telecommunication systems, banking and finance systems, and 

consumer products, software plays a crucial role in their daily control, communication  

and operations. Software failure in the new airport project of Hong Kong SAR has 

caused chaos and great financial lost.  More seriously, software failure kills people. 

Unfortunately, testing software is perhaps more difficult and costly than testing other 

engineering products. It is estimated that over 50% of the development cost will be 

spent on testing. 

 

1.2 Overview of Software Testing 

Software testing can be divided into categories according to the objective, method of 

testing and development phase.  From software development perspective, we can have 

unit test, integration test and product test from one phase to the other. The unit test is 

the coding of small software components, the integration tests the integrated large 



CSC 7260 Project Final Report                                                                                                                  Page 6 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

component, and the product test software in its final form. In the re-release  of a 

modified software, the process to test the new software with test cases from the old 

version is called regression test. 

According to the test methods, we have white-box testing and black-box testing 

[Ghe97], [Som96]. Any of these methods might be applied during the test phases 

mentioned above. 

White-box, or coverage testing is program structure-based. This approach employs 

information about the internal structure to derive test cases and it focus on what a 

program does.  

Black box, or functional testing, on the other hand, is requirement based. We derive 

test cases purely based on the specification and test what a program is supposed to do. 

Software testing aims to verify and validate the program developed, and therefore, on 

the believe to achieve  higher software reliability.  

Nevertheless, testing is an expensive active in software development. From another 

point of view, software testing offers lots of research opportunities. “When to stop 

testing?”  is a challenging question towards all software testers. It is prosperous to 

develop methods for considering minimal test sets. Automatic test case generation has 

been an active research area. 

 

1.3 Overview of Coverage Technique 

There are two streams of coverage testing methods: Data and control flow testing, and 

mutation testing. Control flow testing and data flow testing are the sub-categories of 

control and data flow testing. Control flow can further divided into sub-streams of 

statement coverage and edge coverage (Figure 1.1).  

 
Software Testing 



CSC 7260 Project Final Report                                                                                                                  Page 7 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

 

 

 

 

 

 

Figure 1.1 Software Testing Methods 

 

• Statement coverage testing directs the tester to construct test cases such that each 

statement or a basic block of code is executed at least once.  

• Edge coverage testing directs the tester to construct test cases such that each 

decision edge in the program is covered at least once. 

• Data flow coverage testing directs the tester to construct test cases such that all the 

def-use pairs are covered. (The theoretical background of data flow coverage will be 

discussed in more detail in chapter 2). 

Mutation testing helps a tester design test cases from an approach very different from 

that of the path-oriented testing strategies mentioned above. Mutation testing 

generates several syntactically correct mutants of a given program. A mutant is 

obtained from making a change in the original program in accordance with a set of 

rules. Mutation testing requires a tester to generate test data that distinguish all non-

equivalent mutants of the program [Chio89]. 

In this project, we only concentrate on the application of control and data flow 

coverage methods. 

White-box/Coverage Testing Black-Box/Functional Testing 

Mutation Control & Data Flow Coverage 

Statement Coverage Edge Coverage 

Data Flow Coverage Control Flow Coverage 



CSC 7260 Project Final Report                                                                                                                  Page 8 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

1.4 Background Information about the Author ’s Working Environment  

This project targets at the application of code coverage techniques on the author’s 

working environment.  

The author is a mainframe programmer of the Hong Kong and Shanghai Banking 

Corporation Ltd (HSBC). The production mainframe serves HSBC as well as the 

Hang Seng Banking Corporation Ltd (HASE) of the HSBC Bank Group. Most 

corporate and customer banking systems are running on the production mainframe. 

They includes the Credit Card System, Current Account System, Savings Account 

System, Foreign Exchange System, Remittance System, Bank Fund Transfer System, 

Instalment Loan System, ... etc.  

HSBC and HASE plays the leading role and shares a large proportion of the local 

banking business. The two banks serve over than 60% of the current and savings 

accounts of Hong Kong SAR. It reflects that the mainframe program development 

environment of HSBC can have high representative of the local banking industry. 

 

1.5 Organisation of this Report 

In this project, we survey code coverage techniques for software testing. Based on the 

survey, we proposed a code coverage tool for COBOL in mainframe platform. Here  

briefs the content of each report chapter. 

• Chapter 1 gives an introduction of this project. It reviews the current status of 

software testing and, in particular, describes the coverage methods. The working 

environment of the author is also described. 

• Chapter 2 presents the theoretical background of the control and data flow coverage 

methods. The data flow selection criteria proposed by Weyuker et al [Rap85], 

[Fra88] is described in details with the illustration of real-life examples. It illustrates 



CSC 7260 Project Final Report                                                                                                                  Page 9 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

data flow coverage would be particularly useful in software testing related to Y2K 

problem. 

• Chapter 3 surveys the state-of-the-art coverage testing tool. The coverage testing 

tool for C language, ATAC, developed by Bellcore is focused. Coverage tools for 

COBOL in the mainframe industry is explored. 

• Chapter 4 details the implementation of a coverage testing tool, ATACOBOL, 

proposed for COBOL language on the mainframe platform. Additional rules 

catering  data structure is described. 

• Chapter 5 provides detail evaluation of features and limitations of ATAC. It reviews 

experience in using ATAC and ATACOBOL, and evaluates the abilities of these 

tools. 

• Chapter 6 shows the measurement arrangement and results in applying ATACOBOL 

measure to production test cases. 

• Chapter 7 elaborates and discusses various topics related to the above chapters. 

• Chapter 8 describes the schedule and resources of this project. 

• Chapter 9 concludes the research result of this project. 

• Chapter 10 provides a list of  reference. 

• Appendix A lists the module specifications of ATACOBOL, their functions, 

limitations, and file layouts. 

• Appendix B gives a tutorial in applying ATACOBOL to a simple APS COBOL 

program. 



CSC 7260 Project Final Report                                                                                                                  Page 10 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

2. BACKGROUND THEORY 
 
 
2.1 The Basis of Program Testing 

In this chapter we describes the theoretical background of code coverage methods. 

Real-life example from the author’s programming experience will be cited as example 

for illustration. Program in this context is referred as programs written in procedural 

language as distinguished from logic programming language. Program testing is the 

most commonly used method for demonstrating that a program accomplishes its 

intended purpose. It involves selecting elements from the program’s input domain D, 

executing the program P on these test cases T, and comparing the actual output with 

the expected output. For temporal related programs like on-line transaction keying by 

bank tellers, D involves the temporal domain. On this base, we assume the existence 

of an so-called oracle, i.e., some methods to determine whether or not the output 

produced by a program is correct.  

 

2.2 The Need for  Path Selection Cr iter ia 

While testing all possible inputs values would provide the most complete picture of a 

program’s behaviour, the input domain is usually to large for exhaustive testing to be 

practical. On another point of view, T is generally associated with a set Π of paths 

through P’s flow graph. It means that we usually cannot exhaust all possible paths of 

program P. The usual procedure is to select a relatively small T which in some sense 

representative of entire D or implicitly all paths Π. Observation of the program on this 

subset is then used to predict its behaviour in general. Unfortunately, discovering such 

an ideal set of test data is in general an impossible task [Clar89].  



CSC 7260 Project Final Report                                                                                                                  Page 11 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

Numbers of path selection criteria C have been proposed. The most well know of 

these criteria are the statement coverage and edge coverage. Weyuker et al proposed 

an family of path selection criteria that includes the control flow coverage criteria and 

an additional set of data flow selection criteria in terms the def-use pairs [Rap85], 

[Fra88]. 

 

2.3 Control Flow Coverage 

2.3.1 Block Coverage and Edge Coverage 

A program is a finite sequence of legal statements <s1, ..., sn>. A program can be 

uniquely decomposed into a set of  disjoint blocks having the property that whenever 

the first statement of the block is executed, the other statements are executed in the 

given order. Formally, a block is a maximal set of ordered statements b = <s1, ..., sb>. 

The program flow graph G (figure 2.1) representing a program P consists of one node 

i corresponding to each block bi of P and an edge from to node j to node k denoted (j, 

k) . In the following discussion, the term block and node is of the same sense of 

meaning. A path π is a finite sequence of nodes <n1, ..., nk>, k ≥ 2, such that there is an 

edge from ni to ni+1. 

 

 

 

 

 

 

Figure 2.1 A Typical Program and Program Flow Graph 

h 

i j 

k 

bh 

bj 

bi 

bk 

(h, j) 

(j, k) 

(h, i) 

(i, k) 



CSC 7260 Project Final Report                                                                                                                  Page 12 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

A set of paths Π fulfils block coverage criteria if all the nodes of the control flow 

graph of a program is included in  Π. Π fulfils edge coverage criteria if all the edges 

of the control flow graph of a program is included in  Π.  

Obviously, edge coverage is a stronger criteria than statement coverage. It is because 

if all edges are covered, the nodes connected by the edges will also be covered. 

Meanwhile, the reverse is not always true, that is, all nodes covered does not implies 

all edges covered. We will prove that by a real-life programming example in the next 

section. 

2.3.2 A Real-Life Example Demostrating the Subsumption Relation between  

Coverage and Edge Coverage 

 
Interest_Rate = HSBC_Interest_Rate 
if Bank_Number != HSBC_Bank_Number 
 
{ 
 
    Interest_Rate = HASE_Interest_Rate 
 
} 
 
... 
Code Continues  
... 
 
Figure 2.2 Example Program and Flow Graph for Edge Coverage 

 

In Hong Kong SAR, the Hong Kong and Shanghai Banking Corporation Limited 

(HSBC), bank number 004, and Hang Seng Banking Corporation Limited (HASE), 

bank number 024, are all under the HSBC Group. Teller’s banking terminals and Auto 

Teller Machines (ATMs) of both banks are all hosted by the same mainframe and 

mostly handled by the same program operated by HSBC. Therefore, programs usually 

i 

j 

k 

bi 

bj 

bk 



CSC 7260 Project Final Report                                                                                                                  Page 13 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

involves the logic to distinguish one bank from the other, so that bank specific value 

can be assigned to certain attributes (like interest rates, overdrawn limits, service 

charges, etc.) In some systems, since the transaction volume of HSBC is higher than 

HASE, the HSBC’s corresponding value is set up as the default value for certain 

attributes. Program fragments like figure 2.2 occurs frequently in in-house programs. 

In this program fragment: 

Block coverage, Π = {  i, j, k}  

Edge coverage, Π = {   (i, j), (j, k), (i, k)  }  

If we just perform the test with HASE inputs only (i.e. Bank_Number != 

HSBC_Bank_Number), block coverage is met  but edge coverage is not met (i.e., 

only  (i, j) and (j, k) are covered). However, it is uncertain whether the Interest_Rate 

is set up correctly for HSBC. To take care of both banks, we should meet the edge 

coverage criteria by testing also with HSBC inputs.  

Criterion C1 includes criterion C2 if an only if, for every program P and any test set T 

which satisfies C1 also satisfies C2. This relation is denoted by C1  �  C2 . This is 

called the notion of subsumption. Therefore, we can denote the relation between block 

coverage and edge coverage by: edge coverage  �  block coverage . 

 

2.4 Data Flow Coverage 

2.4.1 The Arise of Data Flow Coverage 

Block and edge coverage are the well-accepted basic path selection criteria as they 

captures the essence of program control structure. Unluckily, these control flow 

coverage measures can fail to expose many common errors. We reason that, even if 

every statement and branch had been executed, if the result of some computation had 



CSC 7260 Project Final Report                                                                                                                  Page 14 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

never be used, one would have little evidence that the intended computation had been 

performed. Several path selection criteria which are based on data flow analysis on the 

hope to “bridge the gap”  between edge coverage and the almost impossible  all paths 

coverage.  Rather than selecting program paths based solely on the control structure of 

a program, the data flow criteria track variables through a program. A number of path 

selection criteria have been proposed in the literature [Las83], [Nta84], [Rap85], 

[Fra89]. Each of them captures some important aspect of a program’s structure. The 

family of data flow criteria proposed by Weyuker et al is considered as the most 

complete and systematic one [Fra93]. 

2.4.2 Def/Use Pair 

The path selection criteria proposed by Weyuker, Rapps and Frankl [Rapp85], 

[Fran89] are based on an investigation of the ways in which values are associated with 

variables, and how these associations can affect the execution of a program. This 

analysis focuses on the occurrences of variables within a program. Each variable 

occurrence is classified as being a definitional, computation-use or predicate-use 

occurrence. They are referred as def, c-use, and p-use, respectively. 

In a program, a variable is either defined or used in some way. When a variable is 

assignment by certain value. We called it a def of the variable. Among uses, we can 

recognise two substantially different types of uses. The first directly affects the 

computation being performed or allows one to see the result of some earlier definition. 

Such type of use is called a c-use. A c-use may indirectly affect the flow of control 

through the program. On the other hand, the second type of use directly affects the 

flow of control through the program, and thereby may indirectly affect the 

computations performed. Such type of use is called a p-use. 



CSC 7260 Project Final Report                                                                                                                  Page 15 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

2.4.3 The Def/Use Graph 

Only global definition and use are considered. Since we are interested in tracing the 

flow of data between nodes, any definition which is used only within the node in 

which the definition occurs is of little importance. A def of a variable is global if it is 

the last def of that variable in a node. A c-use of a variable is a global c-use, provided 

there is no def of that variable proceeding the c-use within the node. C-use associates 

with nodes. That is, a node may contain c-use of certain variables. In contrast, p-use 

associate with edges. P-use is by-default global since it always associates with the 

transfer of control between blocks. 

Weyuker et al defines a def/use graph that can be created from a program by  

associating a set with  each edge and two sets with each node.  

The sets of  the def/use graph are as follows: 

• def(i) is the set of variables for which node i contains a global def. 

• c-use(i) is the set of variables for which node i conatins a global c-use. 

• p-use(i, j) is the set of variables for which edge (i, j) contains a p-use. 

Let us illustrate the construction of the def/use graph by another real-life example. 

This example is inspired from Year 2000 testing in the banking business. Some 

accounts opened with the banks are temporary, for example, loan accounts. These 

temporary account records carry expire dates. Before the manipulation of a temporary 

account, the account should be verified if it had been expired. Since most of the date 

fields in files carries only 2 digits, to cater for Y2K problem, one way is to apply the 

49/50 rule to determine the century. Program like figure 2.3 may occurs. The control 

flow graph of this program is shown on figure 2.4. 

 



CSC 7260 Project Final Report                                                                                                                  Page 16 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

/* Init expire indicator */ 
Exp_Indicator = 0; 

 
/* Read year of today’s date and expire date */ 
read Today_Year; 
read Exp_Year; 

 
/* Set up today’s year using 49/50 Rule */ 
if (Today_Year < 50) 
{ 
    Today_Year = 2000 + Today_Year; 
} 
else 
{ 
    Today_Year = 1900 + Today_Year; 
}  
/* Set up expire year using 49/50 Rule and hence check if expired */ 
if (Exp_Year < 50) 
{   
    Exp_Indicator = 2000 + Exp_Year - Today_Year; 
} 
else 
{ 
    Exp_Indicator = 1900+Exp_Year - Today_Year; 
} 
.. . 

Code Continues 

... 

Figure 2.3 Example Coding to Demonstrate Data Flow Coverage 

 

 

 

 

 

 

 

 

Figure 2.4  Flow Graph of Example Coding 

The def/use graph for this program fragment is as follows: 

b1 

b2 

b3 

b4 

b5 

b6 

1 

2 3 

4 

5 6 



CSC 7260 Project Final Report                                                                                                                  Page 17 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

node c-use def edge p-use 
1 ∅ Exp_indicator 

Today_Year 
Exp_Year 

(1, 2) Today_Year 

2 Today_Year Today_Year (1, 3) Today_Year 
3 Today_Year Today_Year (4, 5) Exp_Year 
4 ∅ ∅ (4, 6) Exp_Year 
5 Today_Year 

Exp_Year 
Exp_Indicator   

6 Today_Year 
Exp_Year 

Exp_Indicator   

 

The def/use graph can be considered as the data flow graph in contrast to control flow 

graph. Based on this graph, two def/use pair sets is established: 

Let i be any node and x any any variable such that x ∈ def(i).  

A path ( i, n1, ..., nm, j ), m ≥ 0, contains no defs of x in nodes n1, ..., nm, is called a def-

clear path w.r.t. x from node i to node j.  

A path ( i, n1, ..., nm, j, k ), m ≥ 0, contains no defs of x in nodes n1, ..., nm, is called a 

def-clear path w.r.t. x from node i to edge (j, k). 

• dcu(x, i)  is the set of all nodes j such that x ∈ c-use(j) and for which there is a def-

clear path w.r.t. x from i to j.  

• dpu(x, i)  is the set of all edges (j, k) such that x ∈  p-use(j, k) and for which there is 

a def-clear path w.r.t. x from i to j.  

The dcu and dpu sets from the previous table of our Y2K example are: 

dcu(Exp_Indicator, 1)  = { 5, 6}  

dpu(Exp_Indicator, 1)  = { ∅}  

dcu(Today_Year, 1)   = { 2, 3}  

dpu(Today_Year, 1)   = { (1, 2), (1, 3)}  

dcu(Exp_Year, 1)   = { 5, 6}  

dpu(Exp_Year, 1)   = { (4,5), (4,6)}  



CSC 7260 Project Final Report                                                                                                                  Page 18 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

dcu(Today_Year, 2)   = { 5, 6}  

dpu(Today_Year, 2)   = { ∅}  

dcu(Today_Year, 3)   = { 5, 6}  

dpu(Today_Year, 3)   = { ∅}  

2.4.4 Family of Data Flow Selection Criteria  

With these dcu and cpu definitions, Weyuker presents the family of data flow 

coverage criteria: 

Criterion Associations Required 

All-defs Some (i, j, x) s.t. j ∈ dcu(x, i) or  
some (i,(j,k),x) s.t. (j, k) ∈ dpu(x, i). 

All-c-uses All (i, j, x) s.t. j ∈ dcu(x, i). 
All-p-uses All (i,(j,k),x) s.t. (j, k) ∈ dpu(x, i). 
All-p-uses/some-c-uses All (i,(j,k),x) s.t. (j, k) ∈ dpu(x, i). 

In addition, if dpu(x, i)=∅ then some (i,j,x)  
s.t. j ∈ dcu(x, i). 

All-c-uses/some-p-uses All (i, j, x) s.t. j ∈ dcu(x, i). 
In addition, if dcu(x, i)=∅ then some (i,(j,k),x)  
s.t. (j,k) ∈ dpu(x, i). 

All-uses All (i, j, x) s.t. j ∈ dcu(x, i) and 
all (i,(j,k),x) s.t. (j, k) ∈ dpu(x, i). 

All-du-paths All du-paths from i to j with respect to x for each j ∈ 
dpu(x, i) and all du-paths from i to (j, k) with respect to x 
for each (j, k) ∈ dpu(x, i). 

 

Rapps and Weyuker [Rap84] proves the subsumption relationship of these family of 

data flow criteria together with control flow criteria as shown in figure 2.5. 



CSC 7260 Project Final Report                                                                                                                  Page 19 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

ALL-PATHS 

 
 

ALL-DU-PATHS 
 
 

ALL-USES 
 
 
 

ALL-C-USES/SOME-P-USES   ALL-P-USES/SOME-C-USES 
 
 
 

ALL-C-USES  ALL-DEFS  ALL-P-USES 
 

    
  ALL-EDGES 

 
 

   ALL-NODES 

 
Figure 2.5 Control and Data Flow Coverage Subsumption  

 

2.4.5 Real-Life Y2K Example Demonstrating Advantage of Data Flow Coverage  

Interested readers  please refer to [Raps84] for the details of the proofs. Here we just 

use the Y2K example to illustrate how the all-uses criteria can be a stronger criteria 

than all-edges and capable to detect more faults in practice. 

In the Y2K examples,  

Edge coverage, Π = {   (1, 2), (1, 3), (4, 5), (4, 6)  }  

Two complete paths { 1, 2, 4, 5}  and { 1, 3, 4, 6} can have already fulfil the edge 

coverage criteria.  

Semantically, { 1,2, 4, 5}  tests the case: 

Case 1: Both Today’s Date and Expire Date in 19XX. 

(1, 3, 4, 6}  tests the case: 

Case 2: Both Today’s Date and Expire Date in 20XX. 

Unfortunately, two cross-century cases are not tested, they are: 



CSC 7260 Project Final Report                                                                                                                  Page 20 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

Case 3: Today’s Date in 19XX and Expire Date in 20XX. 

Case 4: Today’s Date in 20XX and Expire Date in 19XX. 

