
Distributed Name Server Consistency

Supervised by:
Professor M. R. Lyu

FINAL REPORT

Tang Cheung Yin
S97082230
CSC 7260

10 August, 1999

i

Abstract

The increasing availability of cheaper, more powerful workstations and new

networking capabilities has seen a corresponding increase in the use of distributed

systems in many areas. Many organizations are by their very nature distributed, with

individuals working in different locations, but requiring the ability to exchange

information easily. A basic component in distributed systems is the Name Service.

Clients can query the name server to find out the machine/port pair for the service in

which they are interested. I have reviewed basic name service and its sophisticated

“colleague”, trading service. With multiple instances of the name service in different

nodes, we can increase the availability and performance of the service. However, this

will introduce problems in maintaining the consistency of data within the distributed

system. We have designed a name server based on an existing implementation for

OmniOrb2 CORBA implementation. We have extended the name server with group

communication support, so that the extended name server can run an instance on every

node of the network concurrently; accept name service query from any nodes; replicate

naming data to each group member consistently. Any failure of some of the nodes

would not affect the availability of name service to other running nodes.

ii

Acknowledgement

I wish to express my gratitude to my supervisor, Prof. M. R. Lyu, for his continuous

support during the whole project that I have spent time under his supervision. His

confidence in me, his sense of clarity and precision, his patience and open-mindedness

have been essential factors to the completion of this project report.

I wish to thank my employer, my family, and my wife Lai for their faithful and loving

support.

TABLE OF CONTENTS i

Table of Contents

1 INTRODUCTION... 1

2 REVIEW .. 4

2.1 NAME SERVICE.. 4

2.2 TRADING SERVICE...11

2.2.1 Service Offers...14

2.2.2 Service Request..15

2.2.3 Trader Constraints ..16

2.2.4 Applications of the Trading Service..17

2.3 FAULT TOLERANCE ...22

2.4 REPLICATION FOR PERFORMANCE ..25

2.4.1 Invalidation versus Updating of Copies..27

3 EXTENDED NAME SERVICE..32

3.1 SYSTEM REQUIREMENT...32

3.2 SYSTEM DESIGN ..32

3.2.1 Reliable Multicast..35

3.2.2 Monitor Service...36

3.2.3 Consensus Service...38

3.2.4 Group Membership and Group Multicast...41

3.3 WORK FLOW..46

3.3.1 Initialization...46

3.3.2 Running on all nodes...48

3.3.3 Replication...50

3.3.4 Fault Node handling..52

TABLE OF CONTENTS ii

4 DISCUSSIONS..54

5 CONCLUSION..58

6 APPENDIX ..59

6.1 (I) IDL FOR EXTENDED NAME SERVICE. ..59

6.2 (II) TOTAL ORDER AND VIEW MEMBERSHIP ALGORITHM [23]..63

7 REFERENCES..64

1 - Introduction 1

1 Introduction

For the reasons of computing speed, system reliability and cost effectiveness, the

interest in distributed computing systems has grown rapidly in the last decode. It has

been claimed that, the distributed computing paradigm can improve collaboration

through connectivity and inter-working; give better performance through parallel

processing; increase reliability and availability through replication; provide scalability

and portability though modularity; enhance extensibility through dynamic configuration

and reconfiguration; and be more cost effective with resource sharing and open

systems.

Distributed systems have the potential to be more extensible than centralized systems.

For example, if an increase in the range of services is required (e.g., a dedicated

processor could be added to a network which could be used by many people on the

network) then it can be provided by adding a service and registering its presence so

users can gain access to it. Although some centralized systems can also be extended in

this way, distributed systems have the potential for much greater scaling. Distributed

processing also presents solutions to some of the problems associated with centralized

systems when constructing reliable applications. Most notably, in a centralized system

to fail is high, leading to the situation where no services are available. Whereas in a

distributed system it is possible to make use of the availability of resources on

components with independent modes of failure to tolerate such failures.

One of the promising approaches in building Distributed System is using object-

oriented (OO) technology [1]. This approach focuses on the development of reusable

1 - Introduction 2

components that interact with one another through well-defined interfaces. Name

service is one of the key components in a distributed system. It resolves defined names

and provides object reference information to requesting object. This allows the

requesting object to communicate/access the remote service/resource using high level

names. Another similar but more sophisticated component is Trading Service. It

provides remote objects to be selected without supply of their names, but based on the

desired characteristics of the services. Name Service and Trading Service simplify

distributed system administration and promote more flexibility and transparency

throughout a network by automating distributed object selection.

Because components are distributed and the failure of one component does not

automatically result in the failure of another component, this poses new problems not

normally encountered in centralized systems. Failures such as message loss and

corruption, processor crashes, and network partitioning, can create difficulties in

maintaining the consistency of information stored over a number of components.

Further, because of the increased number of components that make up a distributed

system (machines, communication links, etc.) there is a corresponding increase in the

probability that one or more of the components can be faulty. Although these failures

need not cause the entire system to fail, they do cause problems in maintaining the

consistency of data, leading to the necessity to create applications, which are

dependable despite faults in the distributed system.

Name resolution services are key-component to the success of a distributed system.

This project is to design and implement a name server, which keep track of all the

running objects on a network. The name servers should run on all nodes. Application

object can register with any node. The information should propagate to other node in a

1 - Introduction 3

consistent way. We have chosen the CORBA (Common Object Request Broker

Architecture) technology to be used for implementation. As CORBA is designed using

object-oriented software development principle. It also provides common interface for

development on different platform, so it well suites our needs for developing Name

Service component to be run on all nodes in a network.

2 - Review 4

2 Review

2.1 Name Service

In daily life, we collect names and information about things, list and make them

publicly available so that people can reference this information. For example, the names

of people and organizations are compiled in telephone directories that provide such

information as telephone numbers and street addresses. In a geographically dispersed

society, telephone directories provide an efficient, easy-to-use method of locating

people. Telephone directories also allow people to be found after they move. When

people move within a city, their new address and telephone number are listed with their

name in an updated edition of the telephone directory.

Computer networks likewise require names and directories to describe and record the

characteristics of the diverse services and information they provide. For example, an

electronic mail system must be able to locate users' mailboxes in order to deliver their

mail. The mail delivery application contacts another application, called a directory or

name service, to look up the users' names and indicate the location of their mail boxes.

In a distributed computing environment, anything that can be accessed individually and

given a name is called an object. Examples of objects are network services, electronic

mailboxes, and computers. Each object has a corresponding listing in the directory

service, called an entry, which contains information, or attributes that describe the

objects. Name entries can be collected in lists of entries called directories. For example,

in a telephone directory, the listings are the entries, and the location information, such

as the telephone number or street address, represents attributes of these entries.

2 - Review 5

Attributes can be any type of information that describes an object, such as location,

color, or size. For instance, regular telephone directories contain only location-specific

attributes, such as a street address. Business telephone directories include additional

attributes such as the hours of operation and types of credit cards that the business

accepts.

Name Service is central to the distributed computing environment because objects are

defined by their names. Name Service allows clients to find objects based on names. It

supports a name-to-object association called name binding. A name binding is always

defined relative to a naming context, which refers to an object bound by a set of unique

names [4]. However, there is no requirement that all objects in a distributed system

must be bound to a name.

Applications and services gain access to an object first by accessing its name entry and

retrieving its attributes. Decoupling the location or access characteristics of an object

from the object itself is called location independence. It allows the applications and

services to access an object even when the object moves or changes other vital

characteristics such as language. Name services can be figured as the white page

service [5] in a telephone network. An object client supplies a name to look for

information of other object. It is just like a person using a name to look for details of

other person or company, provided the target person or company has already registered

within the telephone network. Similarly, an object has to register with a name server

before it is available for look up in the Name Service.

Name service maintains one or more mappings from some form of name (e.g. normally

symbolic) to some form of value (e.g. normally a network address) [9]. Name services

2 - Review 6

can operate in a very narrow, focused way--for example, the Domain Name Service of

the TCP/IP protocol suite maps short service names, in ASCII, to IP addresses and port

numbers, requiring exact matches. At the other extreme, one can talk about general

naming services, which are used for many sorts of data, allow complex pattern

matching on the name, and may return other types of data in addition to, or instead of,

an address. One can even go beyond this to talk about secure naming services, which

can be trusted to give out only validated addresses for services, and dynamic naming

services, which deal with applications such as mobile computing systems in which

hosts have addresses that change constantly.

In current computer systems, three naming services are widely supported and used. As

previously mentioned, the Domain Name Service (DNS) is the least functional but most

widely used. It responds to requests on a standard network port address, and for the

domain in which it is running can map short (eight-character) strings to Internet port

numbers. DNS is normally used for static services, which are always running when the

system is operational and do not change port numbers at all--for example, the e-mail

protocol uses DNS to find the remote mail daemon capable of accepting incoming e-

mail to a user on a remote system.

