
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018 1237

MrDP: Multiple-Row Detailed Placement of
Heterogeneous-Sized Cells for Advanced Nodes
Yibo Lin, Bei Yu, Member, IEEE, Xiaoqing Xu, Member, IEEE, Jhih-Rong Gao, Natarajan Viswanathan,

Wen-Hao Liu, Zhuo Li, Senior Member, IEEE, Charles J. Alpert, Fellow, IEEE, and David Z. Pan, Fellow, IEEE

Abstract—As very large-scale integration technology shrinks to
fewer tracks per standard cell, e.g., from 10 to 7.5-track libraries
(and lesser for 7 nm), there has been a rapid increase in the
usage of multiple-row cells like two- and three-row flip-flops,
buffers, etc., for design closure. Additionally, the usage of multibit
flip-flops or flop trays to save power creates large cells that fur-
ther complicate critical design tasks, such as placement. Detailed
placement happens to be a key optimization transform, which
is repeatedly invoked during the design closure flow to improve
design parameters, such as wirelength, timing, and local wiring
congestion. Advanced node designs, with hundreds of thousands
of multiple-row cells, require a paradigm change for this criti-
cal design closure transform. The traditional approach of fixing
multiple-row cells during detailed placement and only optimiz-
ing the locations of single-row standard cells can no longer
obtain appreciable quality of results. It is imperative to have
new techniques that can simultaneously optimize both multiple-
and single-row height cell locations during detailed placement.
In this paper, we propose a new density-aware detailed placer
for heterogeneous-sized netlists. Our approach consists of a chain
move scheme that generalizes the movement of heterogeneous-
sized cells, a nested dynamic programming-based approach for
ordered double-row placement and a network flow-based formu-
lation to solve ordered multiple-row placement for wirelength
and density optimization. Experimental results demonstrate the
effectiveness of these techniques in wirelength minimization and
density smoothing compared with the most recent detailed placers
for designs with heterogeneous-sized cells.

Index Terms—Chain move, detailed placement, multiple-row
height cells, network flow, physical design.

I. INTRODUCTION

USING single-row height standard cells has been the
dominant methodology for modern very large-scale inte-

gration (VLSI) digital design. For a given technology node,
the height and width of standard cells are carefully selected to

Manuscript received March 21, 2017; revised June 30, 2017; accepted
August 3, 2017. Date of publication August 31, 2017; date of current ver-
sion May 18, 2018. This work was supported in part by the National
Science Foundation under Project CCF-1218906 and Project CCF-1718570,
and in part by the Research Grants Council of Hong Kong SAR under
Project CUHK24209017. The preliminary version has been presented at the
International Conference on Computer-Aided Design in 2016. This paper
was recommended by Associate Editor P. Gupta. (Corresponding author:
Yibo Lin.)

Y. Lin, X. Xu, and D. Z. Pan are with the Department of Electrical and
Computer Engineering, University of Texas at Austin, Austin, TX 78741 USA
(e-mail: yibolin@utexas.edu).

B. Yu is with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li, and C. J. Alpert are with
Cadence Design Systems Inc., Austin, TX 78759 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2748025

optimize various characteristics, such as timing, packing, and
pin accessibility. The common nomenclature for cell libraries
is “N”-track, with N being the height of the circuit row and
standard cells in terms of the number of covered routing tracks.
The last few years have seen a steady decrease in N with each
new technology node, e.g., from 10 to 7.5 (and possibly lesser
for 7 nm). In this scenario, it is getting increasingly difficult to
design complex circuit components (flip-flops, muxes, etc.) as
single-row height cells, while satisfying required performance
and routing characteristics. As a result, advanced node designs
are increasingly adopting the design and usage of multiple-row
height cells for such complex circuit components.

Additionally, to satisfy stringent power requirements, flip-
flop merging and usage of multibit flip-flops (MBFFs) or flop
trays is becoming increasingly prevalent [1]–[3] in modern
designs. MBFF enables the sharing of clock buffers between
flip-flops, which decreases both power and area. Statistics
show that a 2-bit MBFF is able to achieve around 14% power
reduction and 4% area reduction per bit, while a 4-bit MBFF
can achieve around 22% power reduction and 29% area sav-
ing per bit [3]. But MBFFs happen to be large, multiple-row
height cells. This significantly increases the complexity for
steps like legalization and detailed placement.