These 2 cases should indeed be focus by the Y2K compliance test but missed out by 

the all-edge criteria. 

On the other hand, consider the All-Uses (or just All-C-Uses in this case) criteria, for 

every node i and every x ∈ def(i), the selected paths should include a def-clear path 

w.r.t. x from i to all elements of dcu(x, i). Review the dcu of our example: 

dcu(Today_Year, 2)   = { 5, 6}  

dcu(Today_Year, 3)   = { 5, 6}  

Paths from node 2 to node 5 and node also 6 is required. Paths from node 3 to node 5 

and also node 6 is required. Therefore, to satisfy the All-Uses criteria, desspite  paths 

{ 1, 2, 4, 5}  and { 1, 3, 4, 6} , { 1, 2, 4, 6}  and { 1, 3, 4, 5}  may be included. Not just the 

stronger of the criteria c-use is, but it really reveals the semantic of the real-world 

testing requirements of test cases construction: 

Case 1: Both Today’s Date and Expire Date in 19XX. 

Case 2: Both Today’s Date and Expire Date in 20XX. 

Case 3: Today’s Date in 19XX and Expire Date in 20XX. 

Case 4: Today’s Date in 20XX and Expire Date in 19XX. 

2.4.6 Extented Example that Required All-DU-Paths Criteria 

The previous example requires all-uses criteria to fulfil the semantic requirement. In 

this example, we re-arrange the coding as shown in figure 2.6. 

In this case, instead of using variable Today_Year in separate nodes 5 and 6, the date 

comparison is made centralised at node 7. In this case the all-uses criteria for both 



CSC 7260 Project Final Report                                                                                                                  Page 21 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

variables Today_Year and Expire_Year not necessary covers all the four Y2K test 

case 

 

/* Init expire indicator */ 
Exp_Indicator = 0; 

 
/* Read year of today’s date and expire date */ 
read Today_Year; 
read Exp_Year; 

 
/* Set up today’s year using 49/50 Rule */ 
if (Today_Year < 50) 
{ 
    Today_Year = 2000 + Today_Year; 
} 
else 
{ 
    Today_Year = 1900 + Today_Year; 
}  
/* Set up expire year using 49/50 Rule and hence check if expired */ 
if (Exp_Year < 50) 
{   
    Exp_Year = 2000 + Exp_Year; 
} 
else 
{ 
    Exp_Year = 1900+Exp_Year; 
} 
 
Exp_Indicator = Exp_Year - Today_Year; 
 
.. . 

Code Continues 

... 

Figure 2.6 Another Example Coding to Demonstrate All-DU-Paths Criteria 

The def/use graph for this program fragment is as follows: 

node c-use def edge p-use 
1 ∅ Exp_indicator 

Today_Year 
Exp_Year 

(1, 2) Today_Year 

2 Today_Year Today_Year (1, 3) Today_Year 
3 Today_Year Today_Year (4, 5) Exp_Year 
4 ∅ ∅ (4, 6) Exp_Year 
5 Exp_Year Exp_Year   
6 Exp_Year Exp_Year   
7 Today_Year Exp_indicator   

b1 

b2 

b3 

b4 

b5 

b6 

b7 



CSC 7260 Project Final Report                                                                                                                  Page 22 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

Exp_year 
 

 

 

 

 

 

 

 

 

 

Figure 2.7  Flow Graph of Another Example Coding 

The dcu and dpu sets for this Y2K example are: 

dcu(Exp_Indicator, 1)  = { 7}  

dpu(Exp_Indicator, 1)  = { ∅}  

dcu(Today_Year, 1)   = { 2, 3}  

dpu(Today_Year, 1)   = { (1, 2), (1, 3)}  

dcu(Exp_Year, 1)   = { 5, 6}  

dpu(Exp_Year, 1)   = { (4,5), (4,6)}  

dcu(Today_Year, 2)   = { 7}  

dpu(Today_Year, 2)   = { ∅}  

dcu(Today_Year, 3)   = { 7}  

dpu(Today_Year, 3)   = { ∅}  

dcu(Exp_Year, 5)   = { 7}  

dpu(Exp_Year, 5)   = { ∅}  

1 

2 3 

4 

5 6 

7 



CSC 7260 Project Final Report                                                                                                                  Page 23 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

dcu(Exp_Year, 6)   = { 7}  

dpu(Exp_Year, 6)   = { ∅}  

Consider the all-uses criteria, Today_Year defined in node 2 and node 3 only need to 

be used in node 7 through any path, and Exp_Year defined in node 5 and 6 also only 

need to be used in node 7. If these two paths coincides, only two test cases out of the 

four Y2K real-world test cases is executed to fulfil all-uses criterion. Here, it remains 

the all-du-paths criterion as the only promising criterion to enable all four cases to be 

tested in this example. The all-du-paths criteria requires all paths between the def-use 

of a variable to be executed at least once. 

 

2.4.6 Global Payments Systems Test 

From the author’s experience in a global banking industry wide Y2K test, it shows the 

Y2K coverage criteria discussed previously would possibly applicable. 

 

 

 

 

 

 

 

 

 

Figure 2.8 Global Payments Systems Test Simplified Connection Scenario 

 

Hong Kong SAR 

New York, USA 

Tokyo, Japan 

London, UK  SWIFT 
Network 

Hong Kong Clearing Limited 

New York Clearing House 



CSC 7260 Project Final Report                                                                                                                  Page 24 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

The Global Payments Systems Test for Y2K was being organised by the New York 

Clearing House. This test serves as the global financial industry Year 2000 test to 

validate the payment systems of banking sectors across markets. 190 financial 

institutes of 20 markets/countries participated in the test. Participant may send and 

receive payment instructions with its partners within same time zone or cross time 

zone. Hong Kong SAR participated the test  on 12 June 1999 (Cycle 1) and 13 June 

1999 (Cycle 2 ) with the cycle system date set to 31 December 1999 and 4 January 

2000 respectively [ICL99]. 

The purpose of the testing is to draw the attention of international community on the 

importance of the Y2K issue and make sure the payment infrastructure will be 

functioning properly through 2000. The test involves date comparison handling 

mechanism of payment instructions, it aligns with the four test cases that can be 

detected by the data flow coverage criteria discussed previously. The payment 

instruction handling scenario of Hong Kong SAR is illustrated in figure 2.9. 

 

 

 

 

 

 

 

 

 

Figure 2.9 Global Payments Systems Test scenario for Hong Kong SAR 

Japan 
at East Asia Time 
31Dec99 

USA 
at US Time 
31Dec99 

Hong Kong SAR 
at East Asia Time 
31Dec99 

Japan 
at East Asia Time 
4Jan00 
 

USA 
at US Time 
4Jan00 
 

Hong Kong SAR 
at East Asia Time 
4Jan00 

Advice for Payment Valued 31Dec99 

Payment Instruction Valued 
31Dec99 and 4Jan00 

Payment Instruction Valued  4Jan00 

Payment Instruction Valued 
4Jan00 

Advice for Payment Valued 4Jan00 

Advice for Payment Valued 4Jan00 

Cycle 1 

Cycle 2 



CSC 7260 Project Final Report                                                                                                                  Page 25 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

3. SURVEY ON COVERAGE TESTING TOOLS 
 

 
We survey currently available coverage testing tools. A state-of-the-art coverage 

testing tool called ATAC is studied and evaluated. In specific, we also surveys 

coverage tools available for COBOL language in IBM mainframe platforms. 

Comparison is made between these coverage tools. From this survey, we found that 

the mainframe industry lacks the coverage tools that is comparable to ATAC. 

 

3.1 ATAC (Automatic Test Analysis for  C) 

ATAC was developed and used as a research instrument at Purdue University and 

Bellcore [Hor90]. It has been applied in two real-world projects called the University 

of Iowa/Rockwell Joint Project and the Bellcore Project described in [Hor94]. ATAC 

was commercialised as χATAC in the Software Understanding System package, 

xSuds. xSuds technology can be licensed from Bellcore or from IBM. IBM sells the 

technology as the IBM C and C++ Maintenance and Test Toolsuite. The supported 

platforms covers HPUX, AIX, Solaris, Linux and Windows 95/NT with IBM's 

VisualAge C++ and Windows 95/NT with Microsoft Visual C++.  

In this project, ATAC release 3.3.13 was compiled and executed on SUN Solaris 

2.5.1. We can identify the following application of ATAC in the software testing 

process: 

• measuring test set completeness by control and data flow coverage; 

• displaying non-covered code to aid in test cases creation; 

• reducing regression test set size by determining minimal test set out of tested cases. 



CSC 7260 Project Final Report                                                                                                                  Page 26 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

Potentially, it can be applied to select effective randomly generated test cases. Using 

ATAC, the tester is required to compile the program to be tested by the ATAC pre-

processor. The testing process can then be carried out as normal. The coverage 

measurement process is nearly transparent for the tester. 

At any time of the testing, ATAC can display summary of the coverage and uncovered 

codes. It can also determine minimal test set size for optimal coverage. Therefore, the 

selected minimal test set can be used for regression test to minimise test cost. Detail 

evaluation and experience of using ATAC is presented on chapter 6. 

 

3.2 Survey on Coverage Tools for  COBOL in Mainframe Platform 

3.2.1 Status of COBOL in the Mainframe Platform 

COBOL is the major high level language employed in IBM OS/390, MVS, VM 

mainframe environment. COBOL language is still an strategic and supported product 

of IBM mainframes. Versions of COBOL emerges continuously in the mainframe 

industry. In HSBC mainframe environment, more than 80% of in-house programs are 

developed by COBOL. Many organisations, especially the business sector, have 

millions of dollars invested in COBOL-based systems and in the COBOL 

programmers who create and maintain the applications. COBOL applications are 

performing mission critical applications in the business world that the users don't 

really want to retire them. 

A large number of users/programmer are very pleased with their COBOL applications, 

except that they simply want to move them to open systems or client/server 

architectures.  



CSC 7260 Project Final Report                                                                                                                  Page 27 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

In many cases, rewrite programs in other languages is costly and risky. Modernising a 

COBOL application is often the alternative with the least cost, least lead time, and 

least risk. Many COBOL  developer like IBM, CA, ACUCORP and Intersolv has 

invented new versions of COBOL, modernising to a COBOL that supports an open 

system, client/server configuration might take relatively little time and effort. 

In conclusion, we believe that COBOL will last long in the mainframe platform. 

Renew and to import new technologies to the mainframe COBOL programming 

environment is necessary and rewarding. 

3.2.2 COBOL Coverage Tools on Mainframe 

In this survey, COBOL coverage products of four major software vendors of the 

mainframe industry is selected for evaluation. Table 3.1 compares the features of these 

tools. Paragraph in COBOL is similar to function in C language. Paragraph coverage 

directs the tester to construct test cases that each paragraph in COBOL to be covered 

at least once.  

From the table, we can identify that the IBM Code Assistant possesses the most 

complete features. Additional features like visual aid and tracing of specified coding 

various from one products to the other. CA-TestCoverage and IBM Code Assistant 

executes program under normal execution environment to take coverage measurement 

while SMARTTEST and XPEDITER requires the measurement to be taken on 

dedicated debugging environment. 

In comparison with ATAC, IBM Code Assistant is able to provide advanced features 

like test set minimisation. XPEDITER of Compuware makes use of PC platform to 

present the result a graphical and user-friendly way. In common, none of them 

supports data flow coverage measurement. 



CSC 7260 Project Final Report                                                                                                                  Page 28 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

From this product survey, we notice that the mainframe industry still lacks a software 

testing tools making use of the data coverage technique. In view of that, we propose to 

design and implement a coverage testing tool ATACOBOL (Automatic Test Analysis 

for COBOL) for the mainframe COBOL program development similar to ATAC. 



CSC 7260 Project Final Report                                                                                                                  Page 29 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

Vendor  Computer Associate 
(CA) 

VIASOFT Compuware IBM 

Product Name CA-TestCoverage  
/ 2000 

VIA/SmartTest 
with Test Coverage 
Analysis (TCA) 
option 

XPEDITER/ 
Code Coverage 

Coverage Assistant 
(CA) 

Execution 
Platform 

MVS, 
OS/390 

MVS, OS/390 MVS, OS/390 
and Microsoft 
Windows 3.X /95  
(for viewing result) 

MVS, OS/390 

Coverage  
M easurement 
Environment 
 

Program compiled by 
specific compiler and 
executed normally 

Testing program 
loaded under the 
debug environment  
SmartTest 

Testing program 
loaded under the 
debug environment 
XPEDITER  

Program compiled by 
specific compiler and 
executed normally 

Block 
Coverage 
M easurement 

Paragraph coverage Statement coverage, 
paragraph coverage 

Statement coverage, 
paragraph coverage 

Statement coverage 

Control Flow 
Coverage 
M easurement 

N.A N/A Edge coverage Edge coverage 

Data Flow 
Coverage 
M easurement 

N/A N/A N/A N/A 

Code 
execution 
count 

Present Present Present N/A 

Test Set 
M inimization 
 

N/A N/A N/A Present by 
complementary using 
Distillation Assistance 
(DA) under the same 
software package 

Test cost 
evaluation 

N/A N/A N/A Execution time measured 
is considered as the cost 

Trace 
changed 
coding 
 

N/A N/A Present manually: 
Segments of program 
can be highlighted to 
trace 
 

Present by 
complementary using of 
Source Audit Assistant 
(SAA) under the same 
software package 

Visual aid 
 

- Summary statistics 
report 
 
-Source Map Report 
(Indexed program 
source) 
 
 

-Summary statistics 
report 
 
 

-High-level, system-
level graphical 
structural chart for IT 
manager 
 
-Colored code to 
indicate branches and 
complexity 

-Summary statistics 
report 
 
-Targeted Coverage 
Report 
 
-Annotated Listing 
Report 

Other  
features 

Compare difference 
of execution counts 
for different test cases 

N/A Advise risk degree of a 
program based on the 
coverage, execution 
count, verb types and 
McCabe metric 

Execution time is 
measured 

Table 3.1 Mainframe COBOL Coverage Testing Tools 



CSC 7260 Project Final Report                                                                                                                  Page 30 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

4. IMPLEMENTATION 
 

 

4.1 Overview 

The instrumentation, coverage measurement and analysis of ATACOBOL is 

implemented across mainframe and PC platforms.  The ATACOBOL instrumentation 

and analysis program tools are written in C language using the Microsoft Visual C++ 

6.0 Compiler.  A version of COBOL language called the S-COBOL (structured 

COBOL) is selected as the target language for analysis. The S-COBOL is introduced 

to HSBC since 1986 and all batch programs since then are recommended to be written 

in S-COBOL. 

 

4.2 Environment Setup 

Coverage measurement of ATACOBOL is currently achieved across IBM OS/390 and 

Microsoft Windows 95 by the aid of file transfer. The process is illustrated in figure 

4.1 and screen capture of the file transfer is shown in figure 4.2. 

 

 

       

Figure 4.1 Environment Setup for ATACOBOL 

In the HSBC mainframe, all in-house program sources are stored in program version 

control system, Edevour. We can retrieve any version of the program form Edevour. 

2. Download program source and compiled listing 

4. Upload the instrumented source 

6. Download the trace log 

1. Retrieve program source from code database 

5. Perform program testing  

3. Instrument source 

7. Perform coverage 
measurement 



CSC 7260 Project Final Report                                                                                                                  Page 31 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

Figure 4.2 Screen Capture of File Transfer 

 

4.3 APS COBOL 

ATACOBOL supports APS (Application Productivity System) Development Centre is 

a cobol code generator developed and supported by Intersolv (previously called SAGE 

software) in USA and represented by Sumisho Electronics Limited (Japan) in Asia. 

The product was first delivered in 1984. 

APS Development Centre is widely applied in HSBC mainframe program 

development. It supports generation of ANSI COBOL (or COBOL II) codes for 

VSAM, CICS, IDMS and DB2. This project only concentrates on pure batch 

programs. 



CSC 7260 Project Final Report                                                                                                                  Page 32 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

The COBOL language used in APS, namely S-COBOL (Structured COBOL), is an 

extension of ANSI COBOL with the following changes: 

• Indentation, not punctuation, controls program logic; 

• One verb per line; 

• Entry to and exit from program code occurs only in the root paragraph; 

• Disallow falling through across paragraph. 

• “GOTO”, “ALTER” and “PERFORM ... THRU” statements are  not supported, 

that is, all S-COBOL performs are implicitly PERFORM-THRU. 

In short, it avoids the irregularity of native COBOL and enforce structured 

programming. 

 

4.4 ATACOBOL Architecture 

The use of ATACOBOL involves 3 phases consequently: 

• Instrumentation Phase 

The S-COBOL source is instrumented according to the structural information 

extracted from the source and compiled listing. 

• Testing Phase 

The instrumented source is compiled and testing is carried out as usual. 

Program execution is traced automatically. 

• Analysis Phase 

 The trace log is analysed to take coverage measurement. 

ATACOBOL is composed by 4 major components: 

• Code Parser 

• Code Instrumenter 



CSC 7260 Project Final Report                                                                                                                  Page 33 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

• Coverage Analyser 

• Runtime Trace Module 

These components work co-operatively to perform coverage measurement as 

illustrated in Figure 4.5. 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 4.3 S-COBOL Source and its Corresponding Record in Control Flow File 

 

4.5 ATACOBOL Code Parser  

The ATACOBOL Code Parser analyses S-COBOL source code and produces two 

files: Control Flow Information File and Data Flow Information File. In 

developing the parser, some techniques used by classic compilers [Aho86] are applied 

while shortcuts that takes advantages from the features of S-COBOL is also 

   / *       * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *   
   / *           SUBROUTI NE  -  CHECK WHOLE BCAMFI  ROUTI NE                  
           SKI P1                                                         
   / *           ENTRY POI NT -  CHK- WHOLE- BCAMFI - RTN                        
           SKI P1                                                         
   / *           CHECK ALL RECORDS I N BCAMFI  AND PRI NT BFT ELECTRONI C      
   / *           CHATS PAYMENT I NSTRUCTI ON FI LE REPORT                     
   / *       * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *   
           SKI P3                                                         
   PARA    CHK- WHOLE- BCASFI - RTN                                          
           SKI P1                                                         
               OPEN I NPUT  BCASFI                                         
           SKI P1                                                         
               I NI TI ATE PRI NT1- REPORT                                    
           SKI P1                                                         
               PERFORM READ- BCASFI - RTN                                   
           SKI P1                                                         
               I F BCASFI - EOF                                             
                   UTL167- TI ME = TI ME- OF- DAY                             
                   UTL167- TEXT = MSG- 1                                   
                   DI SPLAY MSG- 1 UPON SYSOUT                             
                   CALL ' UTL167'  USI NG UTL167- MSG                        
                   CALL ' CBCANCEL'                                        
           SKI P1                                                         
               PERFORM EDI T- BCASFI - CNTL- RTN                              
           SKI P1                                                         
               REPEAT                                                    
                   PERFORM READ- BCASFI - RTN                               
               UNTI L BCASFI - EOF                                          
                   PERFORM VALI DATE- BCASFI - REC- RTN                       
           SKI P1                                                         
               TERMI NATE PRI NT1- REPORT                                   
           SKI P1                                                         
               I F BCASFI - I NVALI D                                         
                   UTL167- TI ME = TI ME- OF- DAY                             
                   UTL167- TEXT = MSG- 2                                   
                   DI SPLAY MSG- 2 UPON SYSOUT                             
                   CALL ' UTL167'  USI NG UTL167- MSG                        
                   CALL ' CBCANCEL'                                        
           SKI P1                                                         
               I F BCASFI - TRLR- NOT- READ                                   
                   UTL167- TI ME = TI ME- OF- DAY                             
                   UTL167- TEXT = MSG- 3                                   
                   DI SPLAY MSG- 3 UPON SYSOUT                             
                   CALL ' UTL167'  USI NG UTL167- MSG                        
                   CALL ' CBCANCEL'                                        
           SKI P1                                                         
               CLOSE BCASFI                                               
           EJECT                                                         

 

 

 
Par a   Bl ock   Level   Bl ock   Sour ce 
Num    Num     Num    Type    Li ne Num 
 
5 1 1 P 601 
5 2 2 M  603 
5 3 2 I  609 
5 4 3 M  610 
5 5 2 M  616 
5 6 2 R 618 
5 7 3 M  619 
5 8 2 U 620 
5 9 3 M  621 
5 10 2 M  623 
5 11 2 I  625 
5 12 3 M  626 
5 13 2 I  632 
5 14 3 M  633 
5 15 2 M  639 
5 16 1 Q 649 
 

Remark: 
For Block Type, ‘P’  - start of  paragraph 
  ‘Q’   - end of paragraph 
  ‘M’  - normal statement 
  ‘ I’  - IF statement 
  ‘R’  - REPEAT 
  ‘U’  - UNTIL 
 

 Control Flow Information File Program Source 



CSC 7260 Project Final Report                                                                                                                  Page 34 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

considered. S-COBOL uses indentation, not punctuation, controls program logic, 

therefore, blocks can be parsed easily by the indentation of statements. Control Flow 

Information File contains control flow information about the source program for use 

by the ATACOBOL Instrumenter. Both files are employed in the analysis phase. 