The Network Information Service (NIS), previously called Yellow Pages (YP), is

considerably more elaborate. NIS maintains a collection of maps, each of which has a

symbolic name (e.g., hosts, services, etc.) and maps ASCII keywords to an ASCII value

string. NIS is used on UNIX systems to map host names to Internet addresses, service

names to port numbers, and so forth. Although NIS does not support pattern matching,

there are ways for an application to fetch the entire NIS database, one line at a time, and

it is common to include multiple entries in an NIS database for a single host that is

2 - Review 7

known by a set of aliases. NIS is a distributed service that supports replication: The

same data are normally available from any set of servers, and a protocol is used to

update the full set of servers if an entry changes.

X.500 is an international standard that many expect will eventually replace NIS. This

service, which is designed for use by applications running the ISO standard remote

procedure call interface and ISDN.1 data encoding, operates much like an NIS server.

No provision has been made in the standard for replication or high-performance update,

but the interface does support some limited degree of pattern matching. As might be

expected from a standard of this sort, X.500 addresses a wide variety of issues,

including security and recommended interfaces.

Name service is the computational equivalent of the controller of a naming domain [2].

It offers a name service interface for its clients with operations for binding, unbinding,

resolving, comparing and communicating names. When using the interface, the client is

always attached to an implicit local naming context that determines how names are

interpreted and where name resolution starts. The client does not identify its local

naming context in any way. Special operations, externalize and internalize, can be used

for name communication between two or more users. The externalize operation

converts a name into a generic name-string that can be sent to anyone through the

infrastructure. The receiver can use the internalize operation to convert the generic

name-string back to a name that can be used in the receiver's private naming context.

Naming service is made responsible for creating and interpreting any internal structures

that may be present in the name. Typically, compound names are created by separating

name components with a separator character, but this choice is implementation

2 - Review 8

dependent. The client simply uses both compound and simple names as if they were

character strings.

Name communication does not require the existence of a universal name representation

or a naming tree with a global root. The reason is simple: if two infrastructure

implementations can send and receive data, they also have the means to mutually agree

on any conversations between different name representations. In practice, when two

infrastructures implementations are linked together, they also agree on how names

externalized in one environment are internalized in the other environment.

Some applications even allow the user to specify combinations of names from different

systems. For example, the Unix command rcp which accepts names such as

‘myhost:/usr/local/bin/readme’. This name has two components; the first, ‘myhost’ is

the hostname and the second, ‘ /usr/local/bin/readme’ is the pathname. The name

therefore spans multiple naming systems (in this case where multiple = 2), and in

naming circles is known as a composite name (with two components).

The problem is that each application defines its own rules for composing, parsing and

looking up (resolving) these composite names. The user is required to remember which

applications permit composite names, and which do not (e.g. the Unix command cp). A

further problem is that applications which support composite names need to be changed

every time a new type of naming system is added.

Consider these problems in terms of a heterogeneous distributed environment where the

applications themselves are potentially spread across a global network. Every system in

the environment is capable of defining many different sets of naming rules leaving

2 - Review 9

users and programmers with the impossible task of trying to incorporate and coordinate

them all.

One solution to these problems is proposed in the X/Open Federated Naming

specification (XFN) [7] [8]. This specification defines a general model for naming

systems that fits a large class of naming problems. It also provides a model for joining

arbitrary naming systems together to form what is known as a federated naming system.

Such a system allows composite names to be resolved across multiple autonomous

naming systems and provides two major advantages over the traditional approach to

naming:

1. A single uniform naming interface is provided to clients (distributed or

otherwise.)

2. Adding new naming systems does not require changes to applications or other

naming systems.

There are three kinds of names specified in XFN [8].

1. A composite name contains zero or more components composed according to

rules defined by XFN, and can span multiple naming systems. Each component

of a composite name is either a compound name or an atomic name.

2. A compound name is a name from a single naming system that contains one or

more atomic names composed according to a naming system specific syntax or

naming convention (e.g. the Unix pathname ‘usr/local/bin/readme’ is a

compound name consisting of four atomic names, ‘usr’ , ‘ local’ , ‘bin’ and

2 - Review 10

‘ readme’, where the naming convention specifies that the order of composition

is left to right, and the separator is ‘ /’).

3. An atomic name is an indivisible component of a compound name such as ‘usr’

in the above example.

The basis of the XFN model is the mapping of a composite name to a value. In XFN

terms the mapping is called a binding and the value bound to a composite name is

called an object reference or (more usually) a reference. The naming system provides

facilities to resolve a composite name to find its associated reference, and also for

binding, unbinding, and renaming names etc. In the Unix file system example, the

composite name ‘myhost:/usr/local/bin/readme’ is said to be bound to a reference to a

file. The reference contains enough information to allow the client of the naming

system (in this case, the file system itself) to locate the file on some storage device.

So, to design a Name Service, we should take the following into consideration: [4]

1. The design imparts no semantics or interpretation of the names themselves; this is

up to higher-level software. The naming service provides only a structural

convention for names, e.g. compound names.

2. The design should support heterogeneous implementation and administration of

names. So, it should not have semantics limitation on the naming convention.

3. Names are structures, not just character strings. A struct is necessary to avoid

encoding information syntactically in the name string (e.g., separating the human

meaningful name and its type with a “ .” , and the type and version with a “ !”).

which is a bad idea with respect to the generality, extensibility, and

2 - Review 11

internationalization of the name service. The structure define includes a human-

chosen string plus a kind field.

4. Naming service clients need not be aware of the physical site of name servers in a

distributed environment, or which server interprets what portion of a compound

name, or of the way that servers are implemented.

5. Name service is fundamental. It should have no dependency on other interface.

6. Name contexts of arbitrary and unknown implementation may be utilized

together as nested graphs of nodes that cooperate in resolving names for a client.

No “universal” root is needed for a name hierarchy.

7. Name server should support – binding/unbinding objects, name resolution,

creating/deleting name context, listing of name context.

2.2 Trading Service

Distributed systems span heterogeneous software platforms, hardware platforms, and

heterogeneous network environments. In order to use services in such systems, service

users must be aware of potential services and service providers. Furthermore, locations

and versions of services change quite frequently in large distributed systems, which

makes late binding between service users and service providers a useful feature. To

support late binding, mechanisms must be provided to locate and access services

dynamically. The concept of a trading service provides a mechanism for dynamically

finding services [12]. The object that realizes the trading service is called a trader.

2 - Review 12

Trader allows clients to find objects based on given properties [3]. It facilitates the

offering and discovery of object instance of particular type without knowing the actual

naming of the object. It can be viewed as an advertiser, just like the yellow page service

[5] of the telephone network. A person looks up and selects a company in yellow pages

through service type. While a client looks for object/service with characteristics

specification, the Trader may supply available objects that meeting the criteria.

Traders use name services for various reasons: for identifying offers, links, importer

and exporter objects, and for example for type names, property names, protocol names,

and policy names. Most of these names are used only within the trading domain and

never passed to other domains. However, type names and property names are passed to

other traders during federated imports [10].

A trader facilitates the exporting and importing of services. A service advertises its

functionality to a trader (exporting). The trader then takes requests from clients and

matches the desired functionality with an advertised service (importing). Figure 1

shows the interaction of an advertised service (exporter), a client (importer), and a

trader. The distributed software architecture's goal is to create a generic trader that

client applications use to obtain services. For example, when a client requests a query

service from a trader, it receives references to any qualified query implementations. The

user could then select from a variety of query services available.

2 - Review 13

Importer

TRADER

Exporter

Service Invocation

Service Replies

Exports

Import
Replies

Import
Requests

Figure 1 - Interaction among Trader, Advertised Service and Client

A trader accepts service offers from exporters of services when exporters wish to

advertise service offers. A service offer contains the characteristics of a service that a

service provider is willing to offer and the location of an interface at which the service

is available. Service offers are stored by the trader in a centralized or a distributed

database [11].

A trader accepts service requests from importers of services when importers require

knowledge about appropriate service providers. A service request is an expression of

service requirements made by an importer. A trader searches its service offer database

to match the importer's service request. Moreover, if required, a trader can also select

the most preferred service offer(s) (if one exists) that satisfies the importer's service

2 - Review 14

request. The list of matched service offers, or the selected service offers, is returned to

the importer.

After a successful match, the client, which requires a service, can interact with the

service provider of a matched offer. The matching and selection of appropriate service

at runtime by a trader allows client objects to be configured into an ODP system

without prior knowledge of server objects that can satisfy their requirements.

Traders may be small or large, in terms of the number of offers they hold and the

number of users they serve. Such a variety requires a range of Quality of Service

options, e.g. response times measured in milliseconds or minutes. Thus, traders can be

used for real-time trading, large scale trading [11].

There is also a requirement for some traders to be small in terms of the resources they

consume. For example, in an embedded system, the trader holds a few offers for local

services only and relies on interworking with traders on other nodes to give access to a

larger set of offers. A trader may serve a large population of users or it may be private

to a single importer/exporter pair. For example, one might want a trader on one's own

node under one's private control. It could be completely isolated from other traders or it

could interwork with one or more traders.