In addition, to meet die-size requirements for area, power,
and cost reduction, design densities are approaching the limit.
It is common for designs with up to 90% density, which makes
detailed placement critical to resolve local wiring congestion.
In an extremely dense design, it is very difficult to insert
or move large cells during legalization and detailed place-
ment without significant disruption to the local neighborhood.
Furthermore, the number of interconnect pins per standard
cell varies for a given cell library and often lacks correlation
to the cell area. Without careful planning, local congestion
can be caused by accumulation of cells with high pin count.
Therefore, it is critical to make proper usage of the limited
die area for optimizing both wirelength and congestion.

Placement is usually divided into three steps, global place-
ment, legalization, and detailed placement [4]. Global place-
ment determines the rough locations of cells while minimizing
objectives, such as wirelength, routability, and timing. But the
solution from global placement often contains overlap and
thus is not design rule friendly. Legalization removes overlaps
and aligns cells to placement sites. Finally, detailed placement
tries to further improve the solution by moving cells locally.
Sometimes legalization is integrated into detailed placement
instead of a separate step.

Global placement techniques are fairly mature in handling
the mixed-sized placement problem [5]–[10]. But there has
been little research in detailed placement for heterogeneous-
sized netlists, especially where the number of multiple-row

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:yibolin@utexas.edu
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

1238 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018

height cells ranges in the hundreds of thousands, as seen in
advanced node designs. Wu and Chu [11] proposed a straight-
forward technique to handle double-row height cells during
detailed placement. In their method, they use cell group-
ing and cell inflation to convert all the single-row height
cells in the design to double-row height cells. This results
in a placement problem with only double-row height cells.
Consequently, a conventional placement engine can be used
to optimize the designs. However, this approach is unable to
handle the power line alignment constraint from multiple-row
height cells; e.g., cells with power rail on top and bottom
have to be placed in rows with the same power line configura-
tion. Another key drawback with this approach is its inability
to handle larger cells that span three or more circuit rows.
Chow et al. [12] proposed the first legalization algorithm for
multiple-row height standard cells with an objective of dis-
placement minimization. They explored the insertion points
in the layout and try to remove overlaps with minimum dis-
placement. Wang et al. [13] adapted Abacus engine to handle
multiple-row height cells. Hung et al. [14] improved the solu-
tion quality by linear programming (LP). Chen et al. [15]
solved a linear complementary problem for displacement
minimization in legalization. A summary on recent detailed
placement challenges and approaches can be found in [16].

To address the challenges in placement for advanced
technology nodes, we propose a detailed placer for
heterogeneous-sized netlists that addresses the traditional
detailed placement objectives of wirelength, cell density, and
pin density [4], [5], [11], [17]–[20]. The major contributions
are summarized as follows.

1) A chain move scheme that generalizes the movement
of heterogeneous-sized cells to optimize wirelength, cell
density, and pin density by searching for the maximum
prefix sum of the improvements.

2) A nested dynamic programming (DP)-based technique
solving ordered double-row (ODR) placement for wire-
length optimization.

3) A network flow-based formulation to solve ordered
multiple-row (OMR) placement that is flexible to both
displacement minimization and wirelength optimization.

4) Outperform the most recent detailed placer for multiple-
row height cells by 3.7% in scaled wirelength, 20.2% in
cell density, and 13.4% in pin density.

The rest of this paper is organized as follows. Section II
illustrates the special constraints and problem formulation for
the placement. Section III provides a detailed explanation of
our proposed techniques. Section IV verifies the effectiveness
of our approach, followed by the conclusion in Section V.

II. PRELIMINARIES AND OVERALL FLOW

In this section, we will explain the constraints in placement
for designs with heterogeneous-sized standard cells and give
the problem formulation.