To build the Control Flow Information File, the S-COBOL source is firstly parsed into 

blocks. Each record in the file exactly represents a block. A record also contains 

additional information about the characteristics of that block including the block type 

and the cross reference to line number in the source. 

For S-COBOL, the program flow is represented by indentation instead of punctuation 

and thus making it very easy to parse the source code into block. Figure 4.3 shows 

how a typical paragraph of S-COBOL program source is parsed into primitive records 

in the control flow information file. Subsequently, the records are scanned to create 

links from a node to the other to represent decision branches. As a result, the source 

program is digested to a node-link structure stored in the Control Flow Information 

File. Figure 4.4 shows an typical example of part of the routed Control Flow 

Information File extracted form a source program. 

 

 

 

 

 

 

 

Figure 4.5 Program Source and Routed Record in Control Flow Information File 

 

Par a    Bl ock   Level    Bl ock   Sour ce  Br anch 1        Br anch 2 
Num     Num     Num     Type    Li ne    Par a    Bl ock   Par a    Bl ock   . . .  
     Num     Num     Num     Num     Num     . . .   
 
8       1       1       P       715     0       0       0       0       0 
8       2       2       I        717     8       3       8       5       8 
8       3       3       M       718     0       0       0       0       0 
8       4       2       J        722     8       10      0       0       0 
8       5       3       M       723     0       0       0       0       0 
8       6       2       J        725     8       10      0       0       0 
8       7       3       M       726     0       0       0       0       0 
8       8       2       L       729     8       10      0       0       0 
8       9       3       M       730     0       0       0       0       0 
8       10      2       D       742     0       0       0       0       0 
8       11      1       Q       742     0       0       0       0       0 

Routed Control Flow Information File 
Program Source 

/ *       * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
/ *           SUBROUTI NE  -  VALI DATE BCASF RECORD ROUTI NE 
        SKI P1 
/ *           ENTRY POI NT -  VALI DATE- BCASFI - REC- RTN 
        SKI P1 
/ *           VALI DATE BCASF RECORD 
/ *       * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
        SKI P3 
PARA    VALI DATE- BCASFI - REC- RTN 
        SKI P1 
            I F BCASFI - TRLR- READ 
                PERFORM GEN- REPT1- MSG- RTN( ERR- MSG- 13)  
                REPT- CD- TOT = REPT- CD- TOT + 1 
                REPT- REJT- TOT = REPT- REJT- TOT + 1 
        SKI P1 
            ELSE- I F BCASF- DTL- REC 
                PERFORM EDI T- BCASFI - DTL- RTN 
        SKI P1 
            ELSE- I F BCASF- TRLR- REC 
                PERFORM EDI T- BCASFI - TRLR- RTN 
                BCASFI - TRLR- READ- I NDC = TRUZ 
        SKI P1 
            ELSE 
                PERFORM GEN- REPT1- MSG- RTN( ERR- MSG- 12)  
                REPT- CD- TOT = REPT- CD- TOT + 1 
                REPT- REJT- TOT = REPT- REJT- TOT + 1 
        EJECT 



CSC 7260 Project Final Report                                                                                                                  Page 35 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 ATACOBOL Architecture 

 

 

 
S-COBOL Program Source 

S-COBOL Program 
Compiled Lisiting 

 

Code Parser  

 
Instrumenter  

Control Flow 
 Information File 

  
S-COBOL Compiler 

Instrumented  
S-COBOL Program Source 

 
Object 

 Module 
 

  
Linker 

  
Executable 

 Load  Module 
 

Runtime Trace 
Module 

 

 
Trace Log 

taken by Runtime Routine 
during Testing 

 
Coverage Analyser  

 
Code Coverage 

Measurement Repor t 
 

Data Flow 
 Information File 

Assignment Statement: V = Expression    OR 
        MOVE A to V 
 
Node i has c-uses of each variable in all variables of 
Expression or variable A, followed by a definition of 
variable V. 



CSC 7260 Project Final Report                                                                                                                  Page 36 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

 

 

 

 

Figure 4.6a Assignment Statement 

 

 

 

 

 

 

 

Figure 4.6b Input Statement 

 

 

 

 

 

 

 

Figure 4.6c Output Statement 

 

 

 

i  

i  

i  

i  

Input Statement: READ FILE-A  INTO V 
 
Node i has definition of variable V. 
 

Output Statement: WRITE FILE-A FROM V 
 
Node i has c-use of variable V. 
 

Paragraph Call:  PERFORM PARA-A (V1,V2, ..., Vn) 
 
Node i use of  variables V1,V2, ..., Vn. 
 



CSC 7260 Project Final Report                                                                                                                  Page 37 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

 

 

 

Figure 4.6d Paragraph Call 

 

 

 

 

 

 

 

Figure 4.6e Module Call 

 

 

 

 

 

 

 

Figure 4.6f WHILE/UNTIL Condition 

 

 

 

 

i  

i  

i  WHILE/UNTIL 

M odule Call:  CALL MODULE-A (V1,V2, ..., Vn) 
 
Node i use of  variables V1,V2, ..., Vn. 
 

WHILE/UNTIL Condition: WHILE Condition-B     OR 
UNTIL Condition-B 
       ............ 
       ............ 

 
Let e be the entry node to sub-graph S. Edges (i, e) and (i, j) 
have p-uses of each variable in the boolean expression 
Condition-B. 
 

REPEAT- 
WHILE/UNTIL Condition:  
 
REPEAT 
     ............ 
     ............ 
WHILE Condition-B     OR 
UNTIL Condition-B 
 
Let e be the entry node to sub-graph S. Edges (i, e) and (i, j) 
have p-uses of each variable in the boolean expression 
Condition-B. 
 

j  S 

Remark: 
 
In S-COBOL, REPEAT 
statement should always in pairs 
with  WHILE/UNTIL Condition. 

h REPEAT 



CSC 7260 Project Final Report                                                                                                                  Page 38 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

 

 

Figure 4.6g REPEAT-WHILE/UNTIL Condition 

 

 

 

 

 

 

 

Figure 4.6f IF Condition 

 

 

 

 

 

 

 

Figure 4.6g IF-ELSE-IF-ELSE Condition 

 

 

 

 

 

i  

i  

i  

IF-ELSE Condition: IF Condition-B      
     ............ 
     ............ 

   ELSE 
     ............ 
     ............ 

    
Let e and f  be the entry node to sub-graph S1  and S2 
respectively.  Edges (i, e) and (i, f) have p-uses of each variable 
in the boolean expression Condition-B. If there is no ELSE part, 
sub-graph S2 has a single node corresponding to an empty block. 
 

IF-ELSE-IF-ELSE Condition: IF Condition-B1      
      ............ 

ELSE-IF Condition-B2 
          ............ 

ELSE-IF Condition-B3 
          ............ 
 ELSE 
     ............ 

Let ei  be the entry node to sub-graph Si.  Edges (i, ei) have p-
uses of each variable in the boolean expression Condition-Bi. 
Edges (i, en) have p-uses of each variable in the boolean 
expression all Condition-Bi.  
 

EVALUATE Condition:  EVUALATE Expression 
WHEN Condition-B1      

      ............ 
WHEN Condition-B2 

          ............ 
WHEN Condition-Bn 

          ............ 
  

Let ei  be the entry node to sub-graph Si.  Edges (i, ei) have p-
uses of each variable in the Expression and boolean expression 
Condition-Bi.  
 
 

j  S 

S1 

S1 

S1 

S2 

Sn 

Sn 

j  

j  

j  

... 

... 



CSC 7260 Project Final Report                                                                                                                  Page 39 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

 

Figure 4.6h EVAULATE Condition 

Figure 4.6 Control Flow and Data Flow Relationship for S-COBOL Language 

 

To build the Data Flow Information File, macros and variable defined in the program 

listing is parsed to form a variable table as illustrated in figure 4.7.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Part of Variable Table Extracted from Program Compiled Lisitng 

In the variable table, each variable is assigned with a unique identifier with different 

levels. The ‘01’ , ‘05’ , ‘10’  ... codeword of the S-COBOL program is an structural 

definition like struct in C language. Unlike ATAC (refer to 6.2.4), ATACOBOL 

consider each element in a structure at same level as different. The hierarchical upper 

level element (parent) in a structure contains the lower level elements (children). This 

kind of data structure is not considered in the data flow criteria proposed previously. 

 000570* 01  BK00- REC            @COPY BK00W.                              PG022600 
        01  BK00- REC.                                                     00000010 
       *                                  BK00           BK00    BNK00    00000020 
       *                                  BANK CONTROL RECORD 00          00000030 
       *                                                              DMR 00000040 
            05   BK00- BCF- CMMN      PI C   X( 11) .                          00000050 
       *                                  CI F- BCF- CMMN                    00000060 
       *                                  CI F BCF COMMON FI ELDS           00000070 
       *                                                              DMR 00000080 
            05   BK00- BCF- CMMN- FLD   REDEFI NES   BK00- BCF- CMMN.           00000090 
       *                                  MACRO/ DSECT    BCRCOM  BCTLDM   00000100 
       *                                  CI F- BCF- CMMN- FLD                00000110 
       *                                  COMMON FI ELDS                   00000120 
       *                                                              DMR 00000130 
              10   BK00- BCF- REC- LNG PI C   9( 4)   COMP.                     00000140 
       *                                  CI F- BCF- REC- LNG                 00000150 
       *                                  RECORD LENGTH                   00000160 
       *                                                              DMR 00000170 
              10   BK00- BCF- BLNK- FLD                                     00000180 
                                    PI C   X( 2) .                           00000190 
       *                                  CI F- BCF- BLNK- FLD                00000200 
       *                                  BLANK FI ELD                     00000210 
       *                                                              DMR 00000220 
              10   BK00- BCF- CMMN- I D.                                      00000230 
       *                                  CI F- BCF- CMMN- I D                 00000240 
       *                                  COMMON KEY                      00000250 
       *                                                              DMR 00000260 
                15   BK00- BCF- BR- NUM                                     00000270 
                                    PI C   X( 2) .                           00000280 
       *                                  CI F- BCF- BR- NUM                  00000290 
       *                                   0000 -  BANK GROUP RECORD       00000300 
       *                                   0A00 -  BANK RECORD         DMR 00000310 
       *                                   0BBB -  BRANCH RECORD           00000320 
       *                                          A   BEI NG 1ST DI GI T     00000330 
       *                                              OF BRANCH NO.        00000340 
       *                                          BBB BEI NG BRANCH NO.     00000350 

Identifier 
Level 1    Level 2     Level 3    Level 4     Variable Name 

.. .. .. .. 

.. .. .. .. 
 
4    0    0    0    BK00- REC 
4    1    0    0    BK00- BCF- CMMN                 
4    2    0    0    BK00- BCF- CMMN- FLD             
4    2    1    0    BK00- BCF- REC- LNG              
4    2    2    0    BK00- BCF- BLNK- FLD             
4    2    3    0    BK00- BCF- CMMN- I D              
4    2    3    1    BK00- BCF- BR- NUM               

.. .. .. .. 

.. .. .. .. 

Program Compiled Listing 

Variable Table 



CSC 7260 Project Final Report                                                                                                                  Page 40 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

01  BK00- REC 
 
 
 
05  BK00- BCF- CMMN       05  BK00- BCF- CMMN- FLD              
 
 
 
10  BK00- BCF- REC- LNG   10  BK00- BCF- BLNK- FLD    10  BK00- BCF- CMMN- I D               
 

 

15  BK00- BCF- BR- NUM 

 

Figure 4.8 Hierarchical Representation of Structure of the Example in Figure 4.7 

 

At this point, we need to define additional rules to the selection of def-use pairs. That 

is, for a variable in the hierarchical structure is defined, any uses of that variable must 

be the same variable or a variable within the same hierarchical path (i.e. either the 

parent/grandparent or children/grant-child of the defined variable). To site an 

example, a full record (upper level variable) is read from a file at the very beginning 

of a program, and the breakdowns of this record (lower level variable) would be used 

in subsequent parts of the program. The use of these breakdowns should be considered 

as the use of the full record. Moreover, breakdowns of a record may be defined in 

various block of a program, and finally the full record is written to a file. On the other 

hand, each unrelated breakdowns may represent an individual attribute. Therefore, 

defines and uses of non-hierarchical individual variables is unlikely to require 

association. 

 

A formal definition is given as follows: 



CSC 7260 Project Final Report                                                                                                                  Page 41 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

Let i, j be a variables in a structure, CompStruct(i, j) is a function that returns the 

hierarchical relationship between i and  j. 

CompStruct(i, j) = TRUE if  i = j, or i is the parent/grandparent j, or j is the 

parent/grandparent i 

CompStruct(i, j) = FALSE otherwise 

 

Now, we re-define the two functions proposed by Weyuker et al: 

• dcu(x, i)  is the set of all nodes j such that x ∈ c-use(j) and for which there is a def-

clear path w.r.t. x from i to j, given CompStruct(i, j) = TRUE. 

• dpu(x, i)  is the set of all edges (j, k) such that x ∈  p-use(j, k) and for which there is 

a def-clear path w.r.t. x from i to j, given CompStruct(i, j) = TRUE. 

 

For each block, variables are scanned to check assign them to the Def/Use graph as 

described in Chapter 2. The classification of a variable as def/use in constructs of the 

S-COBOL context is defined in figures 4.6a-4.6h. The format of def/c-use/p-use 

information stored in file is shown in figure 4.9. Variables stored in these files are 

represented by the identifier associated with the variable table described beforehand. 



CSC 7260 Project Final Report                                                                                                                  Page 42 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Record Format of  Def/C-Use/P-Use in Data Flow Information File 

 

Def-use pairs are extracted from the Def/Use graph. This is achieved by exhaustive 

and search over the control flow graph. For every searched nodes within a searching 

path, the node is marked and will not be searched again. As a result, the Data Flow 

Information File contains the dcu and dpu sets described in Chapter 2. 

Para      Block     Variable 
Num      Num 
..         ..       
6         2        6    2    7    0 
6         2        6    2    3    0 
6         4        4    8    0    0 
6         5        6    2    7    0 
6         5        6    2    3    0 
..         .. 

Def  

   / *       * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *   
   / *           SUBROUTI NE  -  VALI DATE BCASF RECORD ROUTI NE               
           SKI P1                                                         
   / *           ENTRY POI NT -  VALI DATE- BCASFI - REC- RTN                     
           SKI P1                                                         
   / *           VALI DATE BCASF RECORD                                     
   / *       * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *   
           SKI P3                                                         
   PARA    VALI DATE- BCASFI - REC- RTN                                       
           SKI P1                                                         
               I F BCASFI - TRLR- READ                                       
                   PERFORM GEN- REPT1- MSG- RTN( ERR- MSG- 13)                  
                   REPT- CD- TOT = REPT- CD- TOT + 1                         
                   REPT- REJT- TOT = REPT- REJT- TOT + 1                     
           SKI P1                                                         
               ELSE- I F BCASF- DTL- REC                                     
                   PERFORM EDI T- BCASFI - DTL- RTN                           
           SKI P1                                                        
               ELSE- I F BCASF- TRLR- REC                                   
                   PERFORM EDI T- BCASFI - TRLR- RTN                         
                   BCASFI - TRLR- READ- I NDC = TRUZ                         
           SKI P1                                                        
               ELSE                                                     
                   PERFORM GEN- REPT1- MSG- RTN( ERR- MSG- 12)                  
                   REPT- CD- TOT = REPT- CD- TOT + 1                         
                   REPT- REJT- TOT = REPT- REJT- TOT + 1                     
           EJECT 

Para      Block     Variable 
Num      Num 
..         ..       
6         2        6     10   13    0 
6         2        6     2       7    0 
6         2        6     2       3    0 
6         2        6     2     12    0 
6         5        6     2       7    0 
6         5        6     2       3    0 
..         .. 

 

C-Use 

                   Edge 
Para      From     To           Variable 
Num     Block    Block 
..         ..       
6         1        2          4    7    1    0 
6         1        3          2    5    7    0 
6         1        4          2    5    5    0 
6         1        5          4    7    1    0 
6         1        5          2    5    7    0 
6         1        5          2    5    5    0 
..         .. 

 

P-Use 
Data Flow Information File 



CSC 7260 Project Final Report                                                                                                                  Page 43 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

4.6 ATACOBOL Instrumenter  

From the Control Flow Information File, ATACOBOL Instrumenter gets information 

about blocks and their corresponding positions in the S-COBOL source file. Then 

ATACOBOL insert codes with correct alignment to the source. The purpose of the 

inserted codes is to call the ATACOBOL Runtime Module passing with an unique 

block identifier as the parameter. This unique block identifier is composed by the 

paragraph number and the node number. Screen capture of the instrumented code 

uploaded to OS/390 is shown on figure 4.11. 

When a block is executed during testing, the Runtime Module logs down the 

paragraph number and block number as identifier. As a result, the execution path can 

be traced. 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Illustration of Def-Use Pair Searching 

Para 7  
Block 1 

Para 7  
Block 2 

Para 7  
Block 3 

Para 7  
Block 4 

Para 7  
Block 5 

Para 7  
Block 6 

Para 7  
Block 7 

Para 7  
Block 8 

Variable 6, 4, 1, 0 is 
defined Here 

Variable 6, 4, 1, 0 is 
used Here 

X 

X 

X 

X 

X 

 Remark: 
  X   Marked 



CSC 7260 Project Final Report                                                                                                                  Page 44 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

Figure 4.11 Instrumented S-COBOL Source 

 

4.7 ATACOBOL Runtime Routine 

The function of ATACOBOL Runtime Routine has been discussed in section 4.6. Up 

to current implementation, the COBOL system call “DISPLAY” is employed as the 

Runtime Routine. It outputs the trace log to the SYSOUT (System Output) of OS/390 

JES2 job held queue (Figure 4.12). Its function is similar to a output file [IBM97]. 

The SYSOUT is captured after testing as the input to ATACOBOL Coverage 

Analyser. For further development, a discrete Runtime Module can be written in IBM 

370 Assembly Language and writes the output to user defined trace log files. It would 

then be able to support specific function in the customised runtime module. 



CSC 7260 Project Final Report                                                                                                                  Page 45 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

Figure 4.12 OS/390 SYSOUT 

 

4.8 ATACOBOL Coverage Analyser  

The ATACOBOL Coverage Analyser takes the Control Flow Information File, Data 

Flow Information File and Trace Log as inputs. It performs several levels of coverage 

measurements: 

• Block Coverage: 

 From the Control Flow Information File, every node identifier is compared 

with the Trace Log. (See figure 4.13) 

• Decision Coverage: 

 Form the Control Flow Information File, every node pairs with a path between 

them is extracted to compare with the Trace Log. (see figure 4.14) 

• C-Uses and P-Uses Data Flow Coverage: 



CSC 7260 Project Final Report                                                                                                                  Page 46 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

  From the Data Flow Information File’s Def-Use graph, C-Uses and P-Uses is 

checked against the Trace Log. (see figure 4.15) 

 
 
Decision Coverage Criteria extracted 
Control Flow Information File    Trace 
Log 
 

 

 

 

 

 

 

Figure 4.13 Analysing Block Coverage 

 

 

Block Coverage Criteria extracted 
Control Flow Information File    Trace 
Log 
 

 

 

 

 

 

 

 

Figure 4.14 Analysing Decision Coverage 

Par a Bl ock Cover ed 
Num Num 
1 1 Y 
1 2 Y 
1 3 Y 
1 4  
1 5  
1 6 Y 
1 7 
1 8 Y 
1 9 
. . .  . . .  

    Edge 
Par a Fr om To Cover ed 
Num Bl ock Bl ock 

Num Num 
1 3 8 Y 
1 3 10 
1 3 15 
1 4 8 
1 4 15  
1 6 8 Y 
1 6 10 
1 8 6 Y 
1 8 9 
. . .  . . .  . . .  . . .  

Par a Bl ock 
Num Num 
 
1 1 
1 2 
2 1 
2 2 
1 3 
1 8 
1 6 
1 8 
. . .  . . .  

   Par a Bl ock 
   Num Num 
 
   1  1 
   1  2 
   2  1 
   2  2 
   1  3 
   1  8 
   1  6 
   1  8 
   . . .  . . .  