2.2.1 Service Offers

A service offer contains information about a service that is being traded. It is an

assertion about a service that is offered for use by other objects at a computational

interface. A service offer contains:

• the service type that identifies the kind of service on offer

2 - Review 15

• the interface to which a binding can be established to obtain the service

• zero or more property values for the service.

Service properties are expressed as name value pairs. A service offer must contain a

valid value for each of the mandatory properties of the specified service type. However,

optional properties need not have values specified. In addition, modifiable properties

can contain, instead of a property value, an interface from which the actual value for the

property can be retrieved at matching time. Such service properties are known as

dynamic properties. The capability to support dynamic properties is optional.

Service offers provide information to a trader when it acts as a server to match service

requests. A service offer identifier is assigned by a trader to each service offer stored in

its offer space. This identifier uniquely identifies the offer within the trader information

object. The set of all service offers stored in a trader forms part of the state of the trader

information object.

2.2.2 Service Request

A service request contains the information provided by an importer to the trader so that

the trader can match and select service offers from its service offer repository (or a

subset of its repository) that will meet the importer's requirements. Importer policies in

the enterprise viewpoint are represented by criteria in the information viewpoint.

Criteria are requirement rules imposed by an importer for the matching of a service

request against service offers, and are specified in a service request.

A service request contains:

2 - Review 16

• the required service type,

• the required service property values (matching criteria),

• for the trader to match its requirements.

A service request can, in addition, contain:

• some preference requirements for the trader to select and order the preferred

service offers from the set of matched offers (preference criteria)

• some scoping requirements to restrict the extent of the search (scoping criteria)

• some capability requirements that scope the set of offers to be considered during

matching (scoping criteria).

• a request for values of service properties in the matched offers.

A service request is represented in a Query operation in the computational specification,

where the matching requirements are expressed as the type and constr parameters, the

preference requirements as the pref parameter, scoping requirements as the policies

parameter, and service property values as the desired_props parameter.

2.2.3 Trader Constraints

Each Trader object has its own characteristics and policies, for example: owner of a

trader, search policy of a trader, capabilities supported by a trader, identifier of a type

manager interface that a trader uses in order to access definitions of service types [11].

2 - Review 17

Trader policies in the Enterprise viewpoint are represented as trader constraints in the

information viewpoint. Trader constraints are rules imposed by a trader that specify the

requirements for the manipulation of trader information elements and structures. These

include: Trader Matching constraint, Trader Preference constraint, and Trader Scoping

constraint.

2.2.4 Applications of the Trading Service

1. Service Interaction Manager

Trading Service provides users with the ability to obtain information transparently

about services available in a dynamic distributed environment. The Trading Service can

be combined with other functions to provide other useful functions for users in a

distributed environment, such as Service Interaction Manager [11] or SIM.

The SIM allows an importer of a service to:

• access all the import functionality of a trader;

• bind to an available selected service that the importer requires;

• initiate an available service that the importer requires. The initiate operation

invokes an available service on an importer's behalf and is thereafter not involved

• in the interaction.

That is, an importer only needs to interact with the SIM to satisfy all the importer's

required operations in a distributed environment.

2. Trader to provide ‘yellow page’ services

2 - Review 18

Trader can be used to trade services other than middleware services. The commercial

activities of many organizations provide a useful analogy for traders. In essence, most

organizations sell services. One of the many ways in which services are advertised is

through the ‘yellow page’ (trader) maintained by some organization. Such a ‘yellow

page’ directory typically has an index of general categories in which contact points are

listed. When a service is to be imported, the importer first finds the category closest to

its needs, and then finds the (hopefully small) set of organizations under that category.

The ‘yellow page’ directory service can be viewed as a trader that specializes in

indexing other traders based on some categorization scheme. Many (overlapping)

categorization schemes are possible, for example: categories based on existing Internet

resources, e.g. research papers, library catalogues, Internet shopping, archive services;

industry-based categories for further decomposition by an appropriate industry body,

e.g. telecommunication industry, software industry, tourist industry; country-based

categories, for further decomposition by categories within each country.

There is no reason why these categorizations cannot be used concurrently to give

maximum flexibility and some redundancy (leading to reliability). Local trader policy

could prioritize particular categories based on the needs of its local users. Users are also

free to choose which ‘yellow page’ trader they wish to use both for advertising their

own services and for importing other services.

Trading differs from repository services – like name servers, directory servers, and

databases - in the assumptions made of the typical load profile. Traders are assumed to

manage frequent updates and frequent queries [10]. The set of trader clients that are

allowed to update the repository is large, unknown and constantly evolving. In addition,

2 - Review 19

the structure of stored information evolves. The actions in which traders participate are

not necessarily transactions and they are intended to be small in respect to required

memory space and required processing time. However, keeping the agreed response

time is critical, even more critical than being able to do a full search in the repository.

The functionality is independent of selected platform technology. The mechanism is

specified on a logical level that can be implemented on a variety of platforms,

programming languages, storage techniques and communication protocols. Due to this

design choice, trading can be widened to a world-wide service: all trader realizations

make their technical decisions independently, only considering the logical design and

preparing to intercept technical differences.

In some technology-oriented aspects, general guidelines are required. However, such

guidelines are highly flexible, as they offer multiple alternative implementation

techniques. For example, traders may exchange information in object format or as lists

of named values. Realizations of the trading functionality have to solve various

problems. Trading makes information available to a large but still controllable set of

users. The qualities of the available information should fulfil the user expectations:

information consistency, freshness, and accuracy may be required, access times may be

essential, and high probability for information availability may be crucial. However, the

selected techniques may not affect the autonomy of the information producing systems

nor the information user systems. Excess of network traffic must be avoided, as well as

creating new security threats to the systems. Furthermore, the trading mechanism

should be able to adopt to the evolution of the mediated information contents.

Moreover, the topology of trader network that cooperates for the global trading service

is constantly changing.

2 - Review 20

Lea Kutvonen has presented a list of Traders in his paper [10].

Simple trader

A simple trader can serve Lookup and Register interfaces. The register interface must

support operations ‘export’ , ‘withdraw’ , ‘describe’ , ‘modify’ ,

‘withdraw_using_constraint’ , and ‘ resolve’ . A trader that accepts offers must specify

what restrictions it has to the offer structure. The export operation takes an interface

reference and a list of property values together with a service type name. It returns an

object identifier, that can be further used as a key to the offer space in ‘withdraw’ , and

‘modify’ operations (See Appendix I.) [10].

‘Describe’ is a subset of query operation at the Lookup interface. The motivation of

including a simple query operation at the Register interface was related to conformance

requirements. The simple query operation allows exporter objects to check whether

their offers are correct and up-to-date and still be bound to the Register interface only.

This is claimed to decrease the implementation cost of exporters because they are not

required to include full query operation just for being able to have a type conformant

interface with the trader they use.

‘Withdraw_using_constraint’ replicates the ‘withdraw’ operation. Instead of the offer

identifier, the operation gets a matching constraint as an input parameter. The constraint

language is capable of presenting a constraint that simply identifies an object. The

operation ‘with-draw_using_constraint’ is result of the different design goals. On one

hand, a single operation that is suitable for both end-user and administrative needs was

expected. On the other hand, a simple operation was expected that could be required in

all implementations. However, in the conformance requirements the whole interface is

2 - Review 21

required. Thus, there is no acceptable way of supporting only the simple withdraw

operation.

The ‘ resolve’ operation translates a trader name to an interface reference, based on the

naming system supported by the trading graph within a single administrative domain. If

the trading graph exceeds the limits of an administrative domain, no trustworthy

knowledge about the link names can be available.

Standalone trader

A stand-alone trader has the properties of a simple trader and includes in addition an

Admin interface. The Admin interface includes operations for setting the various

policies related attributes in the trader. It also has browsing operations for the offers and

proxy offers.

Linked trader

A linked trader is similar to a stand-alone trader but has an additional Link interface for

manipulating links. A linked trader must also be conformant to a Lookup interface in an

importer role.

Proxy trader

A proxy trader is similar to a stand-alone trader but has in addition a Proxy interface for

manipulating proxy offers. A proxy trader must also be conformant to a Lookup

interface in an importer role.

The proxy offer contains service type and properties of a service offer. It is matched in

the same way as normal offers. However, the proxy offer refers to a Lookup interface

2 - Review 22

instead of the actual offered service. Therefore, the request is modified using the

‘ConstraintRecipe’ rules and forwarded to the Lookup interface. The original type

parameter, preference parameters, and desired properties are passed on unchanged, but

constraint parameters, policies and cardinalities are modified to suit the trader needs.

With the parameter ‘ if_match_all’ the proxy offer exporter can notify the trader that the

proxy offer is a valid match for all imports of the specified service type irrespective of

the importer criteria on property values. This approach would make the proxy offer

similar to a type specific link, without any control mechanism for import propagation.

The proxy offer works like a simplified link. The type system in the object referred to

and in the calling trader must be equal, but the query interface signature in the referred

object can differ. Therefore, proxy offers can be used to encapsulate other objects than

traders to the trading system.