A. Power Line Alignment

Power line alignment is a special placement constraint from
a multiple-row height cell. In modern VLSI layouts, the power
lines that connect to standard cells are typically located at
the bottom and top of placement rows. Meanwhile, stan-
dard cells have to align to placement rows for proper power
line alignment. Fig. 1 illustrates an layout example of seven

Fig. 1. Example of multiple-row height cells in a layout.

multiple-row height cells, where five cells take even number
of rows (i.e., cells a, c, d, f , and g). Cells a, d, and g have
power rails (VDD) on top and bottom of the cells, and ground
rails (GND) in the middle. They must be placed in alternative
rows with proper VDD/GND alignment, since we cannot fix
the alignment through cell flipping or rotation. Similarly, cells
c and f have VDD in the middle and GND on the top and bot-
tom. The bottom of such cells must be aligned to rows with
GND at the bottom. However, for cells with odd number of
rows, such as cell b and e, there is no such constraint, since
it has power rail on the top or bottom and ground rail on the
other side. This configuration is the same as single-row height
cells, so cell flipping and rotation can fix the alignment issue.

The constraint for power line alignment can be summarized
as follows. An even-row height cell must align to placement
rows with the same type of power line at the bottom as that
in the cell, while any odd-row height cell, including single-
row height cell, can align to any placement row with proper
orientation.

B. Problem Formulation

In modern VLSI placement, the optimization usually
includes multiple objectives, such as wirelength and density.
Wirelength is still regarded as the major objective, while
density metrics cannot be neglected, because pure wirelength-
driven placement often produces congested solution that
results in difficulty for post-placement stages, such as routing.
Therefore, in this paper we adopt the scaled wirelength met-
ric from International Conference on Computer-Aided Design
(ICCAD) 2013 placement contest [21] considering both wire-
length and cell density. Half-perimeter wirelength (HPWL) is
used as the wirelength metric, which is defined as follows:

HPWL =
∑

n∈N

max
i∈n

xi −min
i∈n

xi +max
i∈n

yi −min
i∈n

yi (1)

where N denotes the set of interconnections in the circuit.
Average bin utilization (ABU) evaluates the density of a

placement solution [8]. The average density of the top γ % bins
of highest utilization is denoted by ABUγ . The ABU penalty
for density is computed from a weighted sum of overflow,
which is defined in the following equations:

overflowγ = max

(
0,

ABUγ

dt
− 1

)
(2a)

ABU =
∑

γ∈� wγ · overflowγ∑
γ∈� wγ

, � ∈ {2, 5, 10, 20} (2b)

where dt denotes the target utilization and w2, w5, w10, and
w20 are set to 10, 4, 2, and 1, respectively. With the defini-
tion of ABU penalty, ICCAD 2013 placement contest defines
a scaled wirelength cost to generalize both wirelength and
density costs as

sHPWL = HPWL · (1+ ABU). (3)

LIN et al.: MrDP OF HETEROGENEOUS-SIZED CELLS FOR ADVANCED NODES 1239

Fig. 2. Overall flow of placement.

In the ICCAD 2013 placement contest, only cell area uti-
lization is included in the computation of ABU. In advanced
technology nodes, area utilization is not enough to model the
congestion, because some large cells may contain very few
pins, while some small cells may in the contrast involve a
lot of interconnections. So we propose average pin utilization
(APU) that captures the pin distribution of the layout. The pin
density in each bin is the ratio of number of pins to the num-
ber of placement sites in the bin. Once the pin density map is
obtained, the computation of APU penalty is the same as that
of ABU, shown in the following equations:

overflowp
γ = max

(
0,

APUγ

dp
t
− 1

)
(4a)

APU =
∑

γ∈� wγ · overflowp
γ∑

γ∈� wγ

, � ∈ {2, 5, 10, 20} (4b)

where dp
t denotes target pin utilization and APUγ denotes

the average pin density of the top γ % bins of highest pin
utilization.

With all the metrics defined, the multiple-row detailed
placement (MrDP) problem is defined as follows.

Problem 1 (MrDP): Given an initial heterogeneous-sized
standard cell placement plus a number of fixed macro blocks,
either legal or not, we produce a legal placement solution with
optimized wirelength and density, i.e., sHPWL and APU.