Scan the Trace Log 
and mark the 
covered blocks 

Scan the Trace Log 2 
by 2 and mark the 
covered decision edges 



CSC 7260 Project Final Report                                                                                                                  Page 47 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

C-Use Def-Use Pair extracted 
from Control Flow Information File  
and Data Flow Information File 
 

 

 

 

 

 

   

    

     Trace Log 

 

 

 

 

 

P-Use Def-Use Pair extracted 
from Control Flow Information File  
and Data Flow Information File 

 

 

 

 

 

 

Figure 4.15 Analysing Data Flow Coverage 

Par a Var i abl e Def  Use Cover ed 
Num   Bl ock Bl ock 

Num Num 
1 2  2  3 1 2 Y 
1 2  2  7 2 12 S 
1 2  2  7 4 13 S 
1 4  0  0 3 5 
1 4  1 0 4 6 
1 4  1  0 6 7 
1 5  0  0 6 5 
1 9  1 1 6 6 
1 9  1 3 9 13 
. . .  . . .  . . .  . . .  

Par a Bl ock 
Num Num 
 
1 1 
1 2 
2 1 
2 2 
1 3 
1 8 
1 6 
1 8 
. . .  . . .  

     Use Edge Cover ed 
Par a Var i abl e Def  Fr om To  
Num   Bl ock Bl ock Bl ock  

Num Num Num 
1 3  1  0 2 6 8 S 
1 3  1  0 2 6 10 S 
1 3  3  0 2 3 8 S 
1 3  3  0 2 3 10 S 
1 3  3 0 2 3 15 S 
1 6  2  0 7 4 8 
1 6  2  0 7 4 15 
1 6  4 1 2 11 15 S 
1 6  4 1 2 11 16 S 
. . .  . . .  . . .  . . .  

 
•Whenever a block is found executed in the Trace 
Log, the corresponding def-use pair defined in that 
block will be marked as “S”  (Tracing Started). 

 
•Upon the use of the variable, the def-use pair will be 
marked as covered. 

 
•However, if another same variable is defined before 
the use of the started tracing variable, the tracing will 
be cancelled. And, that other variable will be marked 
as “S”  instead. 

 



CSC 7260 Project Final Report                                                                                                                  Page 48 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

ATACOBOL Analyser finally outputs reports about the coverage measurement, 

including a summary report of the percentage of coverage per paragraph and 

uncovered blocks (Figure 4.17), decision edges (Figure 4.18), c-use  (Figure 4.19) or 

p-use (Figure 4.20) for individual coverage measures. Figure 4.16 shows an typical 

summary report layout: 

 

Tot al  Par a Number =16 
Par a #  Bl ock Cover      Deci si on Cover   C- Use Cover      P- Use Cover  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
1       1/ 1     ( 100%)   0/ 0     ( - %)     0/ 0     ( - %)     0/ 0     ( - %)  
2       1/ 1     ( 100%)   0/ 0     ( - %)     0/ 0     ( - %)     0/ 0     ( - %)  
3       0/ 4     ( 0%)     0/ 1     ( 0%)     0/ 13    ( 0%)     0/ 0     ( - %)  
4       1/ 1     ( 100%)   0/ 0     ( - %)     0/ 0     ( - %)     0/ 0     ( - %)  
5       5/ 13    ( 38%)    2/ 5     ( 40%)    0/ 0     ( - %)     0/ 0     ( - %)  
6       0/ 5     ( 0%)     2/ 2     ( 0%)     4/ 6     ( 0%)     3/ 5     ( 0%)  
7       0/ 5     ( 0%)     0/ 1     ( 0%)     0/ 7     ( 0%)     0/ 4     ( 0%)  
8       0/ 6     ( 0%)     0/ 4     ( 0%)     0/ 1     ( 0%)     0/ 0     ( - %)  
9       0/ 4     ( 0%)     0/ 1     ( 0%)     0/ 9     ( 0%)     0/ 4     ( 0%)  
10      0/ 4     ( 0%)     0/ 1     ( 0%)     0/ 11    ( 0%)     0/ 0     ( - %)  
11      0/ 1     ( 0%)     0/ 0     ( - %)     0/ 6     ( 0%)     0/ 0     ( - %)  
12      0/ 21    ( 0%)     0/ 11    ( 0%)     0/ 3     ( 0%)     0/ 0     ( - %)  
13      0/ 19    ( 0%)     0/ 8     ( 0%)     0/ 15    ( 0%)     0/ 10    ( 0%)  
14      0/ 14    ( 0%)     0/ 6     ( 0%)     0/ 18    ( 0%)     0/ 8     ( 0%)  
15      0/ 8     ( 0%)     0/ 4     ( 0%)     0/ 10    ( 0%)     0/ 5     ( 0%)  
16      0/ 1     ( 0%)     0/ 0     ( - %)     0/ 23    ( 0%)     0/ 10    ( 0%)  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Tot al    8/ 108   ( 7%)     4/ 44    ( 9%)     4/ 122   ( 3%)     3/ 46    ( 7%)  
 

Figure 4.16 A typical coverage measurement summary report 

 

 
    Repor t  of  Uncover ed Bl ocks 
========================================= 
 
Uncover ed Bl ock Number  
 
 
Par agr aph #1 
- - - - - - - - - - - - - - - - - - - -  
 
 
Par agr aph #2 
- - - - - - - - - - - - - - - - - - - -  
 
 
Par agr aph #3 
- - - - - - - - - - - - - - - - - - - -  
 
2 
3 
4 
5 
     . . .  

 

Figure 4.17 A typical part of report on uncovered block 

 



CSC 7260 Project Final Report                                                                                                                  Page 49 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

Repor t  of  Uncover ed Deci si on Edges 
========================================= 
 
Uncover ed Deci si on Edge ( Fr om Bl ock Number   - -   To Bl ock Number )  
 
 
Par agr aph #1 
- - - - - - - - - - - - - - - - - - - -  
 
 
Par agr aph #2 
- - - - - - - - - - - - - - - - - - - -  
 
 
Par agr aph #3 
- - - - - - - - - - - - - - - - - - - -  
 
3       - -       4 
 
Par agr aph #4 
- - - - - - - - - - - - - - - - - - - -  
 
Par agr aph #5 
- - - - - - - - - - - - - - - - - - - -  
 
3       - -       4 
8       - -       9 
8       - -       10 
 
Par agr aph #6 
- - - - - - - - - - - - - - - - - - - -  
 
5       - -       6 
5       - -       7 
     . . .  
 

Figure 4.18 A typical part of report on uncovered decision edge 

 

Repor t  of  Uncover ed Def - C- Uses 
========================================= 
 
 
Par agr aph #1 
- - - - - - - - - - - - - - - - - - - -  
 
 
Par agr aph #2 
- - - - - - - - - - - - - - - - - - - -  
 
 
Par agr aph #3 
- - - - - - - - - - - - - - - - - - - -  
 
Var :     6       16      0       DEF:     0       C- USE:   2 
Var :     6       21      9       DEF:     0       C- USE:   2 
Var :     6       21      10      DEF:     0       C- USE:   2 
Var :     6       21      11      DEF:     0       C- USE:   2 
Var :     6       14      2       DEF:     0       C- USE:   2 
Var :     6       11      1       DEF:     0       C- USE:   2 
Var :     6       1       1       DEF:     0       C- USE:   2 
Var :     6       1       1       DEF:     0       C- USE:   2 
Var :     6       1       3       DEF:     0       C- USE:   2 
Var :     6       17      1       DEF:     0       C- USE:   2 
Var :     6       17      2       DEF:     0       C- USE:   2 
Var :     6       17      4       DEF:     0       C- USE:   2 
Var :     6       17      3       DEF:     0       C- USE:   2 
 
Par agr aph #4 
- - - - - - - - - - - - - - - - - - - -  
     . . .  

Figure 4.19 A typical part of report on uncovered C-Use 



CSC 7260 Project Final Report                                                                                                                  Page 50 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

Repor t  of  Uncover ed Def - P- Uses 
========================================= 
 
 
Par agr aph #1 
- - - - - - - - - - - - - - - - - - - -  
 
 
Par agr aph #2 
- - - - - - - - - - - - - - - - - - - -  
 
 
Par agr aph #3 
- - - - - - - - - - - - - - - - - - - -  
 
 
Par agr aph #4 
- - - - - - - - - - - - - - - - - - - -  
 
 
Par agr aph #5 
- - - - - - - - - - - - - - - - - - - -  
 
 
Par agr aph #6 
- - - - - - - - - - - - - - - - - - - -  
 
Var :     6       5       2       DEF:     0       P- USE:   3       - -       4 
Var :     6       5       2       DEF:     0       P- USE:   8       - -       9 
Var :     6       5       2       DEF:     0       P- USE:   8       - -       10 
Var :     6       5       3       DEF:     0       P- USE:   11      - -       12 
Var :     6       5       1       DEF:     0       P- USE:   13      - -       14 
 
Par agr aph #7 
- - - - - - - - - - - - - - - - - - - -  
 
Var :     6       5       2       DEF:     2       P- USE:   5       - -       6 
Var :     6       5       2       DEF:     2       P- USE:   5       - -       7 
Var :     1       1       0       DEF:     0       P- USE:   5       - -       6 
Var :     1       1       0       DEF:     0       P- USE:   5       - -       7 
 
Par agr aph #8 
- - - - - - - - - - - - - - - - - - - -  
     . . .  
 
 

Figure 4.20 A typical part of report on uncovered P-Use 



CSC 7260 Project Final Report                                                                                                                  Page 51 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

5. MEASUREMENT 
 

5.1 System Descr iption 

In this chapter, ATACOBOL is applied with live production programs and test cases. 

The system under measurement is the batch programs of interface system of HSBC 

mainframe application BFT to RTGS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 System Overview 

 

The Real Time Gross Settlement System (RTGS) was introduced in December 1996. 

Basically, it is a local central clearing system in Hong Kong SAR. Similar systems are 

Online 
Banking 
Systems 
 

Real Time Gross 
Settlement System 
(RTGS) 

Member Bank 
Terminal (MBT) 
AS/400 Interface 
System 

Procedure 
T 

Procedure 
C 

Procedure 
B 

Procedure 
E 

Procedure 
D 

Procedure 
F 

Procedure 
G 

Online 

Offline 

Procedure 
R 

Procedure 

S 

Procedure 
A 

Procedure 
I 

Procedure 
K 

Procedure 
J 

Procedure 
L 

Procedure 
H 

Procedure 
M 

Procedure 
N 

Procedure 
O 

Procedure 
P 

Procedure 
Q 

SWIFT Network 



CSC 7260 Project Final Report                                                                                                                  Page 52 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

operating over the world. For SWIFT payments that require local settlement, the 

RTGS would be employed. It is one of the most advanced in the Asia Pacific Region 

[Bee98]. The system is in full compliance with international standards and has greatly 

enhanced the robustness of the inter-bank payment system by reducing settlement risk. 

Under this system, all licensed banks in Hong Kong open and maintain settlement 

accounts with HKMA (Hong Kong Monetary Authority), and have access to the 

system. Inter-bank payments settled across the books of HKMA are final and 

irrevocable.  

Therefore, each licensed bank would have their computer system connected to RTGS. 

The host application BFT (Bank Fund Transfer) Systems that interfaces HSBC and 

RTGS is employed in this measurement. Figure 5.1 shows the overview this system. 

The Online Banking Systems are developed in IBM 370 Assembly Language. A 

procedure consists of 1 to 5 modules, mostly are written in APS COBOL language for 

offline execution. There are 3 online procedure that creates real-time spools to the 

Online Banking Systems. 

 

5.2 Number  of C-Use and P-Use Against Number  of Faults  

Shaded procedures in Figure 5.1 are selected for this measurement. There are totally 

21 modules (say module M1 to M21) developed in APS COBOL in the selected 

procedures. The module history and source can be retrieved from the version control 

system of the development environment (Table 5.1). Problem/Changes Reports during 

March 1998 to February 1999 are also collected (Table 5.2). The information is 

plotted in Graph 5.1 and Graph 5.2.  

From the graphs, we find two peaks in the program size changes. This two peaks, July 

and January, reflects two major release at that time. Refer to Graph 5.2, during the 



CSC 7260 Project Final Report                                                                                                                  Page 53 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

first release, major the complexity of the modules: number of block, edges, C-Uses 

and P-Uses increased as the number of faults reported also increases. The number of 

faults reduced as program fixes released. In September, as the number of transactions 

handled by the modules released in July increased. New problem broke out. It 

accounts for the higher fault rate in September. Overall, the graph shows that except 

the number of C-Uses and P-Uses, other factors affects the reliability of a software 

system. 

However, the number of blocks, number of C-Uses and No. of P-Uses increased is 

highly correlated as reflected in Graph 5.1. That makes the determination of the 

impact of the data flow to software reliability difficult. It demands extensive 

measurement to collect more statistics until we can get a clear picture of the effects of 

the amount of C-Uses and P-Uses to the software reliability. 

Table 5.1 Module Amendment Statistics 

Date Affected 
Modules 

No. of 
Source Lines 
Increased 

No. of  
Blocks 
Increased 

No. of 
Edges 
Increased 

No. of 
C-Uses 
Increased 

No. of  
P-Uses 
Increased 

Original 
Number 

M1-M21 172,641 29,586 18,622 51,877 22,357 

1998 
March 

M1-M4 1,032 28 12 36 20 

1998 
April 

M5-M7 42 0 0 2 0 

1998 
May 

M2, M13 220 
 

6 2 21 2 

1998 
June 

M11 165 4 0 9 0 

1998 
July 

M2-M6, 
M8-M14, 
M18-M21 

16,088 603 275 698 384 

1998 
August 

M2 323 11 4 27 13 

1998 
September 

M3, 
M8-M9, 
M18-
M21, 

647 39 5 120 10 



CSC 7260 Project Final Report                                                                                                                  Page 54 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

1998 
October 

M6-M7, 
M14,M15 

544 28 4 54 4 

1998 
November 

N/A 0 0 0 0 0 

1998 
December 

N/A 0 0 0 0 0 

1999 
January 

M2-M6, 
M7-M9, 
M13-M17 

9,556 490 182 1,103 266 

1999 
February 

M1, 
M6-M7 

461 8 0 9 0 

 

Table 5.2 Module Failure Statistics 

Month No. of Problem Reported 
1998 March  2 
1998 April  2 
1998 May  2 
1998 June  1 
1998 July  4 
1998 August  0 
1998 September  4 
1998 October  1 
1998 November  0 
1998 December  1 
1999 January  1 
1999 February  1 

 



CSC 7260 Project Final Report                                                                                                                  Page 55 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � �

Graph 5.1    Growth of M odules

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
M

A
R

A
P

R

M
A

Y

JU
N

JU
L

A
U

G

S
E

P

O
C

T

N
O

V

D
E

C

JA
N

F
E

B

-100

100

300

500

700

900

1100

1300

1500

Source Lines Increase
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Blocks Increase

Edges Increase

C-Uses Increase

P-Uses Increase

 



CSC 7260 Project Final Report                                                                                                                  Page 56 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Graph 5.2         No. of Failure with C& P-Uses Changes

0

200

400

600

800

1000

1200

MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB

0

1

2

3

4

5

6

7

8

9

10

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Increase of C-Uses

Increase of P-Uses

No. of Failure

 

5.3 Data Flow Coverage of L ive Test Cases 

Three modules (say O1, O2 and O3) are selected for coverage measurement with the 

system test and user acceptance test cases before their last release. 

Module O1 O2 O3 
Number of Source Lines 4,276 7,225 15,044 
Number of Test cases 51 12 5 
Number of Blocks 831 1,473 2,206 
Percentage of Block Coverage 100% 42% 18% 
Number of Decision Edges 504 999 1,430 
Percentage of Decision Edge Coverage 98% 33% 7% 
Number of C-Uses 2,012 2,604 3,695 
Percentage of C-Uses Coverage 94% 22% 5% 
Number of P-Uses 838 1,317 2,121 
Percentage of P-Uses Coverage 95% 28% 6% 



CSC 7260 Project Final Report                                                                                                                  Page 57 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

The above measurement demonstrates ATACOBOL’s ability to measure production 

scale modules. O1 is a newly created module. In the  system test and user acceptance 

test, the functionality is tested thoroughly. On the other hand, O2 and O3 are enhanced 

versions, only the enhanced features is tested and few basic re-tested with 

representative regression test case. The coverage for O2 and O3, is therefore, 

relatively low. It would be useful if the measurement tool can focus only on the 

affected parts of a program enhancement. Please refer to 7.10. for further discussions 

on this issue. 

For further measurement, we could measure the increase in number of test cases 

against the percentage of coverage. The behaviour of growth of coverage relates to the 

organisation of the program. If the program has evenly distributed coding on various 

functions, the growth curve would be evenly increase. If the program has a large piece 

of common mainline, the growth curve is expected to be concave. 

 



CSC 7260 Project Final Report                                                                                                                  Page 58 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

6. EVALUATION 
 

6.1 Exper ience in Using ATAC 

6.1.1 The applications of ATAC 

After using ATAC, we can identify the following applications of ATAC in the 

software testing process: 

• measuring test set completeness by control and data flow coverage; 

• displaying non-covered code to aid in test cases creation; 

• reducing regression test set size by determining minimal test set out of tested cases. 

In section 3.1, we have described these applications briefly. We would further 

examine these purposes in more detail. 

The first  purpose, measuring test completeness, gives an objective measure of how 

completely a program or routine has been tested. This measure is useful in evaluating 

the quality of the testing procedure being used, and it establishing a level of 

confidence in the quality of tested programs. A low coverage score indicates that the 

tests do not effectively exercise the program. A high coverage score establishes 

confidence that the program, in passing the tests, works correctly. 

The second purposes, displaying code not covered, is a programmer’s aid for unit 

testing. Since a thoroughly-done unit testing job can vastly reduce the overall cost of 

testing a software system, a programmer can use the coverage displays to reveal 

particular code constructs that have not been covered by unit testing. By examining 

the code, the programmer can discover tests that will cause these, as yet not covered, 

constructs to be covered. After running these additional tests, the programmer can 



CSC 7260 Project Final Report                                                                                                                  Page 59 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

check which constructs are newly covered, and examine the remaining non-covered 

constructs. 

Figure 6.1 Uncovered construct shown by ATAC (Measuring ATACOBOL) 

 

The tests run over the life of a program are often collected together to form a 

regression test set. The regression test set is re-run each time the program is modified 

to verify that the modifications have not adversely affected the behaviour of the 

program. At some point a regression test set may grow large enough that it is not 

practical to run the whole set of tests after small program modifications. Hence the 

third purpose of coverage testing uses the coverage measure to select a subset of the 

regression tests which together achieve a high level of coverage. This technique may 

identify tests that add no coverage at all to the regression tests, and are therefore 

candidates for deletion. 



CSC 7260 Project Final Report                                                                                                                  Page 60 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

6.1.2 Limitations of ATAC 

In using ATAC release 3.3.13, we have encountered that ATAC does not apply the 

all-C-use path selection criteria according to [Rap84] for a simple case. We make use 

of three simple programs to illustrate the findings by ATAC sessions. The first 

program’s (test1.c) c-uses paths are selected correctly by ATAC while p-uses paths 

are not selected. The second one (test2.c) is modified from test1.c to enable p-uses to 

be detectable by ATAC. Again, the third program test3.c is modified from test2.c, 

ATAC. It this program, ATAC fails to identify the c-uses paths 

 
sol ar 1. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> at ac - v 
ATAC r el ease 3. 3. 13 Sep 26,  1994.  
Copyr i ght  ( c)  1993 Bel l  Communi cat i ons Resear ch,  I nc.  ( Bel l cor e)  
Send comment s or  quest i ons t o at ac@bel l cor e. com.  
sol ar 1. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> 
sol ar 1. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> cat  t est 1. c 
#i ncl ude <st di o. h> 
 
mai n( )  
{  
    i nt  x;  
    i nt  y;  
    i nt  z;  
 
    pr i nt f ( " Ent er  x: \ n" ) ;  
    scanf ( " %d" , &x) ;  
    pr i nt f ( " Ent er  y: \ n" ) ;  
    scanf ( " %d" , &y) ;  
 
    i f  ( x>0)  
    {  
        z=1;  
    }  
    el se 
    {  
        z=2;  
}  
    i f  ( y>0)  
    {  
        z=z+1;  
    }  
    el se 
    {  
        z=z+2;  
    }  
}  

 
This small program takes 2 inputs x, y and depending on the sign of x and y, 

subsequent path is executed. This program has the flow graph as shown in figure 6.2. 