The same functionality could be expressed by using interceptors together with links.

Full-service trader

A full-service trader includes Lookup, Register, Admin, Link and Proxy interfaces. It

also has to be conformant with Lookup and Register interfaces in importer and exporter

roles correspondingly.

2.3 Fault Tolerance

A centralized system can have a controlled physical and operational environment. Since

a high proportion of system failures are the result of operational and environmental

2 - Review 23

factors, careful management of this single environment can produce good availability.

However, when something does go wrong the whole system goes down at once,

stopping all users from getting work done.

In a networked system, the various computers fail independently. However, it is often

the case that several computers must be in operation simultaneously before a user can

get work done, so the probability of the system failing is greater than the probability of

one component failing. This increased probability of not working, compared to a

centralized system, is the result of ignoring independent failure.

On the other hand, independent failure in a distributed system can be exploited to

increase availability and reliability. When independent failure is properly harnessed by

replicating functions on independent components, multiple component failures are

required before system availability and reliability suffer. The probability of the system

failing thus can be less than the probability in a centralized system. Dealing with

independent failure to avoid making availability worse, or even to make it better, is a

major task for designers of distributed systems.

A distributed system also must cope with communication failures. Unreliable

communication not only contributes to unavailability, it can lead to incorrect

functioning. A computer cannot reliably distinguish a down neighbor from a

disconnected neighbor and therefore can never be sure an unresponsive neighbor has

actually stopped.

Global names -- the same names work everywhere. Machines, users, files, distribution

lists, access control groups, and services have full names that mean the same thing

regardless of where in the system the names are used. For instance, one's user name

2 - Review 24

might be something like /home/user/student1 throughout the system. He/She will

operate under that name when using any computer.

Name service is the key component for providing global names, although most of the

work involved in implementing global names is making all the other components of the

distributed system, e.g. existing operating systems, use the name service in a consistent

way. Names -- provides access to a replicated, distributed database of global names and

associated values for machines, users, files, distribution lists, access control groups, and

services.

For global availability, the name services must work even after some failures. To

achieve high availability of the service there must be multiple servers for that service. If

these servers are structured to fail independently, then any desired degree of availability

can be achieved by adjusting the degree of replication. As long as the failures do not

exceed the redundancy provided, the service will go on working. For instance, we

might decide to duplicate the name servers on each node in our network, but get by

with one database replica per floor.

The most practical scheme for replication of the services in is primary/backup, in which

a client uses one server at a time and servers are arranged (as far as possible) to fail in a

good way, say by stopping. The alternative method, called active replication, has the

client perform each operation at several servers. Active replication uses more resources

than primary/backup but has no failover delays and can tolerate arbitrary failure

behavior by servers.

2 - Review 25

2.4 Replication for Performance

The technique of data replication in distributed systems was initially used for fault

tolerance issues, i.e., availability and reliability of the data in the presence of processor

failures and network partitions. For example, if multiple copies of the same logical data

are stored on different processors, the data can still be accessed if some of the

processors are down. Nevertheless, it can also be used for saving communication

overhead by reducing the number of messages between an object’s home node and the

nodes that request remote accesses. [12]

Thus, data replication is useful in Name Service operation for two reasons. It can

improve the performance and increase the availability and reliability of service. By

accessing the copy in the nearest site, expensive remote access can be avoided. By

storing critical data at multiple locations, the data may still be available even if some

machines are down.

However, availability and consistency are competing goals in the management of

replicated data. It is desirable to have high data availability while the database is still

consistent in users' view. On the other hand, correct schemes that provide high

availability may suffer performance penalties.

Henri E. Bal et al investigated the replication technique mainly for performance

purpose [14]. It is first to identify between read operations and write operations on

replicated data: a read operation does not modify the data, while a write operation

(potentially) does. This matches with our application of Name Services, the read

operation is an operation that does not change the internal data of the object it is applied

to.

2 - Review 26

The primary goal of replicating shared data-object is to apply read operations to a local

copy of the object, if available, without doing any interprocess communication. On a

write operation, all copies of the object except the one just modified must be invalidated

or updated [14]. To deal with this problem, communication will be needed, so write

operations involve communication.

The second goal of replication is to increase parallelism. If an object is stored on only

one processor, each operation must be executed by that processor. This processor may

easily become a sequential bottleneck. With replicated objects, on the other hand, all

processors can simultaneously read their own copies. Since a read operation does not

change its object, it can be executed concurrently with other read operations

consistently.

The effectiveness of replication depends on many factors. One important factor is the

ratio of read/write operations on objects, which is determined by the user application.

Another factor is the overhead in execution time for reading or writing objects. These

costs are determined by the implementation of model. Henri E. Bal et al [14] stated the

dependency as:

• The action undertaken after each write. If each write operation invalidates all

copies, a subsequent read operation will need to do communication. If, on the other

hand, all copies are updated, this disadvantage disappears, but write operations will

become more expensive

• The protocol used for invalidating or updating copies. Many protocols exist (e.g.,

owner protocols, two-phase update protocols), each with their own advantages and

disadvantages.

2 - Review 27

• The replication strategy. If an object is replicated everywhere, each read operation

can be applied to a local copy, which is much cheaper than doing the operation

remotely. On the other hand, writing an object that has many copies will be more

expensive than writing a non-replicated object.

2.4.1 Invalidation versus Updating of Copies

If a write operation is applied to a replicated object, its copies will no longer be up-to-

date. There are two different approaches for dealing with this problem. The first scheme

is to invalidate all-but-one copies of the object. The second scheme is to update all

copies in a consistent way.

With invalidation (or write-once), each object is initially stored on only one processor,

say P. If another processor wants to do a read operation on the object, it fetches a copy

of the object from P. In this way, the object automatically gets replicated. On a write

operation, all-but-one copies are thrown away.

The alternative scheme is to update (or write-through) all copies of an object after each

write operation. A problem here is how to update all copies in a consistent way.

Updating of all copies should appear as one indivisible action. On systems supporting

only point-to-point communication, a 2-phase protocol is needed. If reliable indivisible

multicast messages are available, updates become much simpler.

There are several important differences between invalidation and update schemes. For

one thing, keeping copies up-to-date is more complicated than invalidating copies, so

the update scheme may require more messages to implement a write operation. Also,

update messages will be larger than invalidation messages. An invalidation message

2 - Review 28

merely needs to specify the object to be invalidated. An updated message will either

contain the new value of the object or the parameters of the write operation, whichever

is more efficient.

On the other hand, the update scheme also has several advantages. If an object is read

after it has been written, the invalidation scheme will have to fetch the current value of

the object from a remote processor. With the update scheme, this value will still be

stored locally, so no messages need be sent at all.

In conclusion, which of the two schemes is most efficient depends on:

• The costs of the update protocol.

• The size of the object.

• The size of the parameters of the write operation.

• Whether the write operation is followed by a read operation or by another write

operation.

Partial replication scheme [12] [15] are also found in some systems, in which each

object is replicated on some of the nodes, based on compile time information, run time

information, or a combination of both, is preferred to a no-or full-replication scheme. In

static fixed replication scheme, programmer is required to give the compiler indirect

knowledge of data layout by specifying how likely an application accesses to those data

structures. An advanced scheme based on partial replication is to let the run time system

decide dynamically where to replicate each object. Therefore, when a node wants to

invoke a method on a remote object, it checks if it has a valid copy. If it has one, it

2 - Review 29

creates a thread locally; otherwise, it sends a request to the home node to create a thread

remotely. The home node counts read and write accesses from each node, to decide

where to replicate. It replicates in nodes where read operations are frequent. It also has

to see if many updates on this object are going on because it is better to keep a small

number of replicas when the object is updated frequently. This replication strategy is

especially useful if communication is slow, so the overhead of maintaining statistics is

worthwhile, thanks to the reduced number of messages.

For an example of partial replication, Yixiu Huang and Ouri Wolfson have presented

the CDDR (Competitive Dynamic Data Replication) algorithm [16]. They defined an

object to be a unit of data to be replicated, and the replication scheme of the object to be

the set of sites which hold an object replica. A data site is a site that belongs to the

replication scheme. A non data site is a site that does not belong to the replication

scheme. They supposed the read-write model is the following. At any point in time, one

of the data sites is designated as the primary site (denoted it by p). Initially the

replication scheme contains p alone. Whenever a data site issues a read request for the

object, it is serviced locally. When a non-data site issues a read, the request is

forwarded to, and serviced by p. A site s writes the object by sending it to p, and in turn

p propagates the write to all the available data sites. In other words, the update policy is

“ read one write all available” .

Every site in the network has a status. Status 1 indicates that this site is a data site,

status 0 means that this site is a non data site. Every site knows its own status and where

the current primary site is. The primary site knows every site's status. They defined the

r-write (remote write) of a site s to be the write request issued from any other site (i.e.

not from s) in the network.