C. Overall Flow

The overall flow of our placement engine is shown in
Fig. 2. Given the placement solution from global placement,
we first check whether the placement is legal. If it is not
legal, legalization is performed to remove overlaps and align
power line of multiple-row cells. In this step, we first per-
form OMR placement to remove as much overlap as possible
with minimum displacement. Then chain move algorithm (see
Section III-A) in overlap reduction mode is performed to fur-
ther remove rest overlaps. These two techniques are usually
powerful enough to remove all the overlaps as long as the
design has reasonable utilization. If there are still remaining
overlaps, we search for nearest available locations for remain-
ing cells that still contain overlaps, while this is never triggered
in the experiment. Then we perform wirelength optimization
to improve both wirelength and density until less than 1%
cells are moved or maximum iteration is reached. We allow
at most six iterations in the experiment. The OMR placement
(see Sections III-B and III-C) is performed to further opti-
mize wirelength. Before the final placement is produced, we
refine density by invoking chain move algorithm in density

(a) (b)

Fig. 3. Example of (a) placement with multiple-row height cells and
(b) inserting another cell t by slightly shifting cell g and j.

recovery mode because wirelength optimization often pack
cells together at the cost of density degradation.

III. DETAILED PLACEMENT FOR

MULTIPLE-ROW CELLS

In this section, we will explain our placement algorithms,
such as chain move and ODR placement in detail.

A. Chain Move Algorithm

One of the typical detailed placement approaches is to
improve wirelength in a cell-by-cell manner; i.e., pick a cell
and move to better position or try to swap with another
cell for better wirelength [4], [18], [19]. It is proved to be
very effective in the detailed placement for single-row cells.
However, the situation changes when it comes to multiple-
row height cells. Since a multiple-row height cell occupies the
space of contiguous rows, it is more likely to involve overlaps
with multiple cells, which results in the failure of position
search with previous approach. Fig. 3(a) gives an example
of placement which is difficult to insert another multiple-row
height cell t into the dashed region without perturbing at
least two cells. With slightly shifting cells g and j, shown
in Fig. 3(b), cell t can be placed in the dashed region without
overlap. Similar situation may also occur to very large single-
row height cells which are difficult to be fit into dense regions
without perturbation of multiple cells.

If it is able to allow the movement of multiple cells at a time,
there will be more candidate positions for better placement
quality. Inspired by density preserving refinement from [9] and
gain map from [22] and [23], we develop an algorithm to allow
other cells to move together when optimizing a target cell.

Definition 1 (Chain Move): Each chain move contains a set
of movements for one or several cells.

A chain move involving multiple cells is usually triggered
by the attempts of inserting a cell into a position resulting in
overlaps with existing cells in that region, so the overlapped
cells need to find new positions to resolve overlaps. If a cell is
placed to a position without any overlap, there is only a single
movement in the chain move.

Definition 2 (Cell Pool): It is a queue structure used for
temporary storage of cells within a chain move.

In the example of Fig. 3, cell t overlaps with cells g and j
when inserted to the dashed region, so cells g and j are added
to the cell pool. In the following steps, cells in the cell pool
are first popped out and placed until the cell pool goes empty,
which indicates the end of a chain move.

Definition 3 (Scoreboard): It consists of an array of chain
move entries with corresponding changes in wirelength cost
for each chain move.

1240 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018

(a) (b)

(c) (d)

Fig. 4. Chain move example of (a) first movement: place cell t to p1 from
p0

1 and push overlapped cell g and j to cell pool, (b) second movement: pop
cell g from cell pool and place to p2 from p0

2, (c) third movement: pop cell
j from cell pool and place to p3 from p0

3, and (d) corresponding chain move
entry in scoreboard.

TABLE I
NOTATIONS USED IN CHAIN MOVE ALGORITHM

Since the positions of all cells are determined at the end of
a chain move, we can compute accurate wirelength cost and
record the differences with that at the beginning of the chain
move. The scoreboard can help find a cumulatively good solu-
tion instead of that in a very greedy approach which usually
requires improvements in each movement.