 
 
 
 
 



CSC 7260 Project Final Report                                                                                                                  Page 61 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6.1 
 

According to the path selection criteria by [Rap84] and as discussed in Chapter 2, for 

all uses, there should be totally 4 c-def/use pairs: (2, 5), (2, 6), (3, 5), (3, 6) and 4 p-

def/use pairs (1, (1,2)), (1, (1,3)), (1, (4,5)), (1, (4,6)).  

Now, this small program is compiled by ATAC. Then, the program is executed for 

path (1, 2, 4, 5) only. Note that for ATAC to display the coverage summary,  the 

program under test should be executed at least once.  

sol ar 1. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> at acCC - g - c t est 1. c 
sol ar 1. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> at acCC - g - o t est 1 t est 1. o 
sol ar 1. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> t est 1 
Ent er  x:  
1 
Ent er  y:  
1 
spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> at ac - s - f  t est 1. t r ace t est 1. at ac 
% bl ocks      % deci si ons   % C- Uses      % P- Uses      f unct i on 
- - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  
82( 9/ 11)       50( 2/ 4)        25( 1/ 4)        100( 0)         mai n 
spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> 
 

 

However, ATAC reported that there are 4 c-uses and no p-uses is defined. The amount 

for c-uses is correct while p-use is not found by ATAC. We revised the program as 

follows: 

sol ar 1. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> cat  t est 2. c 
#i ncl ude <st di o. h> 
 
mai n( )  
{  
    i nt  w;  
    i nt  x;  
    i nt  y;  
    i nt  z;  
 

1 

2 3 

4 

5 6 

z=1 

w = z + 2   (define w and c-use z)  w = z + 1 

z = 2   (define z) 

x > 0 x =< 0 

y > 0 
y =< 0        (p-use y) 

x and y is defined from user input 



CSC 7260 Project Final Report                                                                                                                  Page 62 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

    x=1;  
    y=1;  
 
    i f  ( x>0)  
    {  
        z=1;  
    }  
    el se 
    {  
        z=2;  
    }  
    i f  ( y>0)  
    {  
        w=z+1;  
    }  
    el se 
    {  
        w=z+2;  
    }  
}  

 

In this case, variable x and y is not defined from users input through parameters &x 

and &y of function scanf. Instead, x and y is defined directly by assignment statement. 

After a path is executed, ATAC reports the following result: 

 
spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> at ac - s - f  t est 2. t r ace t est 2. at ac 
% bl ocks      % deci si ons   % C- Uses      % P- Uses      f unct i on 
- - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  
71( 5/ 7)        50( 2/ 4)        25( 1/ 4)        100( 4)         mai n 
 
 

ATAC reports the amount of c-uses and p-uses as expected. Comparing test1.c and 

test2.c, it is clear that ATAC is unable to recognise the input to parameter &x and &y 

as the definition of variable x and y. It may because all parameters passed in a 

function are all considered as outputs instead of inputs by ATAC in the C language 

context. 

Another program test3.c is analysed by ATAC as follows: 

sol ar 1. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> cat  t est 3. c 
#i ncl ude <st di o. h> 
 
mai n( )  
{  
    i nt  x;  
    i nt  y;  
    i nt  z;  
 
    x=1;  
    y=1;  
 
    i f  ( x>0)  
    {  
        z=1;  
    }  
    el se 
    {  
        z=2;  
    }  
    i f  ( y>0)  



CSC 7260 Project Final Report                                                                                                                  Page 63 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

    {  
        z=z+1;  
    }  
    el se 
    {  
        z=z+2;  
    }  
}  

This program is same as test2.c except node 5 and 6 are revised. Variable is both 

defined and used in node 5 and 6. After the program is executed for once, we obtain 

the following result: 

 
spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> at ac - s - f  t est 4. t r ace t est 4. at ac 
% bl ocks      % deci si ons   % C- Uses      % P- Uses      f unct i on 
- - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  
71( 5/ 7)        50( 2/ 4)        100( 0)         100( 4)         mai n 

 

ATAC becomes unable to detect any c-uses. Although variable z is both defined and 

used in node 5 and 6. However, its uses related to the definition in node 2 and 3 

should not be ignored. Here we have identified two limitations of ATAC release 

3.3.13. 

 

6.2 Expanding the Data Flow Coverage Definition to C 

The literature defines the data flow coverage criteria based on an idealised 

programming language. In expanding the definitions to C, new data types and 

structures should be catered. However, none of the  enhanced definition is presented 

in the publications about ATAC [Hor90], [Hor94], [Lyu96]. 

In the following sub-sections, we will investigate how ATAC treats global variable, 

array, pointer, struct, and union of C language one by one. 

6.2.1 Handling Global Variables 

ATAC is routine based, that means, ATAC only analysis data flow coverage within 

functions locally but not globally. Therefore, even a global variable is defined and 

used in different functions, ATAC cannot recognise it (refer to the following ATAC 



CSC 7260 Project Final Report                                                                                                                  Page 64 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

session). This can also be considered as another limitation of ATAC. In [Rap85], the 

data flow coverage is only defined for single procedure program only. To apply the 

definitions to C language, ATAC seems only choose to analyse intra-function data 

flow coverage in order to reduce complexity. 

#i ncl ude <st di o. h> 
 
voi d show( voi d) ;  
 
i nt  x;  
i nt  y;  
 
mai n( )  
{  
    pr i nt f ( " Ent er  x: \ n" ) ;  
    scanf ( " %d" , &x) ;  
    i f  ( x  > 0)  
    {  
        y=1;  
    }  
    el se 
    {  
        y=2;  
    }  
    show( ) ;  
}  
 
voi d show( )  
{  
    pr i nt f ( " y i s  %d" , y) ;  
}  
 

Variable y is defined at two nodes of main () and c-used in show(). Globally, there 

should be 2 c-uses. However, ATAC only analysis coverage within functions: 

spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> at ac - s - f  t est gl ob. t r ace t est gl ob. at ac 
% bl ocks      % deci si ons   % C- Uses      % P- Uses      f unct i on 
- - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  
86( 6/ 7)        50( 1/ 2)        100( 0)         50( 1/ 2)        mai n 
100( 2)         100( 0)         100( 1)         100( 0)         show 
89( 8/ 9)        50( 1/ 2)        100( 1)         50( 1/ 2)        == t ot al  == 
 

6.2.2 Handling Array Elements 

An array contains different elements, we will consider whether these element as the 

same or different by the following ATAC experiments. Let us perform a control 

experiment first, this control will also serve for the next sub-sessions. 

spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> cat  cont r ol . c 
#i ncl ude <st di o. h> 
 
mai n( )  
{  
    i nt  x;  
    i nt  y;  
    i nt  z;  
 
    pr i nt f ( " Ent er  x: \ n" ) ;  
    scanf ( " %d" , &x) ;  
    i f  ( x  > 0)  



CSC 7260 Project Final Report                                                                                                                  Page 65 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

    {  
        y=1;  
    }  
    el se 
    {  
        z=2;  
    }  
    pr i nt f ( " y i s  %d" , y) ;  
 }  
 

 

 

 

 

 

Figure 6.3 

This program is defines y and z in two nodes separately and only y is c-used in the 

final node. Therefore, only one c-use is defined. On the other hand, if z is defined also 

in node 2, there are 2 c-uses. It will be used as the measure to see whether ATAC 

treats variables on the two side the same or different. 

 
spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> at ac - s - f  cont r ol . t r ace cont r ol . at ac 
% bl ocks      % deci si ons   % C- Uses      % P- Uses      f unct i on 
- - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  
86( 6/ 7)        50( 1/ 2)        100( 1)         100( 0)         mai n 

 

We perform the experiment to investigate how ATAC treats different elements of an 

array now: 

spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> cat  t est ar r ay. c 
#i ncl ude <st di o. h> 
 
mai n( )  
{  
    i nt  x;  
    i nt  s[ 3] ;  
 
    pr i nt f ( " Ent er  x: \ n" ) ;  
    scanf ( " %d" , &x) ;  
    i f  ( x  > 0)  
    {  
        s[ 0] =1;  
    }  
    el se 
    {  
        s[ 1] =3;  
    }  
    pr i nt f ( " s i s  %d" , s[ 2] ) ;  
 }  
 

1 

2 3 

4 

y = 1 (define y) 
z = 2   (define z) 

x > 0 x =< 0 

       (c-use y) 



CSC 7260 Project Final Report                                                                                                                  Page 66 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

Refer to figure 6.3, we put different array elements on the two side (node 2 and node 

3). The result reveals that ATAC considers different array elements as the same as it 

recognise 2 c-uses. 

spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> at ac - s - f  t est ar r ay. t r ace t est ar r ay. t r ace 
% bl ocks      % deci si ons   % C- Uses      % P- Uses      f unct i on 
- - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  
86( 6/ 7)        50( 1/ 2)        50( 1/ 2)        100( 0)         mai n 
 

6.2.3 Handling Pointers 

We continue to see how ATAC treats pointers by similar experiment. In 

experimenting arrays, we identified ATAC treats pointers def/use in 2 cases. The first 

case is as follows: 

spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> cat  t est pt r 1. c 
#i ncl ude <st di o. h> 
 
mai n( )  
{  
    i nt  x;  
    i nt  * z;  
 
    pr i nt f ( " Ent er  x: \ n" ) ;  
    scanf ( " %d" , &x) ;  
    i f  ( x  > 0)  
    {  
        * z=1;  
    }  
    el se 
    {  
        * z=3;  
    }  
    pr i nt f ( " z i s  %d" , z) ;  
 }  
 

In this case, the field pointed by the pointer is defined in both nodes (node 2 and node 

3 in figure 6.3) and the pointer is used for display. ATAC recognise the pointer and 

the field pointed as different variables. So, no c-use is identified by ATAC. 

spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> at ac - s - f  t est pt r 1. t r ace t est pt r 1. at ac 
% bl ocks      % deci si ons   % C- Uses      % P- Uses      f unct i on 
- - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  
71( 5/ 7)        50( 1/ 2)        100( 0)         100( 0)         mai n 

 

The second case is as follows: 

spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> cat  t est pt r 2. c 
#i ncl ude <st di o. h> 
 
mai n( )  
{  
    i nt  x;  
    i nt  * z;  
 
    pr i nt f ( " Ent er  x: \ n" ) ;  
    scanf ( " %d" , &x) ;  



CSC 7260 Project Final Report                                                                                                                  Page 67 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

    i f  ( x  > 0)  
    {  
        z++;  
    }  
    el se 
    {  
        z+=2;  
    }  
    pr i nt f ( " z i s  %d" , * z) ;  
 
 

In this case, the pointer is defined in both nodes (node 2 and node 3 in figure 6.2) and 

the field pointed is used. ATAC recognise the pointer and the field pointed as the 

same. So, 2 c-use is identified by ATAC. 

spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> at ac - s - f  t est pt r 1. t r ace t est pt r 1. at ac 
% bl ocks      % deci si ons   % C- Uses      % P- Uses      f unct i on 
- - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  
86( 6/ 7)        50( 1/ 2)        50( 1/ 2)        100( 0)         mai n 
 
 

6.2.4 Handling Structure 

The following ATAC session investigates how ATAC treats different elements within 

a structure. Variable name and weight are defined separately in node 2 and 3 of figure 

6.2. 

spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> cat  t est st r uct . c 
#i ncl ude <st di o. h> 
 
mai n( )  
{  
    st r uct  
    {  
      char  name[ 2] ;  
      i nt   wei ght ;  
    }  y;  
 
    i nt  x;  
 
    pr i nt f ( " Ent er  x: \ n" ) ;  
    scanf ( " %d" , &x) ;  
    i f  ( x  > 0)  
    {  
        y. name[ 0] =' A' ;  
    }  
    el se 
    {  
        y. wei ght =175;  
    }  
    pr i nt f ( " wei ght  i s  %d" , y. wei ght ) ;  
 }  

The result shows that 2 c-uses is recognised by ATAC. Therefore, it reveals that 

ATAC recognise different element within a structure as the same variable. This may 

not be fair in case the elements are indeed defined and used for individual purposes. 

 
spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> at ac - s - f  t est st r uct . t r ace 
t est st r uct . at ac 
% bl ocks      % deci si ons   % C- Uses      % P- Uses      f unct i on 



CSC 7260 Project Final Report                                                                                                                  Page 68 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

- - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  
86( 6/ 7)        50( 1/ 2)        50( 1/ 2)        100( 0)         mai n 
 
 

6.2.4 Handling Union 

The investigation for union is just about the same for structure: 

spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> cat  t est uni on. c 
#i ncl ude <st di o. h> 
 
mai n( )  
{  
    uni on 
    {  
      char  name[ 2] ;  
      i nt   wei ght ;  
    }  y;  
 
    i nt  x;  
 
    pr i nt f ( " Ent er  x: \ n" ) ;  
    scanf ( " %d" , &x) ;  
    i f  ( x  > 0)  
    {  
        y. name[ 0] =' A' ;  
    }  
    el se 
    {  
        y. wei ght =175;  
    }  
    pr i nt f ( " wei ght  i s  %d" , y. wei ght ) ;  
}  

 

And the result is also the same: 

 
spar c53. cs. cuhk. hk: / uac/ pt msc/ kssze/ sampl e> at ac - s - f  t est uni on. t r ace t est uni on. at ac 
% bl ocks      % deci si ons   % C- Uses      % P- Uses      f unct i on 
- - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  - - - - - - - - - - - - -  
86( 6/ 7)        50( 1/ 2)        50( 1/ 2)        100( 0)         mai n 
 

 

6.3 Exper ience in Using ATACOBOL 

After using ATACOBOL to carry out measurement, though the presentation is still 

primitive, ATACOBOL shows its capability in: 

• measuring test set completeness by control and data flow coverage; 

• displaying non-covered code to aid in test cases creation; 

6.3.1 Using ATAC to Measure ATACOBOL 

In the development of ATACOBOL, ATAC is applied to measure the coverage of 

ATACOBOL. On one side, we can gain more experience in using ATAC, and on the 



CSC 7260 Project Final Report                                                                                                                  Page 69 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

other side, to guarantee the test completeness of ATACOBOL. The following table 

shows the final coverage percentage. For detail descriptions of the modules, please 

refer to Appendix A. 

Module Name Block 
Coverage 

Decision 
Coverage 

C-Use 
Coverage 

P-Use 
Coverage 

NORMER 97% 95% 79% 63% 
ROUTER N/A N/A N/A N/A 
INSTRUER 93% 89% 72% 77% 
BVAR 100% 91% 86% 85% 
BDEFUSE N/A N/A N/A N/A 
PSEARCH N/A N/A N/A N/A 
ANALYSER N/A N/A N/A N/A 
 

The testing of ATACOBOL achieved high coverage rate in general. Uncovered blocks 

are coding that handle exception or extreme conditions, these usually consume extra 

effort to make the test cases to fulfil the coverage requirement. Some modules are 

unable to be measured by ATAC due to nested data structure syntax supported by 

Visual C++ 6.0 while not supported by the SunOS 5.6 SunOS/BSD Compatibility 

Package C Compiler. 

6.3.2 The Usefulness of  Enhanced Rules on Data Structures 

In the current ATACOBOL implementation, it supports 3 hierarchical levels of data 

structure representation as described in section 4.5. The module O2 described in 

section 5.3 is used again to compare the difference if elements of a data structure are 

not distinguished from each other. This experiment is achieved by modifying the 

variable table to wipe away level 2 and level 3 identifier of a variable. 

Figure 6.4 shows a section of live data definition in APS COBOL. COBOL 

programmers used to collect variables under the same data structure label for 

documentation reason rather than any intrinsic relationship among the variables. Each 



CSC 7260 Project Final Report                                                                                                                  Page 70 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

variable is an individual counter, they are collected under the data (variable) label 

‘COUNTERS’. 

 
     05  COUNTERS.  
         SKI P1 
         10  LI NE- CNT            PI C 9( 2)     VALUE  80.  
             88  PAGE- OVERFLOW                 VALUE 76 THRU 80.  
         10  LI NE- CNT1           PI C 9( 2)     VALUE  80.  
             88  PAGE- OVERFLOW1                VALUE 76 THRU 80.  
         10  LI NE- CNT2           PI C 9( 2)     VALUE  80.  
             88  PAGE- OVERFLOW2                VALUE 76 THRU 80.  
         10  PAGE- CNT            PI C 9( 2)     VALUE  0.  
         10  PAGE- CNT1           PI C 9( 2)     VALUE  0.  
         10  PAGE- CNT2           PI C 9( 2)     VALUE  0.  
 

Figure 6.4 Live APS COBOL structural data definition 

 

The experiment result shown in the table reveals that nearly doubled amount of C-

Uses and P-Uses are identified by ATACOBOL if the enhanced rules are not applied. 

That means nearly the same amount of C-Uses and P-Uses are incorrectly defined. 

 All elements in a data 
structure are considered as the 
same 

Using enhanced rules as 
described in section 4.5 

No. of C-Uses found 5073 3156 
No. of P-Uses found 3066 1589 

 

6.3.3 Comparing ATACOBOL, ATAC and ASSET 

The following table compares currently available coverage tools, including 

ATACOBOL for COBOL language described in this report, ATAC for C language, 

and ASSET (A System to Select and Evaluate Tests) for PASCAL as described in 

[Fra88]. All-defs is a weak criteria and it is still uncertain about its application. All-

du-paths is the most demanding criteria, however impose unreasonable measurement 

complexity.  

 



CSC 7260 Project Final Report                                                                                                                  Page 71 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

Tools ATACOBOL ATAC ASSET 
Measure Block Coverage 

�
 

�
 

�
 

Measure Edge Coverage 
�

 
�

 
�

 
Measure All-C-Uses 
Coverage 

�
 

�
 

�
 

Measure All-P-Uses  
Coverage 

�
 

�
 

�
 

Measure All-Defs × × 
�

 
Measure All-DU-Paths × × 

�
 

Measurement Range Within Paragraphs Within Functions No limitation 

Display uncovered  
construct 

�
 

(only block no. is 
displayed) 

�
 

(Automatic display of 
source statements) 

�
 

(only block no. is 
displayed) 

Graphical display of 
Control Flow graph 

× × 
�

 

 

6.3.4 Suggested ATACOBOL Further Development 

From our experience and the comparison of the last section, we could consolidate 

some aspects of ATACOBOL that demands improvements. 

• The display of uncovered construct by ATACOBOL is relative primitive, users have 

to follow line numbers stated in the files to trace the source statement. Therefore, 

ATACOBOL should be enhanced to display the source statement automatically. In 

the current implementation, the source line numbers have been already stored with 

the block numbers in control flow information file. It makes the system readily to 

this enhancement. 

• The identification of def-use pair is limited within discrete paragraphs. Some uses of 

global variables may not be found as illustrated in 6.2.1. Therefore, to measure the 

coverage thoroughly over the whole program, ATACOBOL should be enhanced to 

identify def-use pairs across paragraphs. 

• Support graphical presentation of control flow graphs and data flow graphs to 

facilitate test cases construction. Please refer to 7.9 for further discussions. 



CSC 7260 Project Final Report                                                                                                                  Page 72 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

• The processing algorithms applied in the current ATACOBOL implementations is 

primitive. Effective algorithms can be applied to increase the processing 

effectiveness of ATACOBOL. 

• To incorporate ATACOBOL to automatic testing tools. A common practice of Y2K 

problem testing is to inject a large amount of production data into programs with 

date fields aged by automatic tools, and observe if any exception occurs. 

ATACOBOL can hereby serve to verify the satisfaction of Y2K date comparison 

related paths. 

 



CSC 7260 Project Final Report                                                                                                                  Page 73 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

7. DISCUSSION 
 

 

7.1 Another  Type of Def/Use in Assembly Language  Addressing Use 

As discussed in Chapter 2, Rapps and Weyuker have identified two type of def/use 

pairs: c-use and p-use in their idealised language. When considering assembly 

language, for example IBM 370 assembly language or the 80X86 assembly language, 

we can identify another type of def/use pair. This kind of def/use is for the purpose of 

addressing, so we call it addressing use or simply a-use. 

In assembly language programming for modern systems, the address loaded for 

program execution is assigned at runtime (Figure 7.1). Hence, it is impossible to use 

exact addressing during programming. A base address pointer is used for relative 

addressing, pseudo codes is usually employed to instruct the compiler to make 

assumption of the base pointer to some known label for addressability calculations. 