2 - Review 30

The replication scheme changes as follows. If the primary site receives more read

requests from a non data site j, then it will tell j to enter the replication scheme; whereas

if the primary site receives more write requests from sites other than j, then it will keep j

out of the replication scheme. The data sites decide by themselves whether or not to exit

from the replication scheme based on the counters they have. If the data site i issues

more read requests, then it will stay in the replication scheme, whereas if i receives

more r-write requests from the primary site, then it will exit from the replication

scheme. When the primary site needs to exit from the replication scheme, it has to

choose a new site to inherit the primary role.

For further improvement, Rivka Ladin et. al. [17] presented the approach of Lazy

Replication. This method can preserve consistency which providing better performance,

It is applicable to application that has a weaker causal operation order.

Noha Anly also uses a non-traditional approach for achievement in performance [18].

Traditional approaches for managing replicated data are synchronous; that is, they

require that read and write operations be synchronized in order to ensure that replicas

are mutually consistent. Protocols requiring synchronization among a large number of

replicas are difficult to implement across internetworks. They suffer from high latency

and low throughput since links tend to be slow and unreliable and a large number of

replicas generate considerable traffic over the network. Further, they lock or restrain

access to resources during protocol execution and reduce the system availability when

one or more nodes fail, or when the network is partitioned.

In contrast, weak consistency protocols allow updates and queries to occur

asynchronously at any replica. They operate under the optimistic assumption that

2 - Review 31

concurrent updates will rarely conflict and therefore synchronization at each step is

unnecessary. Updates commit at the local replica, then they are propagated to other

replicas and eventually, all replicas observe the updates. During the propagation, the

data is in transient inconsistency and the value returned by a read request depends on

whether that replica has observed the update or not yet. A weak consistency approach

should provide a propagation mechanism which ensures that updates are efficiently and

reliably propagated to all replicas even if the communication network does not provide

such a guarantee. When link or node failures result in network partitions, replicas are

allowed to diverge and continue providing service. When the partition heals, replicas

merge their state and converge to a consistent state. Therefore, asynchronous

approaches provide higher availability and better response time than synchronous

approaches. However, this approach is based on the assumption that the applications

can tolerate some inconsistency and reconciliation methods should be available to

resolve conflicts. Typical applications that have used weak consistency are naming

systems, information services, air traffic control and stock exchanges.

3 - Extended Name Service 32

3 Extended Name Service

3.1 System Requirement

We will design and implement the extended name server which:

• may keep track of all the running objects on a network;

• may run on all nodes to support fault tolerant feature;

• allow object registration with any node;

• replicate information to other nodes in a consistent way.

3.2 System Design

We have selected the omniORB2 as the implementation of CORBA to work on. It is

CORBA 2.1 compliant. It provides a basic name service with source code which

supports all operations (bind, unbind, resolve, create, delete and listing) specified in the

OMG specification [4]. This allows us to extend the name services with fault tolerant

and replication features.

OmniORB2 is fully multithreaded. This will be very useful in doing group multicast in

supporting asynchronous concurrent communication for monitoring, replication, etc.

We will design the name service base on group communication [22]. The group

communication paradigm allows the provision of high availability through replication

in a straightforward way (by gathering a set of replicas into a single group).

3 - Extended Name Service 33

From specification, we can divide operations of name service into two types:

• No state change – operation that only query for information and does not change

content of the name service database. As name service is going to run on each

node and data will be replicated to all nodes consistently. All that query for

information can be completed by local node’s name service. These operations

are resolve and list which will be unchanged with the original name service

implementation.

• State change – operations that add, change or delete information from the name

service database. For consistent replication of the change to all nodes, we will

extend the name service with Group multicast and Group membership support.

These operations are bind, bind_context, unbind, new_context, and destroy

(also maybe rebind, rebind_context and bind_new_context) which will be

overrided in the extended name service with Group multicast and Group

membership features. (bind becomes an at least two steps operation involving

group multicast; while resolve needs only one step operation)

For keeping the extension transparent to client, we add a group manager object (see

Figure 2) to the name service and redefine the operations that will introduce state

change. The original bind, bind_context, unbind, etc., will be re-wrapped as

act_bind(), act_bind_context(), act_unbind(), etc, for actual handling of the individual

naming data base.

3 - Extended Name Service 34

multicast()
get_view()
join_group()
leave_group()

� �
� �
� �
� �
� �
GroupManager

start_monitoring()
stop_monitoring()

� �
� �
� �
� �
� �
PullMonitor

are_you_alive()

� �
� �
� �
� �
PullMonitorable

� �
� �
� �
� �
� �

Monitor

notify_suspiciont()

� �
� �
� �
� �
� �

Notifable

Inherits
from

create_view()
launch()
get_estimate()
decide()

� �
� �
� �
� �
ConsensusParticipant

act_bind(), act_rebind(), act_bind_context(),
act_rebind_context(), act_unbind(), act_new_context(),
act_bind_new_context(), act_destroy()

� �
� �
� �
� �
� �

EXNaming

deliver()
view_change()
get_state()
set_state()

� �
� �
� �
� �
� �

Groupable
bind()
rebind()
bind_context()
rebind_context()
unbind()
new_context()
bind_new_context()
destroy()
resolve()
list()

� �
� �
� �
� �
NamingContext

Inherits
from

Figure 2 - Class Diagram for GroupManager and EXNaming Services

3 - Extended Name Service 35

The group manager service is the core of our design. It is the service that actually

provides object group support, and which has to be deal with by the extended name

service. Together with classes it inherited from, it mainly provides:

• Reliable message service (not defined through IDL) which concerns reliable

point-to-point and multicast communication.

• Monitoring service which uses reliable message communication for detecting

object failure.

• Consensus service which uses failure detection and reliable message

communication mechanisms to solve the distributed consensus problem.

• Group membership which uses failure detection mechanisms to monitor group

members and a consensus service to agree on new composition of current active

members.

• Group Multicast which uses reliable communication, consensus and group

membership for atomic message delivery to all members of a group

3.2.1 Reliable Multicast

Reliable multicast is an essential mechanism for developing replicated and parallel

applications. CORBA has not yet provided the service for non-blocking reliable

multicast. Our solution to this is to use multi-threading. Each time a name service

request that requires multicast to be issued, the group manager forks a new thread for

each group member, and uses a standard CORBA synchronous invocation for each

3 - Extended Name Service 36

member invocation. As OmniOrb2 is fully multithreaded from the ground up design,

we can have enough support for implementing this feature.

3.2.2 Monitor Service

For the group membership service, we need a detection mechanism that can provide

information about component failures. This allows Group Manager to remove members

from a group in case of a crash, such that further operation will not be affected or

seriously hampered by the failure member. The failure detection is based on timeout

mechanism. The choice of timeout values is crucial for the failure detector’s ability to

respect accuracy and completeness. Short timeouts allow a process to detect failures

quickly but increase the number of false suspicions, with a risk of violating accuracy.

Hence, there is a trade-off between latency (short timeouts) and accuracy (long

timeouts). As soon as a system involves more than one Local Area Network, the

optimal timeout value between two services depends on both their respective locations

in the system and on the characteristics of the underlying network.

We have defined the following objects (Figure 4) for failure detection:

• Monitor object will collect information about components failures.

• Monitorables are objects that may be monitored, i.e. to be detected for failure

• Notifiables register with monitor so that they will be notified about component

failure.

We will use only the pull style model. Basically, the monitor periodically sends liveness

requests to each member Name Service. If the Name Service replies, it means that it is

3 - Extended Name Service 37

alive. This model is easier to use for application development since the monitored

service are passive, and do not need to have any time knowledge (i.e., they do not have

to know the frequency at which the failure detector expects to receive message).

M3

M2

M1

Monitor

are you alive

(yes)

are you alive
(yes)

are you alive(no)

Monitorables

Notifiables

M3
 is suspected

Figure 3 - The Pull Model for Object Monitor ing. M1, M2 do response while M3

doesn’ t. M3 is considered suspected and status sends to clients (Notifiables)

A straight forward to implement a failure detector using the pull model is to have the

services to support the specific operation, are_you_there(), which is invoked

periodically. If the monitored service is alive and there is no communication failure, the

invocation succeeds. If the invocation fails, the service is being suspected.

Among the group of Name Service, there will be 2 or 3 being assigned to start the

monitoring for all members of the group. If Monitor is being suspected to be failure,

other Monitor can be invoked to start_monitoring().

3 - Extended Name Service 38

3.2.3 Consensus Service

As group members may receive request in different order in a distributed environment.

This may cause inconsistency in the Name Service database. We need a consensus

service to allow all members to reach a common decision, according to their initial

values.

The design of the group consensus service is based on the algorithm of Chandra and

Toueg [24]. It solves the consensus problem in an asynchronous system augmented by

module GroupMonitor {

 enum Status { SUSPECTED, ALIVE, DONTKNOW } ;

 interface Monitorable {

 } ;

 interface Notifiable {

 void notify_suspicion(in Monitorable mon,

 in boolean suspected);

 } ;

 interface PullMonitor {

 void start_monitoring(in Monitorable mon, in boolean suspected);

 void stop_monitoring(in Monitorable mon, in Notifiable not);

 } ;

 interface PullMonitorable : Monitorable, Notifiable {

 oneway void are_you_alive();

 } ;

} ;

Figure 4 – IDL for Group Monitor

3 - Extended Name Service 39

an unreliable failure detection mechanism under condition that a majority of the

participating services do not fail.