For the chain move example in Fig. 3, Fig. 4 gives the
corresponding example of interaction between the cell pool
and scoreboard. Here the horizontal cylinders on top of each
Fig. 4(a)–(c) indicate the status of the cell pool before any
movement, while the ones on the bottom indicate the status
after the movements. At the beginning of the first movement,
the cell pool is empty. Cell t is moved to position p1 from
p0

1 but results in overlap with cells g and j during the first
movement, so they are pushed into the cell pool. In the sec-
ond movement, cell g is popped from the cell pool and moved
to position p2 from p0

2 to resolve overlap. Similarly, the third
movement places cell j to position p3 from p0

3. Fig. 4(d)
shows the corresponding chain move entry in the scoreboard,
which not only records each movement but also the change of
wirelength cost before and after this chain move.

1) Overview of Chain Move Algorithm: The overview of
the chain move algorithm is shown in Algorithm 1 and the
notations are defined in Table I. In general each cell is only
allowed to move once during one iteration. The function
ReorderCells in line 1 of Algorithm 1 shuffles the cell

Algorithm 1 Chain Move Algorithm
Require: A set of placed cells C in the layout.
Ensure: Move cells to minimize wirelength cost.
1: ReorderCells(C);
2: Re-structure C as a queue;
3: while C is not empty or Pool is not empty do
4: if Pool is not empty then
5: ci ← Pool.pop();
6: else
7: ci ← C.pop();
8: if ci has already been moved then
9: Continue;

10: end if
11: end if
12: ri ← ComputeSearchRegion(ci);
13: Ai ← collect candidate positions in ri;
14: costb ←∞;
15: for each aj ∈ Ai do
16: (costi, pi, Oi)← ComputeMoveCost(ci, aj);
17: if costi < costb then
18: costb ← costi; pb ← pi; Ob ← Oi;
19: end if
20: end for
21: Move ci to pb;
22: Pool.push(Ob);
23: Board.last.append(ci, p0

i → pb);
24: if Pool is empty then
25: Compute �WL for Board.last;
26: end if
27: end while
28: BacktraceToBestEntry(C, Board);

sequence in C. Then cell set C is copied to a first-in-first-out
queue structure and the main loop of chain move algorithm
begins.

Within the loop, we first try to fetch a cell from the cell
pool. If the cell pool is empty, we then obtain the first
cell ci in C. Then region ri for cell ci is computed for
search of candidate positions, which is completed by func-
tion ComputeSearchRegion. The power line alignment
constraints are considered during the selection of candidate
positions.

For each candidate position aj in Ai, the cost is computed by
function ComputeMoveCost and the position with the best
cost is applied to the cell from lines 15 to 28. When applying
the best position, it is necessary to push all the overlapped cells
in Ob to the cell pool and update the movement records in the
scoreboard. If the cell pool goes to empty after a movement,
which means the end of the chain move, we can now compute
the accurate wirelength change and update the scoreboard. At
the end of each pass, function BacktraceToBestEntry
scans the scoreboard to find the best cumulative wirelength.

2) Max Prefix Sum of Wirelength Improvement: Like that in
the well-known KL and FM partitioning algorithm [22], [23],
we have a scoreboard that records the wirelength changes in
each chain move, which helps find the maximum prefix sum
of wirelength improvement by BacktraceToBestEntry.
So the chain move scheme allows temporary degradation of
wirelength as long as it eventually achieves better solutions,
which can help find the best cumulative wirelength.

3) Constraints to Chain Move: There exist corner cases
where a cell may fail to find any legal position in its search
region. The corner case is likely to be triggered when all
cells in a dense region have already been moved in this pass,
because each cell is only allowed to move once in each pass.
If such corner cases are triggered, we discard current chain

LIN et al.: MrDP OF HETEROGENEOUS-SIZED CELLS FOR ADVANCED NODES 1241

and recover all the movements in this chain. Another corner
case lies in the involvement of too many cells in a chain,
which may result in the difficulty in searching for legal posi-
tions for the last cell. Therefore, we set an upper bound to the
length of a chain to avoid long chains. Any chain exceeding
the upper bound will trigger the discarding process. The max-
imum length of chain is set to 10 000, but it is never triggered
in the experiment.

Lemma 1: If the placement is legal at the beginning of a
chain move, the legality is maintained at the end of the chain
move.