 

 

 

 

Figure 7.1 Addressing Problem for Program Address Assigned at Runtime 

 

Let us use IBM 370 Assembly Language for mainframes as an example. In 370 

assembly language, it defines 16 registers: R0 - R15. Except R0, all registers can be 

applied as base address pointers. When a program is called from the OS, its address is 

passed by R15, the following is a sample piece of coding: 

Assembly Code 
 
LABEL1  L  R1, R2 
        S  R1, R3 
        L  R3, LABEL2 
 
 
LABEL2  . . . .  

Loaded at Runtime 
 
LABEL1  L  R1, R2 
        S  R1, R3 
        L  R3, LABEL2 
 
 
LABEL2  . . . .  

 
 
 

Address 
 
 
00000000 
 
. . .  
. . .  
 
00000600 

Address 
 
 
???? 
 
. . .  
. . .  
 
????+600 

? 



CSC 7260 Project Final Report                                                                                                                  Page 74 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 
 
( OS l oads Runt i me addr ess of  LABEL1 t o R15)  
LABEL1 USI NG * , R15   ESTABLI SH LOCATI ON FROM OS 
  LA R1, LABEL2  LOCATE LABEL2 
  USI NG LABEL2, R1  ESTABLI SH ADDRESSABI LI TY 
  MVC   FRUI T, APPLE  MOVE CHARS ‘ APPLE’  TO VAR FRUI T 
 
LABEL2 EQU   *  
APPLE  DC C’ APPLE’  
FRUI T  DC C’      ’  
 

 

The first USING pseudo code instructs the assembler to make assumption on using 

R15 as the based register for the whole program code segment. The runtime address of 

LABEL2 is loaded to R1. The second USING pseudo code instructs assembler to use 

R1 as the base address in assembling all labels after LABEL2. Note that USING has 

similar meaning as pseudo code ASSUME in 80X86, but of higher flexibility.  

The instruction to load the address and USING pseudo code together defines the 

addessability of a base registers. For any codes using labels under the addressability 

(visibility) of that defined register, that may considered as the use of the 

addressability, should be assembled with the correct base register and executed with 

the correct addressing at runtime. 

Incorrect addressing may cause wrong use of data and wrong branching. More 

severely, it may cause corruption of data or even the code itself. Subsequently, it may 

cause unrecoverable error, although MVS provides exception handling and recovery 

for software errors as described in [Iyer96]. The checking of a-use is of essential 

significance for any assembly language programmer.  

 

7.2 Effect of Unexecutable Path to Data Flow Coverage Cr iter ia 

Given a program P and a data flow coverage criterion C, it may be the case that no test 

set for P satisifies C. This occurs when none of the paths which cover a particular 



CSC 7260 Project Final Report                                                                                                                  Page 75 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

association required by C is executable. In such a case, P cannot be adequately tested 

according to C. [Fra88] introduced a new family of criteria derived from the data flow 

criteria we had described in Chapter 2 which cater the existence of unexecutable 

paths.  

We say that a complete path is executable or feasible if there exists some assignment 

of values of variables which causes the path to be executed. Whether or not a 

particular path is executable depends on the actual context of P, not just on its def-use 

graph. An association is executable if there is some executable complete path which 

covers it, otherwise, it is unexecutable. 

Base on the existence of unexecutable paths, [Fra88] proves the subsumption 

relationship as figure 7.2. 

ALL-PATHS 

 

ALL-DU-PATHS   ALL-EDGES 

 

                             ALL-USES       ALL-NODES 

 

ALL-CUSES/SOM E-P-USES  ALL-P-USES/SOM E-C-USES 

 

ALL-C-USES   ALL-DEFS   ALL-P-USES 

Figure 7.2 

 
In this case, the subsumption between all-uses to all edges is broken. Therefore, we 

cannot just measure all-uses and suppose the measurement can covers all edges 

coverage. However, if we employed the measurement strategy that starts with the 

measurement of a relatively weaker criteria, say edge coverage, upon the fulfilment of 



CSC 7260 Project Final Report                                                                                                                  Page 76 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

such criteria, we than proceed with a stronger criteria, say all-uses. We can represent a 

general subsumption relationship by union of these criteria: 

all-uses coverage ∪ all edges coverage ∪ block coverage block coverage 

�  all edges coverage ∪ block coverage  

�  block coverage 

Therefore, it is not important for a criterion to completely subsumes another criterion. 

If a criterion can subsumes the other in majority, the above measurement strategy can 

be applied smoothly. 

For any of the path selection testing criteria (including block coverage, edge coverage 

and the data flow coverage) there can be no algorithm to decide, in general, whether or 

not such a path segment is executable. From the software testing experiment using 

ASSET in [Wey90] shows that human beings are frequently very good at determining 

unexecutability. (In section 7.9, we discuss how this ability can be enhanced by 

visual-aid.) 

One helpful simple facility to assist the tester in dealing with the unexecutable path 

problem may be programmed. If a path or definition/use pair has been determined 

unexecutable, this facility checks other unexercised paths to see if they contain any of 

the known unexecutable subpaths. Any path containing an unexecutable subpath is 

clearly unexecutable, and is automatically removed from consideration. 

 

7.3 Complexity of Data Flow Coverage 

7.3.1 Complexity of Data Flow Coverage Criteria 

The complexity of data flow coverage criteria is considered as the number of test 

cases required to satisfy the criteria in [Wey84]. Such upper bound can be determined 



CSC 7260 Project Final Report                                                                                                                  Page 77 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

theoretically. Let P be a program with n variables, m assignments, i input statements, 

and t conditional transfers. Let a test case consist of a single vector of input variables. 

Letting d be the number of defs in P, it follows that d ≤ m + (i × n) since each input 

statement defines between one and n variables. 

For all-nodes and all-edges criteria, it requires at most t + 1 test cases. Figure 7.3 

outlines the control-flow graph that shows this extreme case. 

 

 

 

 

 

Figure 7.3 Control-flow graph meets the upper bound of edge and node coverage 

 

 

 

 

 

 

 

 

 
 

 

Figure 7.4 Control-flow graph meets the upper bound of data flow coverage 

. .      .        .    .    .      .      . 

. .      .      .    .    .           .         . 

. .      .      .    .    .           .         . 
 

. .      .        .    .    .      .      . 

. .      .      .    .    .           .         . 

. .      .      .    .    .           .         . 
 

.   .   . .   .   . 

 . . . 

.  

. 



CSC 7260 Project Final Report                                                                                                                  Page 78 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

Figure 7.4 shows the upper bound case for all-uses. This type of flow graph maimizes 

the number of def-use pairs and thus the number of paths to be traversed. There are 

½(t + 1) nodes in the last decision row of nodes of the graph, representing at most t + 

1 distinct uses of the definition of the root node. Of these uses, ½(t + 1) are exit nodes, 

while ½(t + 1) can contain defs, each with a use in every node in the other half of the 

flow graph. Thus there are a total of  ½(t + 1) × ½(t + 1) + ½(t + 1) = ¼(t2 + 4t + 3) 

distinct paths induced by def-use pairs. 

For all-du-paths, the worst case for this criterion is a control flow graph which 

maximises the number of loop-free paths. This occurs when a flow graph has the form 

outlined in figure 7.5. In that case, there are 2t distinct loop-free paths. 

 

 

 

 

 

 

 

 

Figure 7.5 Control-flow graph that maximises the all du-paths 

To summarise, the theoretical upper bound for all-nodes and all-edges criteria is t + 1 

test cases. All-uses criteria require at most  ¼(t2 + 4t + 3) test cases. All du-paths 

requires at most 2t test cases. 

The result of an empirical study carried out in [Wey90] reveals that the complexity is 

far lower than the analytical worst condition for practical programs. The experiment is 

. 

. 

. 



CSC 7260 Project Final Report                                                                                                                  Page 79 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

carried out by a team of professional programmer on a set of well-developed PASCAL 

programs. The ratio of the number of test cases sufficient to satisfy the all-uses to the 

number of decision statements is found to be only 3.67. It is also surprised to observe 

that even though the all-du-paths criterion has an exponential upper bound whereas 

the all-uses criterion has a quadratic upper bound, in practice test sets sufficient to 

almost satisfy all-uses were frequently also sufficient to almost satisfy all-du-paths. 

Since ATACOBOL does not implement the all-du-paths measurement, we cannot take 

similar measures in our COBOL programs. 

 

7.3.2 Complexity of Data Flow Coverage Measurement 

Another complexity factor of data flow coverage is the measurement process. The 

complexity of test cases that fulfils coverage criteria in the previous discussion is 

directly related to the cost of the whole testing. On the other hand, the measurement 

complexity is just imposed on occasions when the coverage result is required.  

From the ATACOBOL implementation, for a program P, with n statements, totally m 

variables and l trace records. 

Building of Control Flow graph: n 

Building Variable Table: n × m 

Building Data Flow graph:  n × m 

Instrument the source code: n 

Analysis of Block Coverage: n × l 

Analysis of Decision Coverage: n × l 

Search for def-use pairs: n2 

Analysis of Data Flow Coverage: n × m2 × l 



CSC 7260 Project Final Report                                                                                                                  Page 80 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

In general, the coverage measurement for block and decision coverage is linear while 

data flow coverage is quadratic. 

 

7.4 Compar ison of the Fault-Detecting Ability of Coverage Cr iter ia 

Several testing technique had been proposed in the literature, however, little concrete 

information about the fault-detecting ability of these criteria has been gathered. One 

difficult factor that makes it difficult to compare the fault-detecting ability of testing 

techniques is that typically a large number of different test suites satisfy the criterion 

for a given program. Often, some of these test suites expose a fault, while others do 

not. Consequently, a reasonable question to ask is whether test suites developed for a 

given program using one technique are more likely to detect a fault than test suites 

developed using another technique. In other words, we require to compare the 

effectiveness of different testing criteria. 

7.4.1 Problem of Empirical Comparison of Effectiveness 

We may attempt to answer this question by using the empirical approach. However, 

there are a number of problems associated with this approach. A major problem is that 

we have no agreed-upon notation of representative program. Therefore, if we show 

that a given criterion is good at exposing certain faults contained in a set of programs, 

it is not generally meaningful to apply this result to other programs with different 

characteristics. [Wey93] also points out the problem of misleading test, it is because 

many experiments cannot covers all possible test cases to give an averaged result for 

comparison. 



CSC 7260 Project Final Report                                                                                                                  Page 81 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

7.4.2 Problem of Analytical Comparison of Effectiveness 

Previous analytical comparisons of testing criteria have been based on the subsumes 

relation as presented in Chapter 2. If C1 subsumes C2, C1 can always detect a fault that 

can be detected by C2. This is denoted by C1 BETTER C2. However, even if C1 

subsumes C2, it is possible for C2 to be more likely detects a fault than C1. That 

means, we have higher probability to detect a fault out of test cases that fulfil C2. In 

order to address this weakness, Weyuker et al. [Wey93] introduced a new relation to 

serve as the basis for analytical comparing criteria: the PROBBETTER relation.  

7.4.2 PROBBETTER Relation of Coverage Criteria 

C1 is said to be PROBBETTER than C2 for a given program if a set case selected 

randomly from among all those satisfying C1 for that program is more likely to detect 

a failure than a test set selected randomly from those satisfying C2 for that program.  

[Fra93] uses the properly covers relation to prove that All-uses PROBBTTER  than 

All-edges. Informally speaking, the properly covers relation requires that each sub-

domain of the domain division induced by C2 be the union of some of the sub-

domains induced by C1, with the added requirement that if there are n copies of a 

given sub-domain in the C2 division of the domain, then there must be at least n 

copies of that sub-domain in the C1 division of the domain. 

 

7.5 Code Coverage and Reliability   

7.5.1 Inadequacy of Operational Profile in Reliability Estimation 

Software reliability is defined as the probability of failure-free software operation for 

a specified period of time in a specified environment [Ieee91]. Another related metric 

is the Mean Time to Failure (MTTF). Several models have been proposed in the past 



CSC 7260 Project Final Report                                                                                                                  Page 82 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

to estimate MTTF from failure data generated during system test [Mus87]. These 

models assume that a system under system test is being tested using an operational 

profile in accordance with which the system may be used. Such black-box models is 

subjected to criticism by [Hor96] to the fact that parts of the code that remain untested 

are sites for potential faults. 

An argument against this criticism is that if the system is tested using an operational 

profile, then any untested parts of the code are unlikely to be executed during system 

operation and hence faults in such parts will not affect the reliability of the software. 

However, this argument is valid only if an accurate operational profile is available. 

[Hor96] sites several situations that we usually cannot have an accurate operational 

profile but just use educated guesses: 

• New software: When a new system is designed, as opposed to modifying an existing 

system, one may not have any customer base for this system. 

• New features: New versions of an existing system may be continually under 

development. Even though there exists a user base for the existing version of the 

system, there is no user base for the new version yet to be released. 

• Feature definition: A feature is often not a well-defined entity. 

• Multiple and unknown user groups: 

• Multiple and unknown user groups: An operational profile usually can only reflect 

users of a relatively homogeneous class. For system of great variety of usage, the 

operational profile is unable to model the whole group of users accurately. 

[Kar96] based on branch coverage to estimate commercial hardware-software system 

on IBM mainframes operating systems MVS/XA and VM/XA and the result suggest 

code coverage improves the accuracy of reliability estimation. [Chen96] based on 



CSC 7260 Project Final Report                                                                                                                  Page 83 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

statement coverage technique to extract only effective data from a given operational 

profile for reliability estimation in the Iowa/Rockwell Autopilot Project, result 

indicates that overestimation of reliability is reduced. Stronger coverage 

measurements like all-uses and mutation should be applied to obtain more accurate 

result since some test cases would be dropped as ineffective while they do not satisfy 

the stronger criteria. 

7.5.2 Overestimation of Reliability due to Saturation Effect 

[Hor96] describes the overestimation of reliability due to saturation effect as shown in 

figure 7.6. We will comment the views of Horgan and Mathur on this issue. 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 Overestimation of reliability due to saturation effect 

A saturation effect refers to the tendency of an individual testing method to attain a 

limit in its ability to reveal faults in a given program. It is reasonable to assume that as 

functional testing proceeds, the reliability of the software being tested grows when 

faults found are removed. However, once its limit has been reached, no additional 

Reliability 

Testing effort True reliability 

Estimated reliability 

Functional 

Decision 

Data Flow 

M utation 



CSC 7260 Project Final Report                                                                                                                  Page 84 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

faults are found. If existing models for reliability estimation are used, the reliability 

estimate can still be improved by increasing the number of test cases executed in the 

saturation region. Horgan and Mathur believe the counting of the test cases is unfair 

and will over-estimates the reliability.  

For the whole argument, we need to address the assumption underneath. We always 

assume the existence of oracle,  i.e., some methods to determine whether or not the 

output produced by a program is correct. This is the validation of the testing result. 

However, the correctness of result validation also involves uncertainty. This 

uncertainty can be minimise by repeatedly testing of the same cases. In practice, report 

producing program are frequently complained by users of incorrect format after 

release, it is not because the reports are not generated in testing but the result is 

overlooked by the testers.  

Moreover, we expect that the shape of the graph should be convex. That means, the 

increase testing effort spent is inversely proportional to the reliability it gains. The 

reliability gain diminishes as criteria uncovered by the operational profile are much 

unlikely to happen. [Hor96]  considers test effort as the CPU time for executing the 

test and the number of test cases only. In practice, to enforce the execution of more 

selective paths, more manpower is spent in determining the test cases. To enforce rare 

cases that users seldom encounters to happen, we may need extra system configuration 

and setup. For example, error paths invoked by insufficient memory, file corruption 

and database inconsistency. In a nutshell, the project manager or the tester should be 

very selective in handling the unbalanced trade-off  between testing effort spent and 

reliability gained. 

 



CSC 7260 Project Final Report                                                                                                                  Page 85 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

7.6 Developing and Using ATACOBOL in Cross-Platform Approach: Pros 
and Cons 

 
Instead of implementing the software testing tools in the target platform like the IBM 

Code Assistant (Section 3.2.2), the cross platform setup of ATACOBOL enables the 

instrumentation and analysis tools to be written in C language using Microsoft Visual 

C++ version 6.0. C language is not commonly applied in mainframe industry 

nowadays. None of the mainframe production programs in HSBC are written in C 

language.  

There is a trend of using cross platform approach in the mainframe industry as 

promoted by some mainframe software solution provider including Compuware 

(Section 3.2.2), Intersolv and Micro Focus.  They believe that the workstation coming 

up much powerful can share the workload of the mainframe and we can be benefited 

by the graphical user interface of workstations.  

 

The following is the pros and cons of using cross platform approach. 

Pros: 

• C language is understood by a larger base. 

• C language is supported by a wider base, so the programs developed can be 

potentially ported to other platforms. (With the introduction of IBM OS/390, it 

enables UNIX system  to run on top of the mainframe OS core, mainly for the 

benefits of running Web servers. Mainframe Technical Support Team of 

HSBC is actively evaluating to put this technology to production.   We may 

port the software tool developed in C back to the mainframe in the near 

future.) 

• The coverage measurement tools themselves can be examined under ATAC or 
χSuds during the development. 



CSC 7260 Project Final Report                                                                                                                  Page 86 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 
• Visual C++ supports graphical user interface that facilitates the viewing of 

source in further development. 
 
• Higher availability of PC platform . 

 

Cons: 

• Analysis time can be shorten by the powerful mainframe. 

• The performance is constrained by the file transfer bottleneck. 

• Unnecessary data passing overhead between platforms making the whole 
measurement inconvenience to handle.  

 

For a efficient commercial mainframe product today, it is more reasonable to develop 

and execute ATACOBOL in IBM 370 assembly language solely on mainframe 

platform just like IBM Code Assistant. On the other hand, as a research project and 

taking the fringe benefits in account, the cross platform approach is employed in this 

project. The system setup of the project is restricted by the HSBC mainframe 

development environment. We suggest a desirable cross platform  program 

development environment setup as  illustrated in figure 7.7. The database may actually 

maintained by DB2 running on the mainframe. It provides access channels for 

mainframe as well as the  workstations. 

 

       
 

Figure 7.7 

Code/ 
Testing Data/ 
Trace Log 
Database 



CSC 7260 Project Final Report                                                                                                                  Page 87 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

7.7 Incorporation of Coverage Metr ics to ARMOR 

[Lyu95] presented a software analysis tool ARMOR (Analyzer for Reducing Module 

Operational Risk) that takes data from project database, failure database, and program 

development database, establishes risk models and validate the risk models from field 

data. Figure 7.8 shows the high-level architecture for ARMOR. 

To model software risk the quality indicator in the form of metrics of software 

modules are acquired. ARMOR can already calculate some metrics. [Hor96] described 

an application of coverage  measurement as a metric of risk. Therefore, it is readily to 

incorporate this new metric into ARMOR.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8 High-level architecture for ARMOR 

The selection and weighting function of ARMOR allows users to select and weight 

candidate metrics as the basis to form risk models. After the risk model is evaluated, 

Project 
Directory 

Risk 
Modeling 

Metrics 

Module 
History 

Failure 
Data 

Module 
Evaluation 

Evaluation 
Result 

Evaluation 
Control 

Risk 
Assessment 

Risk 
Prediction 

 
Display 
 

Plot 
Selection 

Criteria 
Selection 

Validation 

Decision 
Making 

Risk Reduction 
Effort 
Making 

Feedback 
Control 

Model 
Validation 



CSC 7260 Project Final Report                                                                                                                  Page 88 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

we could make use of the validation function to study the correlation between the risk 

model constructed and failure data. As a result, ARMOR could help to: 

• Explore whether coverage metric correlates to the failure data; 

• Identify whether the coverage metric is the dominating source of risk. 

 

7.8 Potential By-Products of ATACOBOL 

In the implementation of ATACOBOL, information of the subjected program is 

extracted. It includes the variable table, node-link structured control-flow graph, 

variable table, and data-flow graph of define or use of variables. In addition to 

coverage measurement, the information extracted can be readily or potentially 

employed in other software analysis applications. 

The information can be applied as the inputs for many software quality metrics, or it 

may be further manipulated to produce summarised statistics for evaluation. 

The node-link structured control-flow graph can be fed to some kinds of simulator 

that simulates the behaviour of a program. 

 

7.9 Visual-Aid for  Coverage Analysis 

A good quality visual-aid can greatly facilitate the analysis of coverage. Especially for 

data flow coverage, good representation of the control and data flow information can 

help the tester to construct test cases that makes a particular path to be executed, or 

even to determine certain path to be unexecutable. 

ATAC is able to highlights the uncovered code. In χSuds, the covered code is colored 

according to the frequency of execution. However, they do not visualise the control 

flow or data flow graphs. ASSET visualise the control flow graph. An ideal visual-aid 

proposed for coverage analysis is illustrated in figure 7.9. 