Every group member participating the consensus will act as the consensus manager in

turn. In each consensus, there will be four sequential phases:

1. Every member service sends its current estimate to the current manager. All these

contribute to the initial estimate.

2. The current manager waits for a majority of estimates and selects one with the

highest timestamp. That estimate is sent to all member services.

3. Every member service waits for the new estimate proposed by the current manager.

Once a process receives the new estimate, it sends back an acknowledgment (ACK)

message to the coordinator. However, if the member service does not receive the

estimate and the coordinator is suspected by the failure detector, a negative

acknowledgement (NACK) is returned to the coordinator.

4. The coordinator waits for the acknowledgements from a majority of processes. If

none of those acknowledgements is a NACK, the coordinator decides its current

estimate and reliably broadcasts the decision to all member services.

We use an implicit approach that does not need all consensus participants to launch the

consensus. Each name service is attached to a group manager service. When the name

service received a request message that requires consensus resolution, it invokes

launch() on the ConsensusParticipant (i.e. the group manager, Figure 2), which starts

the consensus algorithm [24]; each manager gets initial value from its attached name

3 - Extended Name Service 40

service, execute the consensus algorithm, and finally delivers the decision to the name

services.

module GroupConsensus {

 interface ConsensusParticipant;

 // A consensus identifier

 typedef long ConsensusId;

 // A sequence of consensus participants

 typedef sequence<ConsensusParticipant> ConsensusParticipantSeq;

 // Object that represents a set of consensus managers

 interface ConsensusView {

 // Destroy a consensus view

 void destroy();

 } ;

 // Object that can lanuch and execute a consensus

 interface ConsensusParticipant {

 // Create a new consensus view

 ConsensusView create_view(in ConsensusParticipantSeq cms);

 // Lanuch a new consensus and return

 oneway void launch(in ConsensusId cid, in ConsensusView view);

 // Destroy the consensus Participant

 void destroy();

 // Return the participant

 any get_estimate(in ConsensusId cid);

 // Give the decision to the particpant

 void decide (in ConsensusId cid, in any decision);

 } ;

} ;

Figure 5 - IDL for Group Consensus

3 - Extended Name Service 41

The interfaces for consensus are presented in Figure 5. We use untyped any variables

for estimate and decision values, so that a consensus can decide on variable size name

services request and reply data. A consensus is invoked by the launch() operation of the

manager. This operation expects a unique identifier and a consensus view, i.e. the list of

participating manager as parameters. Once a consensus has been launched, each

manager gets the estimate of its associated participant by invoking the get_estimate()

operation. Then, the consensus algorithm is executed between all participating

managers. When the decision is reached, the managers give it to the participants

through the decide() operation.

3.2.4 Group Membership and Group Multicast

The group multicast and group membership services interact closely. In particular,

multicast operations are defined on object groups, thus involving group membership.

Therefore, both features are contained in the set of interfaces forming the

GroupManager (Figure 6).

• Group multicast – which provides support for sending multicast invocations to all

the members of a group. It provides the primitives for sending invocations to

groups to support the seemless view of client as sending invocation to a singleton

object.

• Group membership – which manages the life cycle of objects groups. It maintains

the updated list of all correct group members. It provides support for joining and

leaving groups, view change notification, and state transfer. A group membership

service is generally associated with failure detection mechanism for detecting group

member failures.

3 - Extended Name Service 42

Group membership is handled by the Group Manager service is a distributed system on

behalf of the basic name services that create it. The composition of group can change

over time. New members can join in, leave it explicitly or may be removed from group

implicitly because of a failure. Name Service wants to join a group do so by contacting

Group Manager service of any existing member. The Group Manager will update the

list of group members. Once admitted to the group, the Name Service may interact with

other group members. Finally, if the Name Service fails or leaves the group, the Group

Manager will again update the list of group members. Dynamic group membership

needs two operations:

1. Change of View – A view is the sequence of group members. Each time the

composition of a group changes. The view_change() is invoked on each member. It

ensures that every correct member of the group receives a view change notification

that indicating the new composition of the group as a list of group members with

mutually consistent rankings.

2. State Transfer – It is for transferring data from existing member to the new

member. It is an atomic operation that happens during view change, when new

member joins an existing group. It consists in obtaining (get_state()) database from

current group member, and giving (set_state()) it to the new member.

We defines the interfaces and operations for dynamic group management and for state

transfer (). The group management operations include the ability of group members to

join a group and to leave a group using join_group() and leave_group() operations of

GroupManager. It can also notify all group members of a view change using

view_change() operation. The GroupView structure represents a stable view of a group

3 - Extended Name Service 43

at a given time. Group views have version numbers that are incremented every time the

composition of the group changes. A group view is passed as parameter upon view

change.

Also, we have two operations for group members: get_state() and set_state(). The state

is transferred using a value type of any, which any kind of application-specific data. For

Name Services, the state is the content of its database, which may grow quite large

upon usage.

For data consistency, we need the consensus server for implementing group multicast

and group membership. The role of the consensus is to agree on the respective ordering

of the events received by the group members. These events are messages and view

changes. Hence, each consensus instance decides on:

• An ordered set of messages to deliver.

• A set of suspected members to remove from the current view (i.e., the

composition of the new view). This set can be empty, in which case there is no

view change.

The consensus algorithm ensures that all correct participants eventually decide on the

same value, and thus that every group member delivers the same set of messages and

view changes in the same order. Messages are reliably multicast in the group before

being ordered by the consensus algorithm.

The algorithm for total order and view membership is presented in Appendix II [23].

Each Consensus Participant maintains a set of unordered messages updated each time a

message is received. The list of the suspected members from the current view is

3 - Extended Name Service 44

updated each time the group monitor (failure detector) notifies the participant about a

suspicion or an “unsuspicion” (i.e., a suspected participant is trusted again). An ID

variable is used as consensus identifier to synchronize the consensus instances run by

all participants. A consensus is launched when there are messages to order, or there are

members to remove from the current view. Each participant delivers the set of messages

contained in the decision in a deterministic order that was agreed in the consensus by all

participants.

If the set of suspected members contained in the decision is not empty, all members

install a new view that does not include the suspected members. The process of joining

or leaving an existing group is slightly different from that of removing a failed member.

It is implemented through a totally ordered request issued by the member joining or

leaving the group. This request is processed by every group member, which updates its

view accordingly. Joining members receive service-specific information as part of the

state transfer protocol (e.g., the composition of the group, the identifier of the next

consensus to execute, etc.)

3 - Extended Name Service 45

// IDL

module GroupMember {

 struct GroupView { // Composition of a group at a specific time

 // Group composistion.

 sequence<Groupable> composition_;

 // View identifier

 unsigned long version_;

 } ;

 interface Groupable {

 // Invoked upon message delivery

 any deliver (in any msg);

 void view_change(in GroupView view);

 // invoked upon state transfer on a current member

 any get_state();

 // Invoked upon state transfer on a new member

 void set_state(in any state);

 } ;

 interface GroupManager{

 // Get the latest group view

 GroupView get_view()

 raises(GroupError);

 // Join the Group

 void join_group(in Groupable member, , in GroupManager manager)

 raises(GroupError, AlreadyMember);

 // Leave the group

 void leave_group(in Groupable member)

 raises(GroupError, NotMember);

 } ;

} ;

Figure 6 – IDL for GroupManager

3 - Extended Name Service 46

3.3 Work Flow

We use the omniORB2 version 2.7.1 as the working platform of CORBA. So,

installation and environment setting is all refered to the “omniORB2 version 2.7.1

User’ Guide”

3.3.1 Initialization

For the name service to be able to respond to a query from client, we can either:

1. supply the client with the stringified IOR of the name service;

2. or we can add to the configuration file omniORB.cfg. For example,

 ORBInitialHost sparc16

 ORBInitialPort 12345

ORBInitialHost is the host name and ORBInitialPort is the TCP/IP port number. The

parameter ORBInitialPort is optional. If it is not specified, port number 900 will be

used. The second approach is much easier to specify than a stringified IOR. Another

advantage is that it is completely compatiable with JavaIDL. This makes it possible for

a client written in JavaIDL to share with a omniORB2 server the same Naming Service.

The extended name service consists mainly two objects (EXNaming, GroupManager).

Upon initialization, EXNaming instantiates (1,2) the GroupManager through the

Factory object [Figure 7]. With the returned reference to the GroupManager, it invokes

the join_group() function (3) of the GroupManager with self-reference as the parameter.

3 - Extended Name Service 47

The GroupManager optionally starts the monitor function by calling start_monitoring()

with reference of EXNaming as parameter (4). Finally it invoke the view_change()

function of EXNaming to finish the initialization (5) such that the group then contains

one member of Naming Service.