Proof: If the chain is discarded, all movements are recov-
ered, so there is no perturbation to the placement. Otherwise,
the chain ends because the cell pool goes empty, which
means the last movement does not cause any overlap. So the
placement is still legal at the end of the chain move. The
maintenance of legality is very meaningful to avoid wirelength
degradation from extra legalization effort.

4) Visiting Order of Cells: The visiting order of cells dur-
ing each pass matters to the solution quality. If we keep a fixed
order for each iteration, the wirelength saturates quickly and
fails to descent further. So a suitable visiting order is essen-
tial to the solution quality under different objectives. Here we
discuss the details about the function ReorderCells for
different optimization objectives. In overlap reduction mode,
multiple-row height cells and large cells have higher prior-
ity, because it is easier for small cells to find overlap-free
positions and thus a legal placement can be found more effi-
ciently. When it comes to wirelength minimization from a legal
placement, those cells far away from their optimal regions are
granted with high priority, because higher gain can be achieved
by moving cells with longer distances.

5) Search Region Computation: We discuss the function
ComputeSearchRegion here on search region computa-
tion. First we compute the optimal region as most previous
global move algorithms do [18], but it is often congested. We
extend the optimal region by mirroring the original position
of the cell to the center of the optimal region and form a new
box. Any bin intersecting with the search region will be con-
sidered for collection of candidate positions to the set Ai. We
check bins from the ones close to the optimal region to farther
ones. We observe that after several updates in lines 18–20 for
each cell, the final solution quality converges. To save runtime
we exit early from the loop after trying several positions for
each cell in the experiment.

6) Move Cost Computation: Now we explain the func-
tion ComputeMoveCost. The objective of the placement
includes wirelength and density. In addition, each movement
may lead to overlapping cells that will be collected to the cell
pool. So the cost consists of three parts: 1) wirelength cost;
2) density cost; and 3) overlap cost, shown as follows:

cost = �WL · (1+ α · cd)+ β · cov (5)

where �WL denotes the wirelength cost, cd denotes density
cost, and cov denotes the overlap cost. The weights α and β

are set to 1.5 and 0.5 in the experiment.
Wirelength cost is in general defined as the HPWL change

for the movement. However, if the cell is connected to some
cells in the cell pool whose positions are not determined yet,
such connections are ignored.

In the density cost, we consider both area density and pin
density. In the placement that involves multiple-row height

cells, the cells can be very large and result in the intersections
with multiple bins. So the density increases in all bins are
summed up for cost. Let cad denote the cost of area density
and cpd denote the cost of pin density. Let B be the set of bins
intersected with the cell ci at candidate position pi and da(b)

and dp(b) denote the original area and pin density for bin b

cad =
∑

b∈B

∑

γ∈�
wγ · f (da,�da, ABUγ) (6a)

cpd =
∑

b∈B

∑

γ∈�
wγ · f (dp,�dp, APUγ) (6b)

cd = 0.5×
(

cad

da
t
+ cpd

dp
t

)
(6c)

f (d,�d, d) =
{

�d
d , if d +�d ≥ d

0, otherwise
(6d)

where �da and �dp denote the area and pin density increase
in each bin, and da

t and dp
t denote the target area and pin

density for the layout, respectively. Function f computes the
density cost and the cost only happens when the new density
exceeds the average density of the top γ % bins. Although the
weights for cad and cpd can be adjusted for different targets,
we set them equal in the experiment for simplicity.

The overlap cost cov is defined as the total area of over-
lapped cells times the total number of pins divided by row
height. As the overlapped cells need to be inserted to the cell
pool which results in the inaccuracy of wirelength cost com-
putation, fewer pins are preferred for less contribution to the
wirelength cost.

There are some hard constraints for a candidate position that
lead to invalidate this candidate. Each overlapped cell must be
no larger than current cell; otherwise, it is even more difficult
to find legal positions for those overlapped cells. The over-
lapped cells must not be moved yet in current pass, because
each cell can only move once within each pass of iteration.

7) Various Optimization Modes: The chain move algo-
rithm can be configured for various modes, such as overlap
reduction, wirelength minimization and density recovery. For
overlap reduction mode, the main difference lies in the func-
tion BacktraceToBestEntry which will not be called in
overlap reduction mode, because we observe that applying all
the chain moves removes most of the overlaps regardless of
potential wirelength degradation. Empirically we often still get
some wirelength improvements. In this mode, there is an addi-
tional part of displacement cost added to (5). The purpose of
the displacement cost is to reduce the perturbation to the global
placement solution.