CSC 7260 Project Final Report                                                                                                                  Page 89 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

A good visual-aid for coverage analysis should be user-friendly and informative. The 

proposed visual-aid consists of a set of windows. The flow window visualise the 

program under analysis by control-flow graphs. Zoom-in and zoom-out to the node-

link structure is provided. More than one flow window can be opened for viewing the 

program structure in different scales. On clicking a node of the control-flow graph, the 

corresponding source statements will be shown on the source code window. 

Moreover, the nodes or links can be clicked to display the data flow information 

window. The data flow information window lists the variables defined/used in that 

node, and also the def/use graph associated with this node. 

This kind of visual organisation is quite similar to computer-aided circuit design or 

analysis applications in electronic engineering. Designers can trace the circuit paths 

throughout the graphs and look into individual component specifications. This 

approach is widely accepted in large scaled but detailed VLSI design.  

 

 

 

 

 

 

 

 

 

 

 

 

COVERAGE ANALYSER 

FLOW WINDOW [1] 

SOURCE CODE WINDOW 

DATA FLOW INFO WINDOW 

FLOW WINDOW [2] 



CSC 7260 Project Final Report                                                                                                                  Page 90 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 

Figure 7.9 Proposed visual-aid 

7.10 Coverage Analysis for  Program Version Changes 

Measuring the coverage of a program costs extra effort. If a program is revised and 

release again, it would be costly if we had to re-measure coverage of the whole 

program. Moreover, testers may be more concerned with whether the code that has 

been changed, added or deleted from one release to the next has been properly tested 

rather than the overall coverage with respect to a module, a subsystem or the entire 

software. In unit test phase, program may subject to frequently changes. If we need to 

keep track of coverage strictly all the time, it would be very costly. If a facility can 

smartly select  amended coding smartly, take measure on the amended coding and 

merge the measurement result, great deal of efforts could be saved. 

It would be possible for control-flow coverage to incorporate such merged changes 

coverage measurement. However, it would be far complicated for the highly 

associated data flow coverage. For the simplest case, if only part of a paragraph is 

amended, only that paragraph will be accounted for coverage measurement. For detail 

changes, variables being changed in the amendment may be selected. Then all paths 

associates with such variables then requires to be re-measured. Visual aid described in 

section 7.9 may be enhanced to support the viewing of  differed paths to help the 

tester to determine which part of coding required to re-measured. 

The IBM Coverage Assistant  described in Chapter 3 supports an additional feature to 

measure coverage only for statements selected by the user. An integration of coverage 

tools with version comparison tools is proposed in figure 7.11. For χSuds, it supports 

an automatic atacdiff facility in similar approach. Atacdiff compares the versions and 

generates a parameter file of the changed statement information to χATAC. In 



CSC 7260 Project Final Report                                                                                                                  Page 91 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

addition, it identifies regression test cases automatically by selection those test cases 

have paths likely to pass through the changed statements. 

 
 
 
 
 

 

 

 

 

Figure 7.10 Visual-aid supports version changes viewing 

 

 

 

 

 

 

 

 

Figure 7.11 Integrated coverage measurement tool that supports 
 version changes coverage 
 

 

7.11 Data Flow Coverage: To Use or  Not to Use? 

It has been pointed out that time an money are the most commonly used criteria for 

determining whether or not it is the right point to stop testing. We test until we have 

exhausted the funds allocated for testing or until the delivery date has arrived. This is 

a usual practice experienced by programmer in real-life projects.  

FLOW WINDOW  

Version 
Comparator  

Viusal-
Aid 

New 
Source 
Version 

Old 
Source 
Version 

Coverage 
M easurement 
Tool 

Parameter 
File of  
statements  
to measure 



CSC 7260 Project Final Report                                                                                                                  Page 92 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

Obviously, the time and money criteria have little to do with either the quality of the 

software, or the quality of the testing performed. If a more sophisticated adequacy 

criterion is used in practice, it is likely to be code coverage criterion. Although code 

coverage is not an all-promising to expose all kind of bugs. Nevertheless, these 

criteria are used in practice and works. [Wey89] sites several reasons of choosing 

control and data flow coverage as the adequacy criteria: 

• They are unambiguous. Different observers do not have different perceptions of 

whether or not a given code fragment has been exercised by a set of test cases. 

• They force a “distribution”  of test cases by requiring that every part of the program 

be exercised. In that way they represent necessary conditions for a comprehensive 

job of testing. If some part of the code has never been exercised, then we have no 

idea whether it contains bugs. 

• They are easily automated. Tools can be readily built to determine whether or not 

these criteria have been satisfied. 

• They can be quantified; i.e. they can be used to assess the degree of testing 

performed to date. 

In [Dal93], an experiment carried out to compare the statement coverage of unit tests 

for 28 modules of a single system to the number of system test faults found for each 

module. The result shows a clear relation that high statement coverage in unit testing 

and low number of faults detected in system test.  

It still needs further experiments to show that high data flow coverage relates to low 

number of faults. This kind of result is difficult to obtain due to two reasons. The first 

one is that we cannot easily distinguish the contribution of data flow coverage to the 



CSC 7260 Project Final Report                                                                                                                  Page 93 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

reliability of a software from control flow coverage in large scale project in statistic 

measures. It is because we cannot analysis each fault. 

Another reason is that the lack of data coverage tools. By the development and usage 

of ATACOBOL, it enables obtain field data of data flow coverage in COBOL 

language. The measurement result would reveals the usefulness of data flow coverage 

in business sectors. 

Although time and money criteria cannot offer an objective and directive criteria for 

software testing, in applying a particular technique, we should not neglect to consider 

the cost and effectiveness of that technique. In previous section 7.3 and 7.4 

discussions, experiments have shown that the cost or the complexity of data flow 

coverage measurement is reasonable. And, the fault-detecting effectiveness of data-

flow coverage is analytically higher than control flow coverage.  

 

 

 



CSC 7260 Project Final Report                                                                                                                  Page 94 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

8. SCHEDULE 
 

8.1 Project Implementation Schedule 

Date Tasks 
Jan 99 Literature Review. 

 
Feb 99 Coverage Tool Product Survey. 

 
Mar 99 Code and test ATACOBOL 

Block Coverage. 
 

Apr 99 
 

Prepare Term Report 
 
Code and test ATACOBOL: 
Decision Coverage. 
 

May 99 
 

Code and test ATACOBOL: 
Build Define/Use Graph. 
 

June 99 
 

Code and test ATACOBOL: 
Create dcu and dpu sets. 
 

July 99 
 

Code and test ATACOBOL: 
Implement data flow coverage analyser; 
 
Carry out live test cases measurement on 
mainframe. 
 
Result analysis 

August 99 
 

Prepare Final Report and presentation. 
 

 
 
 

8.2 Resources 

8.2.1 Hardware 

• A PC with Cyrix MII 200MHz CPU running MS-Windows 95. 

• SUN SPARC Workstation running Solaris 2.5.1. 



CSC 7260 Project Final Report                                                                                                                  Page 95 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

8.2.2 Software 

MS-Visual C++ 6.0 Standard Edition. 

8.2.3 Human Resources 

Base on the expense of 8 hours per week constantly, 

Total effort =  8 × 32 = 256 head-hours. 

 



CSC 7260 Project Final Report                                                                                                                  Page 96 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

9. CONCLUSION 
 
 
We has surveyed literature about coverage technique and evaluated practical software 

tools applied for coverage techniques. We have identified the limitations of ATAC 

and have investigated the coverage measure implemented by ATAC based on C 

language features. 

ATACOBOL, a coverage measurement tools for COBOL in mainframe, is designed 

and implemented. ATACOBOL is written in C language. It carries out 

instrumentation and measurement across the mainframe and PC platform. 

ATACOBOL is able to perform block and decision coverage measures.  

We have enhanced the rules of data flow coverage to adapt high level data structure. 

Moreover, the importance of data flow coverage criteria in identifying real-world Y2K 

related problematic paths is also demonstrated. 

ATACOBOL is applied to measure live programs from the banking sector with live 

test cases. With the extensive application of ATACOBOL, we hope to explore more 

about the usefulness of data flow coverage, and the relationship between coverage and 

reliability. 

 



CSC 7260 Project Final Report                                                                                                                  Page 97 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

10. REFERENCE 
 
 
[Aho86] Aho, A. V., Sethi, R., and Ullman, J. D., Compilers: Principles, 

Techniques, and Tools, Addison Wesley, 1986. 
 
[Bee98] Beecham, B. J., Monetary and Financial System in Hong Kong, Hong 

Kong Institute of Bankers, 2nd Edition, 1998. 
 
[Bell94] Bellcore, ATAC Tutorial, enclosed in the ATAC Software Package, 

release 3.3.13,  Bellcore, September 1994. 
 
[Bell98] Bellcore, χSuds Software Understanding System User’s Manual, 

Bellcore, July 1998. 
 
[CA98] Computer Associates, CA-TestCoverage/2000 for the MVS 

Environment, Computer Associates International Inc., 1998. 
 
[Chen96] Chen, M., Lyu, M. R., and Wong, E., “An Empirical Study of the 

Correlation between Code Coverage and Reliability Estimation,”  
Proceedings of METRICS’96, Germany, March 1996, pp. 133-141. 

 
[Choi89] Choi, B. J., DeMillo, R.A., Krauser, E. W., Martin, R. J., Mathur, A. 

P., Offutt, A. J. and Spafford, E. H., “The Mothra Tool Set,”  
Proceedings of Hawaii International Conference on System Sciences, 
HI, January 3-6, 1989. 

 
[Clar89] Clarke L. A., Podgurski A., Richardson, D. J., and Zeil, S. J., “A 

Formal Evaluation of Data Flow Path Selection Criteria,”  IEEE 
Transactions on Software Engineering, vol. 15, no. 11, 1989, pp. 1318-
1332. 

 
[Dal93] Dalal, S. R., J. R. Horgan, and J. R. Kettenring “Reliable Software and 

Communication: Software Quality, Reliability, and Safety,”  
Proceedings of the 15th International Conference on Software 
Engineering, Baltimore, MD, May, 1993. 

 
[Fra89] Frankl, Phyllis G., and Weyuker, Elaine J., “An Applicable Family of 

Data Flow Testing Criteria,”  IEEE Transactions on Software 
Engineering, vol. 14, no. 10, 1988, pp. 1483-1498. 

 
[Fra93] Frankl, P.G., and Weyuker, E.J., “A Formal Analysis on the Fault-

Detecting Ability of Testing Methods,”  IEEE Transactions on 
Software Engineering, vol. 19, no. 3, 1993, pp. 202-213. 

 
[Fra93] Frankl, P.G., and Weyuker, E.J., “An Analytical Comparison of the 

Fault-Detecting Ability of Data Flow Testing Techniques,”  



CSC 7260 Project Final Report                                                                                                                  Page 98 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

Proceedings 15th International Conference on Software Engineering, 
1993, pp. 415-424. 

 
[Ghe97] Ghezzi, C., Jazayeri, M., and Mandrioli, D., Fundamentals of Software 

Engineering, , Prentice Hall, Asia Edition, 1997. 
 
[How80] Howden, W. E., “Functional Testing,”  IEEE Transaction on Software 

Engineering, vol. 6, no. 2, 1980, pp. 162-169. 
 
[HSBC92] Hong Kong and Shanghai Banking Corporation Ltd. CAS Team, APS 

User Guide, 1992. HSBC Internal document. 
 
[HSBC99] Hong Kong and Shanghai Banking Corporation Ltd., Technical Service 

Division (TSV) Handbook, 1999. HSBC Internal document. 
 
[Hor90] Horgan, J. R., and London, S., “A Data Flow Coverage Testing Tool 

for C,”  Proceeding of the 2nd Symposium on Assessment of Quality 
Software Development Tools, 1992, pp. 2-10. 

 
[Hor94] Horgan, J. R., London, S., and Lyu, M. R., “Achieving Software 

Quality with Testing Coverage Measure,”  IEEE Computer, vol. 27, no. 
9, 1994, pp. 60-69. 

 
[Hor96] Horgan, J. R., and Mathur, A. P., “Software Testing and Reliability,”  in 

Software Reliability Engineering Handbook, Lyu M. R. (ed.), McGraw 
Hill, 1996. 

 
[IBM97] IBM Corp. , OS/390 MVS JCL User’s Guide, IBM Corp., 1997. 
 
[IBM98] IBM Corp., IBM Application Testing Collection for MVS/ESA Version 

1 Release 4 Modification 0, 5th Edition, IBM Corp., December 1998. 
 
[ICL99] Hong Kong Interbank Clearing Ltd., Global Payments Systems Test 

Information Package, May 1999, Internal document. 
 
[Ieee91] Institute of Electrical and Electronics Engineers, ANSI/IEEE Standard 

Glossary of Software Engineering Terminology, IEEE Std. 729-1991, 
1991. 

 
[Int96a] Intersolv Inc., APS Batch Generator Reference Manual, Intersolv Inc., 

1996. 
 
[Int96b] Intersolv Inc., APS Program Painter User Manual, Intersolv Inc., 

1996. 
 
[Int96c] Intersolv Inc., APS Customization Facility User Manual, Intersolv Inc., 

1996. 
 
[Int96d] Intersolv Inc., APS Messages Reference Manual, Intersolv Inc., 1996. 



CSC 7260 Project Final Report                                                                                                                  Page 99 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

 
[Int96e] Intersolv Inc., APS/MVS General Index, Intersolv Inc., 1996. 
 
[Int96f] Intersolv Inc., APS/MVS Importers User Manual, Intersolv Inc., 1996. 
 
[Iyer96] Iyer, R. K., and Lee, I., “Measurement-Based Analysis of Software 

Reliability,”  in Software Reliability Engineering Handbook, Lyu M. R. 
(ed.), McGraw Hill, 1996. 

 
[Kar96] Karcich R. M., Skibbe R., Mathur, A. P., and Garg, P., “On Software 

Reliability and Code Coverage,”  Proceedings of Aerospace 
Applications Conference, 1996. 

 
[Las83] Laski, J. W., and Korel, B.,“A Data Flow Oriented Program Testing 

Strategy,”  IEEE Transactions on Software Engineering, vol. 9, no. 3, 
1983, pp. 347-354. 

 
[Lyu95] Lyu, M. R., Yu, J. S., Keramidas, E., and Dalal, S. R., “ARMOR: 

Analyzer for Reducing Module Operational Risk,”  Proceeding of 
FTCS’25, Pasadena, California, June 1995, pp. 137-142. 

 
[Lyu96] Lyu, M. R.,  Horgan, J. R., and London, S., “A Coverage Analysis Tool 

for the Effectiveness of Software Testing,”  IEEE Transaction on 
Reliability, vol. 43, no. 4, 1994, pp. 527-535. 

 
[Lyu98] Lyu, M. R., “Design, Testing, and Evaluation Techniques for Software 

Reliability Engineering,”  Proceedings 24th Euromicro Conference, 
Vasteras, Sweden, August 25-27 1998, pp. xxxix-xlvi.  

 
[Mus87] Musa, J. D., Iannino, A., and Okumoto, K., Software Reliability  

Measurement, Prediction, Application, McGraw-Hill, New York, 
1987. 

 
[Nta84] Ntafos, S. C., “On Required Element Testing,”  IEEE Transactions on 

Software Engineering, vol. 10, no. 6, 1984, pp. 795-803. 
 
 [Rap85] Rapps, S., and Weyuker, E. J., “Selecting Software Test Data Using 

Data Flow Information,”  IEEE Transactions on Software Engineering, 
vol. 11, no. 4, 1985, pp. 367-375. 

 
[Som96] Sommerville, I., Software Engineering, Addison Wesley, Fifth Edition, 

1996. 
 
[Viasoft98] Viasoft, VIA/SmartTest Data Sheet, Viasoft Inc., 1998. 
 
[Wey84] Weyuker, E. J., “The Complexity of Data Flow Criteria for Test Data 

Selection,”  Information Processing Letter, vol. 19, no. 2, pp. 103-109. 
 



CSC 7260 Project Final Report                                                                                                                  Page 100 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

[Wey88] Weyuker, E.J., “An Empirical Study of the Complexity of Data Flow 
Testing,”  Proceedings of the 2nd Workshop on Software Testing, 
Verification, and Analysis, 1998, pp. 188-195. 

 
[Wey89] Weyuker, E.J., “ In Defense of Coverage Criteria,”  11th International 

Conference on Software Engineering, 1989, pp. 361. 
 
[Wey90] Weyuker, E.J., “The Cost of Data Flow Testing: An Empirical Study,”  

IEEE Transactions on Software Engineering, vol. 16, no. 2, 1990, pp. 
121-128. 

 
[Wey93] Weyuker, E.J., “Can We Measure Software Testing Effectiveness?,”  

Software Metrics Symposium, 1993, pp. 100-107. 



CSC 7260 Project Final Report                                                                                                                  Page 101 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

Appendix A ATACOBOL Program Specifications 
 

ATACOBOL consists of 4 components: Code Parser, Instrumenter, Coverage 

Analyser and Runtime Routine as described in Chapter 4. The runtime routine is 

implemented on the mainframe. The ‘DISPLAY’  system call is substituted as this 

runtime routine. The rest of these components are implemented on PC Windows 95 

Platform. A component may actually implemented by more than one module for the 

easy of debugging. The sources are written in Visual C++ 6.0 Win32 Console Mode. 

 

A.1 Module Specifications 

A.1.1 Normaliser 

Module Name Normaliser  
Component Category Code Parser 
Module File Name NORMER.EXE 
Module Source NORMER.CPP 
No. of Lines of Coding: 446 
Function Normalize program source to record of blocks. 
Input File COBOL.SRC (Program source) 
Output File COBOL.STR (Primitive program structure) 
Limitation N/A 

 

A.1.2 Router 

Module Name Router  
Component Category Code Parser 
Module File Name ROUTER.EXE 
Module Source ROUTER.CPP 
No. of Lines of Coding: 461 
Function Route the blocks by edges. 
Input File COBOL.STR (Primitive program structure) 
Output File COBOL.RST (Control Flow Information File) 
Limitation Each paragraph can have maximum of 100 blocks. 



CSC 7260 Project Final Report                                                                                                                  Page 102 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

A.1.3 Variable Table Builder 

Module Name Var iable Table Builder  
Component Category Code Parser 
Module File Name BVAR.EXE 
Module Source BVAR.CPP 
No. of Lines of Coding: 365 
Function Base on program source and listing to build variable 

table. 
Input File COBOL.SRC (Program source) 

COBOL.LST (Compiled Program Listing) 
Output File COBOL.VAR (Variable Table File) 
Limitation Support 3 levels of hierarchical data structure. 
 

A.1.4 Data Flow Graph Builder 

Module Name Data Flow Graph Builder  
Component Category Code Parser 
Module File Name BDEFUSE.EXE 
Module Source BDEFUSE.CPP 
No. of Lines of Coding: 562 
Function Build the data flow graph (def, c-use and p-use) 
Input File COBOL.SRC (Program source) 

COBOL.RST (Control Flow Information File) 
COBOL.VAR (Variable Table File) 
RESERVE.WRD (S-COBOL Reserved Word File) 

Output File COBOL.DEF (Data Flow Information File (Def)) 
COBOL.CUS (Data Flow Information File (C-Use)) 
COBOL.PUS (Data Flow Information File (P-Use)) 

Limitation The variable table can have maximum of 3000 variables 

 

A.1.5 Def-Use Path Searcher 

Module Name Def-Use Path Searcher  
Component Category Code Parser 
Module File Name PSEARCH.EXE 
Module Source PSEARCH.CPP 
No. of Lines of Coding: 630 
Function Search the function: dcu and dpu based on the data flow 

graph. 
Input File COBOL.RST (Control Flow Information File) 

COBOL.DEF (Data Flow Information File (Def)) 



CSC 7260 Project Final Report                                                                                                                  Page 103 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

COBOL.CUS (Data Flow Information File (C-Use)) 
COBOL.PUS (Data Flow Information File (P-Use)) 

Output File COBOL.DCU (Data Flow Information File (DCU)) 
COBOL.DPU (Data Flow Information File (DPU)) 

Limitation Each paragraph can have maximum of 100 blocks. 

 

A.1.6 Coverage Analyser 

Module Name Coverage Analyser  
Component Category Coverage Analyser 
Module File Name ANALYSER.EXE 
Module Source ANALYSER.CPP 
No. of Lines of Coding: 898 
Function Analysis the coverage of program testing through 

records of the trace log. 
Input File COBOL.RST (Control Flow Information File) 

COBOL.DEF (Data Flow Information File (Def)) 
COBOL.DCU (Data Flow Information File (DCU)) 
COBOL.DPU (Data Flow Information File (DPU)) 
COBOL.LOG (Trace Log) 

Output File BLOCK.UCV (Uncovered Block Report File) 
EDGE.UCV (Uncovered Decision Edge Report File) 
DCUSE.UCV (Uncovered DCU Report File) 
DPUSE.UCV (Uncovered DPU Report File) 

Display Coverage Summary 
Limitation Each paragraph can have maximum of 100 blocks. 