EXNaming
Group

Manager
Factory

GroupManager

3. Join_Group()

5. View_Change()

1. Create()

2. Instantiate

4. Start_Monitoring()

Figure 7 - Initialization of the Extended Naming Service

3 - Extended Name Service 48

3.3.2 Running on all nodes

To support fault-tolerance, the extended naming service has to run on multiple or all

nodes of the network. Each one can join in the group and leave the group dynamically

at run time.

EXNaming

Group
Manager

2. Join_Group()

EXNaming

Group
Manager

3. Get_State()

Existing Group MemberNew Group Member

1. resolve

State Transfer Protocol

4. Set_State()
6. view_change()

6. view_change()

5. Group
Multicast - for
View_Change()

Figure 8 – Joining an existing Extended Naming Service group

To join in an existing group, new member naming service has to get reference to one of

the existing group member (Figure 8). It can be done by either method suggested in

Initialization section. After resolving the existing member reference (1) and creating

self Group Manager, new member EXNaming invokes the join_group() from

GroupManager with self reference and reference of an existing group manager (2). This

3 - Extended Name Service 49

allows communication with the target manager to transfer the current group

information: the composition of the group, the identifier of the next consensus to

execute and the naming database of the group (3, 4). Steps 3 and 4 may be called

repeatedly for transferring name data to new member. If load balance is being

considered, get_state() may be invoked on different members of the group. After state

transfer, the existing group manager will multicast the view_change() message (5).

Using the consensus service described in section 3.2.3 previously, every member

including the newly joined one should receive the same ordered messages in decision.

All members will then invoke the view_change() message consistently (6).

To leave a group, it is much simpler (Figure 9). The ready-to-leave member invokes

leave_group() on its Group Manager (1) which in turn multicast the message to all other

members (2). After consensus decision, each member invokes view_change() to update

the new view of group membership (3). The ex-group member can then close,

shutdown, or else relocate.

3 - Extended Name Service 50

EXNaming

Group
Manager

1. leave_group()

EXNaming

Group
Manager

Other Group MembersTo be left member

3. view_change()

2. Group
Multicast-
view_change()

Figure 9 - To exit from a group

3.3.3 Replication

As the Extended Naming Service is running on multiple nodes and “grouped” together

with the assistant of Group Manager object, client objects may register with the Naming

Service on any node. The registration information will automatically be replicated to

other nodes for future reference.

We take the operation “bind” as an example (Figure 10). A client object registers with

the Extended Naming Service on one of the nodes. It supplies a name and object

reference for binding (1). The EXNaming object invokes multicast() of Group Manager

to this binding operation with parameters to all other members (2). Go through the

consensus process (3) to make sure every member have a consistently ordered message

3 - Extended Name Service 51

list, all member Group Manager invoke act_bind() to actually register the object

naming and reference into database (4). “bind” operation is here as an example only.

Other operations, such as “unbind”, “newContext” work the same flow where only the

request message and actual working function call (act_bind(), act_newContext()).

EXNaming

Group
Manager

Client

1. bind
2. multicast

3. Group
Multicast

4. act_bind()

Figure 10 - Register at one node, replicate to all nodes

Since data is replicated to each group member on-the-fly, every instance of the

extended naming service within the group possesses a complete copy of the naming

database. To query for any naming information only need to invoke resolve() (or list())

operation (1) on the EXNaming object (Figure 11). No need to wait for consensus of

other group members.

3 - Extended Name Service 52

EXNaming

Group
Manager

Client

1. resolve / list

Figure 11 - Query object information with the extended name service

3.3.4 Fault Node handling

Before using the group manager service, the extended name service must create a

GroupManager object. Upon creation, each group manager is associated with an

extended name service object. We assume that the two components will not fail

independently.

Some of the group managers may start their monitoring service (set by initial

configuration) for monitoring all members of the group. Monitor pulls response from

member periodically. Non-responsive member will be marked as suspected and be

made notify to the rest of the member group (Figure 3). Suspected member may be

trusted again if it does response to the next pulling query and before the next consensus

starts.

3 - Extended Name Service 53

When a consensus starts, for the reason of membership view change or message event

that requires agreement on ordering, the consensus algorithm [23] not only makes

agreement on the ordering message. It also decides on the set of suspected group

members among all the proposed set. When final decision is made, every group

members will handle the ordered message events and update its group member view by

removing suspected member according to the decided set.

Removed group members can only re-join the group by invoking join_group() with one

of the existing member.

4 - Discussions 54

4 Discussions

• CORBA does not differentiate between local and remote invocations issued to IDL

specified operations. Stubs and skeletons hide the distribution from the application

programmer, and allow both local and remote implementations. This programming

model bears many advantages, but the developer has to deal with link failures and

independent component crashes; these events have effects on the behavior of the

system depending on whether the components are remote or local. In the design, we

make assumptions about the locality of some service specific object. Group

Manager, Monitor, Consensus and EXNaming which are associated with each

group member are located in the same process. Local invocations are reliable, and

we assume that independent failure of co-located objects do not occur.

• A desirable property of the group membership is to behave like a singleton object,

i.e., to act as an identifiable, encapsulated entity that may invoked by a client. The

key design issue to provide this abstraction consists in hiding the major differences

between object groups and singleton objects. We do this by encapsulating plurality

and behavior. So client accesses the naming service by a single invocation and

receives a single reply of success or fail without other concern.

• Current design of the extended naming service has provided a level of client

transparency, i.e. an advantage, such that current client application does not need to

make any modification in order work with the new naming service. Because

interface of the original Naming Service has been kept unchanged. The payoff is

the client cannot keep on working without changing its target node deliberately if

4 - Discussions 55

its target node service is down. If we want to have the transparency that client can

automatically switch to other available Naming Service, we have to modify the

client by adding a layer to interact with the service group.

• Current implementation of Name Service will write each change to its transaction

log and commit the change periodically. In order to minimize the traffic for state

transfer and increase the availability of service, we can pre-transfer the committed

database from the target member to the new member before joining the group.

Then, the existing member just needs to transfer non-committed data from its

transaction log to the new member for state transfer.

• The problem of scalability is a major concern for a monitoring service that has to

deal with large systems. A traditional approach to failure detection is to augment

each entity participating in a distributed protocol with a local failure detector that

provides it with suspicion information. However, this architecture raises efficiency

and scalability problems with complex distributed applications, in which a large

number of participants are involved. In fact, if each participant monitors the others

using point-to-point communication, the complexity of the number of messages is

O(n2) for n participants. Therefor, it is very important to reduce the amount of data

exchanged across distant hosts. The simple interfaces of our pull-style monitoring

service make it easy to configure the monitoring system in a hierarchy. The

hierarchical configuration permits a better adaptation of failure detector parameters

(such as timeouts) to the topology of the network or to the distance of monitored

objects, and reduces the number of messages exchanged in the system between

distant hosts.

4 - Discussions 56

• Although the implementation of the consensus service allows us to run several

consensus instances in parallel, we have to serialize consensus executions. This is

required by the total order and view membership algorithm (Appendix II). This

restriction however does not completely slow down the system since (1) a

consensus may decide on the ordering of several messages at once, and (2) it does

not prevent non-totally ordered messages (e.g. resolve naming request) from being

delivered.

• When a group of replicated objects invokes another group of objects (or a singleton

object), request filtering must be performed so that target objects do not receive

duplicate invocations. For example, several group members want to launch the

Consensus targeting the same coordinator at the same time. Request filtering can be

performed upon request reception (by the invokee). Performing request filtering

upon request reception limits filtering to invokee that has knowledge about groups

and filter. This is just fulfilled by our member group.

• Our solution to reliable non-blocking communication by using multi-threading with

a separate thread for each invocation is conceptual simple and straight forward. But

the use of thread sometimes may increases the application’s complexity and the

probability of programming errors, by adding resource and synchronization

problems. It will be best if OMG’s messaging service for this purpose can be

finalize and available soon.

• As we will use multi-threading to asynchronously wait for incoming events and

perform background task like failure detection. Multi-threading is supported by all

major operating systems but, as of version 2.1 of the CORBA specification, thread

4 - Discussions 57

support and management are not specified, and thus are not portable. Although

different platforms provide the same object-oriented wrappers for threads, locks,

and condition variables that allow platform independence, but these wrapper

classes are not compatible with each other.

5 - Conclusion 58

5 Conclusion

Distributed computing is one of the major trends in the computer industry. As systems

become more distributed, they also become more complex and have to deal with new

kinds of problems, such as partial crashes and link failures. We are interested in the

naming service because it provides the key services for identifying objects in this ever

growing distributed environment. We have reviewed about this service, its close

relatives and some of the awaiting features (fault tolerance, replication, etc.). We have

made a designed using group communication to extend the basic name service. We

have also provided the complete IDL with class diagram and shown the workflow of

the design. By replication on multiple nodes, the extended name service can provide

fault tolerance and increased availability.