In wirelength minimization mode, we also perform local
clustering of horizontally abutting cells in every odd iteration.
For any pair of single-row height cells ci and cj which hori-
zontally abut to each other, if they share at least one net and
either of them is located at the boundary of the bounding box
of the shared net, we cluster them and merge their nets into the
new cluster, as the bounding box of the shared net is likely
to achieve further reduction by moving both cells together.
The process starts from scanning cells from left to right in
each placement row and an existing cluster is also allowed
to merge with another cell to form a larger cluster. We avoid
any cluster which involves more than five cells because large
clusters are typically difficult to find available locations with-
out large perturbation to other cells. The clustering scheme is

1242 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018

performed in alternative iterations (e.g., every odd iteration)
because we expect in every even iteration the flat chain moves
to perturb the potential clustering solutions which avoids to fall
into local optimum quickly. This is inspired by the coarsen-
ing and uncoarsening scheme in partitioning algorithms like
hMetis [24]. After chain move iterations, we fix multiple-row
height cells and perform conventional global move to single-
row height cells for further wirelength improvements. This
incremental step usually converges in one or two iterations.

In density recovery mode, we perform the chain move algo-
rithm on cells in those densest bins (e.g., top 20% dense bins)
and increase the weight of density cost in (5) (i.e., α = 10
and β = 2). The function ComputeSearchRegion returns
a large region centered by the current position of the cell
instead of computed from its optimal region which is usu-
ally congested. In the function BacktraceToBestEntry,
we allow small amount of wirelength degradation (e.g., 0.5%
in the experiment) for density improvement.

B. Ordered Double-Row Placement

The ordered single-row placement has been well explored
in detailed placement for wirelength minimization and legal-
ization [17], [20], [25]–[28]. There are also many single-row
algorithms designed for manufacturability compliance, such as
multiple patterning lithography, FinFET process, and E-beam
lithography [29]–[38]. The problem can be formulated into a
dual min-cost flow problem that can be solved in O(n2log m2)

time complexity for wirelength minimization [25], where n is
the number of cells in a row and m is the number of nets
involved. The runtime is reduced to O(m log m) by the clump-
ing algorithm from [26]. If each cell in a row has a maximum
displacement M, the problem can be transferred to a shortest
path problem and a DP-based algorithm is able to solve the
problem in O(M2n) [20], [33]. It can be further improved to
O(Mn) by exploiting the monotonicity and pruning the solu-
tion space [37]. However, most of these algorithms only focus
on single-row placement and are not able to deal with multiple-
row height cells. Here we define an ODR placement problem
as follows.

Problem 2 (ODR Placement): Given two rows of cells that
are ordered from left to right in each row, horizontally move
the cells to optimize HPWL without ruining the order of cells
in each row.

Please note that the two sequences of cells may contain
multiple-row height cells, shown in Fig. 5. Here are several
definitions to the cells in the double-row placement problem.

Definition 4 (Double-Row Region Rdr): The rectangular
region defined by the target two rows to be solved.

The target rows to be solved by double-row placement form
a rectangular box. The region defined by the other rows will be
referred to as a region outside the double-row region, denoted
by Rdr.

Definition 5 (Splitting Cell): Any multiple-row height cell
spans both rows in Rdr.

In Fig. 5, cells e and i cover both lower and upper row in
Rdr, so they are considered as splitting cells.

Definition 6 (Crossing Cell): Any multiple-row cell spans
only one of the two rows in Rdr.

Cells like g and j in Fig. 5 either take the lower or upper
row in Rdr, and also intersect with Rdr. They are considered
as crossing cells.

(a)

(b)

Fig. 5. Example of an (a) ideal case in ODR placement and a (b) general
case with large splitting cells and crossing cells such as cells e and j.