Each paragraph can have maximum of 1,500 def. 
Each paragraph can have maximum of 1,500 dcu. 
Each paragraph can have maximum of 1,500 dpu. 

 

 

A.2 File Layouts 

A.2.1 Program Primitive Structure 

 Field Name Format 
Paragraph No. Integer 
Block No. Integer 
Block Level No. Integer 
Block Type 1 Character 
Source Line No. Integer 



CSC 7260 Project Final Report                                                                                                                  Page 104 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

A.2.2 Control Flow Information File 

Field Name Format 
Paragraph No. Integer 
Block No. Integer 
Block Level No. Integer 
Block Type 1 Character 
Source Line No. Integer 
Repeat the following for 10 times 
From Block No. Integer 
To Block No. Integer 

 

A.2.3 Variable Table File 

 Field Name Format 
Variable Level 1 Identifier  Integer 
Variable Level 2 Identifier Integer 
Variable Level 3 Identifier Integer 
Variable Label 30 Characters 

 

A.2.4 Data Flow Information File (Def) 

 Field Name Format 
Paragraph No. Integer 
Block No. Integer 
Def Variable Level 1 Identifier Integer 
Def Variable Level 2 Identifier Integer 
Def Variable Level 3 Identifier Integer 

 

A.2.5 Data Flow Information File (C-Use) 

 Field Name Format 
Paragraph No. Integer 
Block No. Integer 
C-Use Variable Level 1 Identifier Integer 
C-Use Variable Level 2 Identifier Integer 
C-Use Variable Level 3 Identifier Integer 



CSC 7260 Project Final Report                                                                                                                  Page 105 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

A.2.6 Data Flow Information File (P-Use) 

 Field Name Format 
Paragraph No. Integer 
Block No. Integer 
P-Use Variable Level 1 Identifier Integer 
P-Use Variable Level 2 Identifier Integer 
P-Use Variable Level 3 Identifier Integer 
To Block No. Integer 

 

A.2.7 Data Flow Information File (DCU) 

 Field Name Format 
Paragraph No. Integer 
Def-Use Variable Level 1 Identifier Integer 
Def-Use Variable Level 2 Identifier Integer 
Def-Use Variable Level 3 Identifier Integer 
Def Block No. Integer 
C-Use Block No. Integer 

 

A.2.8 Data Flow Information File (DPU) 

 Field Name Format 
Paragraph No. Integer 
Def-Use Variable Level 1 Identifier Integer 
Def-Use Variable Level 2 Identifier Integer 
Def-Use Variable Level 3 Identifier Integer 
Def Block No. Integer 
P-Use From Block No. Integer 
P-Use To Block No. Integer 
 

 

 

 



CSC 7260 Project Final Report                                                                                                                  Page 106 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

Appendix B ATACOBOL Tutor ial 
 
 
This tutorial make uses of a simple S-COBOL composite interest calculation program 

to demonstrate the usage of ATACOBOL. The program have two input datasets: 

SPARMI and CARDI, and one output dataset: RESULTO. SPARMI stores system 

parameter today’s date. CARDI is the input card that inputs the deposit amount and 

date of deposit. RESULTO shows the calculation to be fail or success with the 

calculated total amount. The program illustrates the def-use pair of the Y2K example 

described in Chapter 2. Also, in composite interest calculation, recursive summation 

is applied and hence recursive def-use pair is observed. The program source and 

macros are listed as follows: 

COBOL Macro: SPARMIF 

BLOCK CONTAI NS   0   CHARACTERS                      

LABEL   RECORDS   ARE   OMI TTED                        
DATA   RECORD   I S   SPARM- I N.   
*                                  SYSTEM PARAMETERS   
  01   SPARM- I N.   
*                                  SPARM- I N- REC                    
      05   FI LLER             OCCURS   80   TI MES        
                                   PI C   X.                            

 

COBOL Macro: SPARMIQ 

ASSI GN TO UT- S- SPARMI .  

 

COBOL Macro: SPARMIW 

*  
  01  SPARM- WORK.   
*                                 SYSTEM PARAMETER 
      05  SYS- DATE.                                              
*  
          10  SYS- YEAR  PI C 9( 2) .  
          10  SYS- MONTH PI C 9( 2) .  
          10  SYS- DAY   PI C 9( 2) .  

 

COBOL Macro: CARDIF 

BLOCK CONTAI NS   0   CHARACTERS                               
           LABEL   RECORDS   ARE   OMI TTED                               
           DATA   RECORD   I S   CARD- I N.   
01   CARD- I N.   
05   FI LLER             OCCURS   80   TI MES                   
                                   PI C   X.   

 



CSC 7260 Project Final Report                                                                                                                  Page 107 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

COBOL Macro: CARDIQ 

ASSI GN TO UT- S- CARDI .   

 
COBOL Macro: CARDIW 

01  CARD- WORK.   
      *                                 I NPUT CARD 
           05  CARD- DEPOSI T- YEAR   PI C 9( 2) .   
           05  CARD- DEPOSI T- AMOUNT PI C 9( 10) .           
           05  FI LLER              PI C X( 68) .                             

 

COBOL Macro: RESULTOF 

LABEL RECORDS ARE OMI TTED                                 
RECORD CONTAI NS 80 CHARACTERS                        
BLOCK CONTAI NS 0 RECORDS                                    
DATA RECORD I S RESULT- OUT.   
SKI P1                                                         
  01  RESULT- OUT              PI CTURE X( 80) .              

 

COBOL Macro: RESULTOQ 

ASSI GN TO UT- S- RESULTO.  

 

COBOL Macro: RESULTOW 

*  
  01  RESULT- WORK.   
*                                 CALUATI ON RESULT 
      05  RESULT- REASON PI C X( 10) .   
      05  RESULT- AMOUNT PI C X( 10) .   

 

S-COBOL Program Source: SAMPLE 

REM                                                                   
           SKI P3                                                         
           PROGRAM- I D.          SAMPLE                                    
           SKI P1                                                         
           AUTHOR.              SZE KWAN SHAN,  SAM                        
           SKI P1                                                         
           DATE- WRI TTEN.        28 JUN 1999                               
           SKI P1                                                         
           DATE- COMPI LED.   
           SKI P1                                                         
           REMARKS.   
           SKI P1                                                         
           ABSTRACT                                                      
              THI S PROGRAM CALUATES COMPOSI TE I NTEREST                   
           EJECT                                                         
           AMENDMENT HI STORY                                             
           EJECT                                                         
           OPERATI NG I NSTRUCTI ONS                                        
           SKI P3                                                         
           1.   CONTROL CARDS                                             
           SKI P1                                                         
           / / SAMPLE   EXEC   PGM=SAMPLE                                  
           / / SPARMI    DD     DSN=SYSTEM. PARMETER. DATASET,   
           / /          DI SP=OLD, UNI T=DI SK, VOL=SER=SSSSSS                 
           / / CARDI     DD     DSN=I NPUT. CARD. DATASET,   
           / /          DI SP=OLD, UNI T=DI SK, VOL=SER=SSSSSS                  
           / / RESULTO  DD     DSN=OUTPUT. RESULT. DATASET,   
           / /          DI SP=OLD, UNI T=DI SK, VOL=SER=SSSSSS                  
           / / SYSUDUMP DD     SYSOUT=*                                     
           / / SYSOUT   DD     SYSOUT=*                                     
           / / SYSDBOUT DD     SYSOUT=*                                     
           / / SYSDTERM DD     SYSOUT=*                                     
           SKI P3                                                         
           2.   I NPUT                                                     
           SKI P1                                                         
           SPARMI  -  SYSTEM PARAMTER FI LE                                 
           CARDI   -  I NPUT CARD FI LE                                      
           SKI P3                                                         
           3.   OUTPUT                                                    
           SKI P2                                                         
           RESULTO -  CALUATED I NTEREST RESULT FI LE                       
           SKI P3                                                         
           4.   I NTERMEDI ATE EXTERNAL STORAGE                             



CSC 7260 Project Final Report                                                                                                                  Page 108 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

           SKI P1                                                         
           NONE                                                          
           SKI P3                                                         
           5.   MESSAGES                                                  
           SKI P1                                                         
           A.  I BM STANDARD MESSAGES                                      
           6.   COMPLETI ON CODES                                          
           SKI P1                                                         
           0000 -  NORMAL COMPLETI ON                                      
           0016 -  ABNORMAL END WI TH ERROR MESSAGES                       
           SKI P3                                                         
           7.   NOTES                                                     
           SKI P1                                                         
           NONE                                                          
           SKI P3                                                         
           8.   OPERATI NG SYSTEM                                          
           SKI P1                                                         
           OS/ 390, MVS/ SP                                                 
           EJECT                                                         
           PROGRAM OPERATI ON                                             
           SKI P2                                                         
           SKI P2                                                         
           MAI NLI NE                                                      
           CALUATE- PERI OD- RTN                                            
           CALUATE- I NTEREST- RTN                                          
           SKI P1                                                         
           EJECT                                                         
           DATA FORMATS                                                  
           SKI P3                                                         
               PLEASE REFER TO DATA DI VI SI ON                             
           SKI P3                                                         
           SUBPROGRAMS                                                   
           SKI P3                                                         
           NONE                                                          
           SKI P3                                                         
           STORAGE LAYOUT                                                
           SKI P3                                                         
               ABOUT   1K                                                
           SKI P3                                                         
           PROGRAM LI MI TATI ON                                            
           SKI P3                                                         
               NONE                                                      
           EJECT                                                         
   I O                                                                    
           SKI P3                                                         
           SELECT SPARMI            COPY SPARMI Q.   
           SKI P2                                                         
           SELECT CARDI             COPY CARDI Q.   
           SKI P2                                                         
           SELECT RESULTO          COPY RESULTOQ.   
           EJECT                                                         
   FD      SPARMI                   COPY SPARMI F.   
           SKI P3                                  
   FD      CARDI                    COPY CARDI F.   
           SKI P3                                 
   FD      RESULTO                 COPY RESULTOF.   
           EJECT                                   
   WS                                              
           SKI P3                                   
   FRFM    77  FI LLER                  PI C X( 35)    VALUE  
               ' SAMPLE WORKI NG STORAGE STARTS HERE. ' .   
               SKI P3                                   
   01      SPARM- WORK              COPY SPARMW.   
           EJECT                                 
   01      CARD- WORK               COPY CARDW.   
           EJECT                                
   01      RESULT- WORK             COPY RESULTW.   
           EJECT                                  
   REC     PGM- WORK- AREA                                            
           SKI P3                                                    
               CALUATE- WORK                                         
                   TEMP- AMOUNT         N10 V ZERO                   
                   DEPOSI T- YEAR        N4  V ZERO                   
                   DEPOSI T- PERI OD      PI C S9( 4)  V +0               
               REASON- DES                                           
                   RESULT- SUCCESS      X10 V ' SUCCESS'               
                   RESULT- FAI L         X10 V ' FAI L'                  
                   RESULT- STARS        X10 V ' * * * * * * * * * * '            
           SKI P3                                                    
               CONSTANTS                                            
                   ANNUAL- RATE         N2  V 4                      
           SKI P3                                                    
           COUNTER  N( 2)  V ZERO                                     
           EJECT                                                    
   PROC                                                             
           SKI P3                                                    
           OPEN  I NPUT  SPARMI                                       
           . . .           CARDI                                        
           . . .    OUTPUT RESULTO                                     
           SKI P3                                                    
           READ CARDI  I NTO CARD- WORK                                
           READ SPARMI  I NTO SPARM- WORK                              
           SKI P3                                                    
           PERFORM CALUATE- PERI OD- RTN                               
           SKI P3                                                    
           I F DEPOSI T- PERI OD > ZERO                                 
               PERFORM CALUATE- I NTEREST- RTN                         
               RESULT- REASON = RESULT- SUCCESS                       
               TEMP- AMOUNT = CARD- DEPOSI T- AMOUNT                    
               RESULT- AMOUNT = TEMP- AMOUNT                          
           ELSE                                                         
               RESULT- REASON = RESULT- FAI L                              
               RESULT- AMOUNT = RESULT- STARS                             
           SKI P3                                                        
           WRI TE RESULT- OUT FROM RESULT- WORK                            
           CLOSE SPARMI                                                  
           . . .    CARDI                                                   
           . . .    RESULTO                                                
           SKI P3                                                        



CSC 7260 Project Final Report                                                                                                                  Page 109 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

           GOBACK                                                       
           EJECT                                                        
   / *           SUBROUTI NE  -  CALUATE- PERI OD- RTN                         
           SKI P1                                                        
   / *           ENTRY POI NT -  CALUATE- PERI OD- RTN                         
           SKI P1                                                        
   / *           DESCRI PTI ON -  CALUATE THE DEPOSI T PERI OD                 
           SKI P3                                                        
   PARA    CALUATE- PERI OD- RTN                                           
           SKI P3                                                        
           I F CARD- DEPOSI T- YEAR > 49                                    
               DEPOSI T- YEAR = 1900 + CARD- DEPOSI T- YEAR                  
           ELSE                                                         
               DEPOSI T- YEAR = 2000 + CARD- DEPOSI T- YEAR                  
           SKI P3                                                        
           I F SYS- YEAR > 49                                             
               DEPOSI T- PERI OD = 1900 + SYS- YEAR -  DEPOSI T- YEAR          
           ELSE                                                         
               DEPOSI T- PERI OD = 2000 + SYS- YEAR -  DEPOSI T- YEAR          
           EJECT                                                        
   / *           SUBROUTI NE  -  CALUATE I NTEREST ROUTI NE                   
           SKI P1                                                        
   / *           ENTRY POI NT -  CALUATE- I NTEREST- RTN                       
           SKI P1                                                        
   / *           DESCRI PTI ON -  CALUATE I NTEREST OVER THE PERI OD           
           SKI P3                                                        
   PARA    CALUATE- I NTEREST- RTN                                         
           SKI P3                                                        
           COUNTER = 0                                                  
           WHI LE COUNTER < DEPOSI T- PERI OD                               
               CARD- DEPOSI T- AMOUNT = CARD- DEPOSI T- AMOUNT *               
               . . .  ANNUAL- RATE /  100 + CARD- DEPOSI T- AMOUNT              
               COUNTER = COUNTER + 1                                    
           EJECT                                                        

 

STEP 1 

Give the S-COBOL program the program name COBOL.SRC. 

Duplicate COBOL.SRC with name  COBOL.TMP for indexing by ATACOBOL, in 

Windows 95 DOS prompt, enter command: 

COPY COBOL.SRC COBOL.TMP 

STEP 2 

In Windows 95 DOS prompt, execute  

NORMER.EXE 

ROUTER.EXE 

INSTRUER.EXE 

The output instrumented file COBOL.INT is created. 

STEP 3 

Transfer COBOL.INT to mainframe dataset. Compile the program source with macros 

using the APS COBOL compiler. The compile listing and executable module are 

obtained. 

STEP 4 



CSC 7260 Project Final Report                                                                                                                  Page 110 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

Perform testing with the following test datasets: 

Test 
Case 

Description SPARMI CARDI RESULTO 
(expected ouput) 

1 Both dates in 19XX Year: 98 Year: 99  
Amount: $1,000.00 

Status: SUCCESS 
Amount: $1,040.00 

2 Both dates in 20XX Year: 01 Year: 02  
Amount: $1,000.00 

Status: SUCCESS 
Amount: $1,040.00 

3 Deposit date in 1999 
Today’s date is 2000. 

Year: 00 Year: 99  
Amount: $1,000.00 

Status: SUCCESS 
Amount: $1,040.00 

4 Deposit date in 20XX 
Today’s date in 19XX. 

Year: 99 Year: 00  
Amount: $1,000.00 

Status: FAIL 
Amount: 
* *********  

5 Deposit period more than 
1 year (to demonstrate 
recursive calculation) 

Year: 01 Year: 97 
Amount: $1,000.00 

Status: SUCCESS 
Amount: $1,169.86 

 

The trace log is copied from the JES2 held queue. 

STEP 5 

Transfer the compile listing and trace log back to PC. 

STEP 6 

Name the compile listing as COBOL.LST 

In Windows 95 DOS prompt, execute  

BVAR.EXE 

BDEFUSE.EXE 

PSEARCH.EXE 

 

 

STEP 7 

Name the trace log of test case 1 as COBOL.LOG and execute ANALYSER.EXE. 

The analysed output is as follows: 

Tot al  Par a Number =3 
Par a #  Bl ock Cover      Deci si on Cover   C- Use Cover      P- Use Cover  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
1       4/ 5     ( 80%)    1/ 2     ( 50%)    5/ 9     ( 55%)    1/ 2     ( 50%)  



CSC 7260 Project Final Report                                                                                                                  Page 111 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

2       5/ 7     ( 71%)    2/ 4     ( 50%)    3/ 8     ( 37%)    2/ 4     ( 50%)  
3       3/ 3     ( 100%)   2/ 2     ( 100%)   3/ 5     ( 60%)    5/ 6     ( 83%)  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Tot al    12/ 15   ( 80%)    5/ 8     ( 62%)    11/ 22   ( 50%)    8/ 12    ( 66%)  
 
 

We can always refer to output text files: BLOCK.UCV, EDGE.UCV, DCUSE.UCV 

and DPUSE.UCV for uncovered blocks, decision edges, def-c-uses and def-p-uses 

respectively. It requires to look into the program structure related files as shown in 

Appendix A to locate the exact source line number of corresponding block. 

STEP 8 

Merge trace log of test case 1 and 2 to form COBOL.LOG. This two cases fulfils edge 

coverage in paragraph 2, however, the cross century cases is not included to fulfilled 

all c-uses. After the execution of ANALYSER.EXE, the result should look like: 

Tot al  Par a Number =3 
Par a #  Bl ock Cover      Deci si on Cover   C- Use Cover      P- Use Cover  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
1       4/ 5     ( 80%)    1/ 2     ( 50%)    5/ 9     ( 55%)    1/ 2     ( 50%)  
2       7/ 7     ( 100%)   4/ 4     ( 100%)   6/ 8     ( 75%)    4/ 4     ( 100%)  
3       3/ 3     ( 100%)   2/ 2     ( 100%)   3/ 5     ( 60%)    5/ 6     ( 83%)  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Tot al    14/ 15   ( 93%)    7/ 8     ( 87%)    14/ 22   ( 63%)    10/ 12   ( 83%)  
 
 

STEP 9 

Merge trace log of test cases 1 to  4 to fulfil all-uses in paragraph 2. However, the 

previous cases just tested the WHILE loop in paragraph 3 for 1 time. The WHILE 

loop should be looped more than 1 time to invoke the recursive def-use pair within the 

WHILE loop. After the execution of ANALYSER.EXE, the result should look like: 

Tot al  Par a Number =3 
Par a #  Bl ock Cover      Deci si on Cover   C- Use Cover      P- Use Cover  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
1       5/ 5     ( 100%)   2/ 2     ( 100%)   9/ 9     ( 100%)   2/ 2     ( 100%)  
2       7/ 7     ( 100%)   4/ 4     ( 100%)   8/ 8     ( 100%)   4/ 4     ( 100%)  
3       3/ 3     ( 100%)   2/ 2     ( 100%)   3/ 5     ( 60%)    5/ 6     ( 83%)  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Tot al    15/ 15   ( 100%)   8/ 8     ( 100%)   20/ 22   ( 90%)    11/ 12   ( 91%)  

 

STEP 10 

Merge all 1 to 5 test cases to fulfil all-uses for the whole program: 

Tot al  Par a Number =3 
Par a #  Bl ock Cover      Deci si on Cover   C- Use Cover      P- Use Cover  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
1       5/ 5     ( 100%)   2/ 2     ( 100%)   9/ 9     ( 100%)   2/ 2     ( 100%)  



CSC 7260 Project Final Report                                                                                                                  Page 112 
 

 
Computer Science and Engineering Department, The Chinese University of Hong Kong 

2       7/ 7     ( 100%)   4/ 4     ( 100%)   8/ 8     ( 100%)   4/ 4     ( 100%)  
3       3/ 3     ( 100%)   2/ 2     ( 100%)   5/ 5     ( 100%)   6/ 6     ( 100%)  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Tot al    15/ 15   ( 100%)   8/ 8     ( 100%)   22/ 22   ( 100%)   12/ 12   ( 100%)  