6 - Appendix 59

6 Appendix

6.1 (I) IDL for Extended Name Service.

// Extended Naming Service

#ifndef __EXNAMING_IDL__

#define __EXNAMING_IDL__

#pragma prefix "omg.org"

#include <ir.idl>

#include "naming.idl"

module GroupMonitor {

 enum Status { SUSPECTED, ALIVE, DONTKNOW } ;

 interface Monitorable {

 } ;

 interface Notifiable {

 void notify_suspicion(in Monitorable mon,

 in boolean suspected);

 } ;

 interface PullMonitor {

 void start_monitoring(in Monitorable mon, in boolean suspected);

 void stop_monitoring(in Monitorable mon, in Notifiable not);

 } ;

 interface PullMonitorable : Monitorable, Notifiable {

 oneway void are_you_alive();

 } ;

} ;

module GroupConsensus {

 // Forward declaration

 interface ConsensusParticipant;

 // A consensus identifier

 typedef long ConsensusId;

 // A sequence of consensus participants

6 - Appendix 60

 typedef sequence<ConsensusParticipant > ConsensusParticipantSeq;

 // Object that represents a set of consensus managers

 interface ConsensusView {

 // Destroy a consensus view

 void destroy();

 } ;

 // Object that can lanuch and execute a consensus

 interface ConsensusParticipant {

 // Create a new consensus view

 ConsensusView create_view(in ConsensusParticipantSeq cms);

 // Lanuch a new consensus and return

 oneway void launch(in ConsensusId cid, in ConsensusView view);

 // Return the participant

 any get_estimate(in ConsensusId cid);

 // Give the decision to the particpant

 void decide (in ConsensusId cid, in any decision);

 } ;

} ;

module GroupMember {

 // The object is not member of the group

 exception NotMember { } ;

 // The object is already member of the group

 exception AlreadyMember { } ;

 // Error while performing an operation on the group

 exception GroupError { string description_; } ;

 //Error while performing an operation on a non-existent group

 exception NoGroup { } ;

 // Invalid group name (e.g. containing invalid characters)

 exception InvalidGroupName { } ;

 // Forward reference

 interface Groupable;

 // Composition of a group at a specific time

 struct GroupView {

6 - Appendix 61

 // Group composistion.

 sequence<Groupable> composition_;

 // View identifier

 unsigned long version_;

 } ;

 typedef sequence<any> AnySeq;

 // Service's view of group members

 interface Groupable {

 // Invoked upon view change

 void view_change(in GroupView view);

 // invoked upon state transfer on a current member

 any get_state();

 // Invoked upon state transfer on a new member

 void set_state(in any state);

 } ;

 interface GroupManager :

 GroupMonitor::PullMonitor, GroupMonitor::PullMonitorable,

 GroupConsensus::ConsensusParticipant {

 // Issue a multicast to the group

 AnySeq multicast (in any msg)

 raises(GroupError);

 // Get the latest group view

 GroupView get_view()

 raises(GroupError);

 // Join the Group

 void join_group(in Groupable member, , in GroupManager manager)

 raises(GroupError, AlreadyMember);

 // Leave the group

 void leave_group(in Groupable member)

 raises(GroupError, NotMember);

 } ;

 // Factory for creating group administrators

 interface GroupManagerFactory {

6 - Appendix 62

 // Create a group GroupManager{

 GroupManager create(in string group_name)

 raises(GroupError, InvalidGroupName);

 } ;

} ;

module EXNaming {

 interface EXNamingContext: CosNaming::NamingContext,

 GroupMember::Groupable {

 void act_bind (in Name n, in Object obj)

 raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

 void act_rebind (in Name n, in Object obj)

 raises (NotFound, CannotProceed, InvalidName);

 void act_bind_context (in Name n, in NamingContext nc)

 raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

 void act_rebind_context (in Name n, in NamingContext nc)

 raises (NotFound, CannotProceed, InvalidName);

 void act_unbind (in Name n)

 raises (NotFound, CannotProceed, InvalidName);

 NamingContext act_new_context ();

 NamingContext act_bind_new_context (in Name n)

 raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

 void act_destroy () raises (NotEmpty);

 } ;

} ;

#endif // __EXNAMING_IDL__

6 - Appendix 63

6.2 (II) Total Order and View Membership Algorithm [23]

7- References 64

7 References

1. Douglas Schmidt and Steve Vinoski, “Modeling Distributed Object Applications”,
SIGS, Vol 7. No. 2, February 1995.

2. George Colulouris, Jean Dollimore and Tim Kindberg “Distributed System –
Concepts and Design”, 2nd Ed., 1995

3. Steve Vinoski, "CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments," IEEE Communications Magazine, Vol. 14, No. 2,
February, 1997.

4. Object Management Group. CORBAservices: Common Object Service
Specification. Object Management Group (OMG) March 1995. Updated July 1996

5. Dr. Michael R. Lyu “Distributed Systems – Topic 6: Naming and Trading”, Course
notes for CSC7241, CUHK, 1998.

6. Kahkipuro, P., Kutvonen, L., Marttinen, L., “Federated naming in an ODP
environment” , Joint International Conference on Open Distributed Processing
(ICODP) and Distributed Platforms (ICDP), May 1997. Publ. Chapman and Hall,
pp. 314-326.

7. Martin Chilvers, David Arnold, Andy Bond, Richard Taylor, “What's in a name? A
Distributed, Federated Naming System in Python.” , CRC for Distributed Systems
Technology, University of Queensland, Australia,
http://www.dstc.edu.au/AU/staff/andy-bond/publications.html

8. "CAE Specification - Federated Naming: The XFN Specification" X/Open
document number: C403 ISBN: 1-85912-052-0

9. Kenneth P. Birman, “Building Secure and Reliable Network Application”,
Manning Publishing Company (Greenwich, CT) and Prentice Hall, 1997.

10. Lea Kutvonen, “Trading services in open distributed environments” , P.O. Box 26,
FIN-00014 University of Helsinki, Finland, Lea.Kutvonen@cs.Helsinki.FI, PhD
Thesis, Series of Publications A, Report A-1998-2, Helsinki, June 1998, viii + 231 + 6
pages, ISSN 1238-8645, ISBN 941-45-8223-3

11. Mirion Bearman, “Tutorial on ODP Trading Function”, DSTC, Faculty of
Information Sciences & Engineering, University of Canberra, ACT, 2616 Australia,
MirionB@ise.canberra.edu.au, Revised February 1997 to align with ISO/IEC IS
13235:1 | Draft Rec . X.950:1 (1997).

12. Mirion Bearman, Keith Duddy, Kerry Raymond, Andreas Vogel, “Trader Down
Under: Upside Down and Inside Out” , TAPOS 3(1), pp. 15-29 (1997)

7- References 65

13. Suk Yong Lee, “Supporting Guarded and Nested Atomic Actions in Distributed
Objects” , July 1998, University of California – Santa Barbara

14. Bal, H.E., Kaashoek, M.F., Tanenbaum, A.S., and Jansen, J., "Replication
Techniques for Speeding up Parallel Applications on Distributed Systems",
Concurrency Practice & Experience, Vol. 4, No. 5, pp. 337-355, August 1992.

15. Gagan Agrawal, “Availability of Coding Based Replication Schemes”, Symposium
on Reliable Distributed Systems, 1992, pp. 103-110.

16. Yixiu Huang, Ouri Wolfson, “A Competitive Dynamic Data Replication
Algorithm”, ICDE 1993, pp. 310-317.

17. Rivka Ladin, Barbara Liskov, Liuba Shrira, Sanjay Ghemawat, “Providing High
Availability Using Lazy Replication”, TOCS 10(4), pp. 360-391, 1992

18. Noha Adly, “Management of Replicated Data in Large Scale Systems”, Corpus
Christi College, University of Cambridge; A dissertation submitted for the degree
of Doctor of Philosophy, August 1995.

19. C. Rigney, A. Rubens, W. Simpson, S. Willens, “Remote Authentication Dial In
User Service (RADIUS)”, RFC2138, April 1997.

20. P. Chung, A. Baratloo, Y. Huang, S. Rangarajan, and S. Yajnik, “FilterFresh -
Transparent hot replication of Java RMI servers” , in proceedings Conference on
Object-Oriented Technologies (COOTS) April 1998

21. Sai-Lai Lo, David Riddoch, “The omniORB2 version 2.7.1 Users Guide”, AT&T
Laboratories Cambridge, February 1999

22. P. Felber, Benoit Gaarbinatio, Rachid Guerraoui, “The Design of a CORBA Group
Communication Service”, Ecole Polytechnic Federal de Lausanne, CH-1015
Lausanne

23. P. Felber, “The CORBA Object Group Service: A Service Approach to Object
Groups in CORBA”, PhD thesis, École Polytechnique Fédérale de Lausanne,
Switzerland, 1998

24. T.D. Chandra, S. Toueg., “Unreliable failure detectors for reliable distributed
systems”, Journal of the ACM, 267, 1996