TABLE II
NOTATIONS IN ODR PLACEMENT

There are several cases to this problem. The ideal case is that
the double-row placement problem only consists of single-row
height cells and double-row height splitting cells, which means
all the cells will lie in Rdr, shown in Fig. 5(a). Two splitting
cells e and i separate the each row into three parts, i.e., par-
titions 1–3. But this is not often true due to the existence of
crossing cells and large splitting cells. Fig. 5(b) gives a gen-
eral case for the double-row placement problem where some
splitting cells and crossing cells span more than two rows.
In this case where cells e, g, and j spread out of the rows,
their movements must keep the order within the two rows and
not cause any overlap in the other rows. We will first explain
the algorithm with the ideal case in Fig. 5(a) and extend it to
handle the general cases. For simplicity, we further assume in
the ideal case, there is no inter-row connection between cells
in the lower and upper row within each partition. The general
double-row placement problem without ordering constraints is
very difficult, since the general single-row placement problem
is already known as NP-hard [39].

1) Nested Shortest Path Problem: We first formulate the
ODR placement problem into a nested shortest path problem
with outer and inner level. Then we solve it with a nested
DP algorithm. Table II gives the notations used in the ODR
placement problem. We define the maximum displacement M
such that each cell has K = 2M + 1 displacement values. Let
zij denote the jth position for splitting cell zi. Let r be the
number of splitting cells in Rdr, b be the number of cells in
the lower row of a partition, and t be the number of cells in
the upper row of a partition.

The key observation to the ODR placement problem is the
independence of subproblems within each partition provid-
ing the positions of splitting cells fixed. For instance, the
subproblem for cells in partition 1 of Fig. 5(a) becomes

LIN et al.: MrDP OF HETEROGENEOUS-SIZED CELLS FOR ADVANCED NODES 1243

(a) (b)

Fig. 6. (a) Outer-level shortest path problem that solves the positions of splitting cell z1, z2, . . . , zr . The weights of edges in each partition need to be
computed by solving the inner-level problems. (b) Inner-level problem computes the edge weight of zi−1,k → zij by solving the shortest path problem of
lower and upper row in the partition with given positions of the splitting cells zi−1,k and zij.

independent as long as the position of splitting cell e is deter-
mined. Similarly, the subproblem in partition 2 only relies
on the positions of splitting cells e and i. Therefore, if we
can determine the positions of the splitting cells, it is possi-
ble to solve the corresponding independent subproblem. With
such observation, we formulate a nested shortest path problem
shown in Fig. 6, where we solve the positions of all the split-
ting cells with an outer-level shortest path problem whose edge
weights are determined by a set of inner-level problems.

Fig. 6(a) gives the graph representation of the outer-level
shortest path algorithm where each node denotes a candi-
date position of a splitting cell. We need to find the shortest
path from s to t. However, the weights of edges in Fig. 6(a)
are not determined yet because the minimum placement cost
for cells within each partition is still unknown. With the
previous independence property, we can compute the weight
of any edge zi−1,k → zij by solving the inner-level problem
shown in Fig. 6(b). The inner-level problem consists of
two shortest path problems for the lower and upper row in
the partition. These two shortest path problems are inde-
pendent due to the assumption in ideal case that there is
no inter-row connection in a partition. Node zi−1,k and zij
serve as the starting and terminating node in the inner-level
problem.

2) Nested Dynamic Programming: In general any algo-
rithm that solves shortest path can be applied to the nested
shortest path problem defined above. For efficiency, we adapt
the DP algorithm in [37] to solve the nested shortest path
problem in the ODR placement, which results in a nested DP
scheme. Algorithm 2 gives the skeleton of the nested DP algo-
rithm. To highlight the nesting scheme, we omit the details
that are the same as the ordered single-row placement and
only keep the simplified key steps. The algorithm calls the
function SolveOuterLevel to solve the outer-level shortest
path problem. The kernel procedure of SolveOuterLevel
lies in the three loops from lines 7 to 15. The cost of
each candidate position is evaluated in lines 10–12 where
function ComputeDPCost computes the cost for zi−1 and
zij themselves and function SolveInnerLevel solves the
inner-level problem for cost in the partition. Within a partition,
SolveInnerLevel computes the cost of lower and upper
row separately with the cost function ComputeDPCost and
return the total cost. Since the DP for the inner-level problem
is the same as single-row version in the ideal case, the details
are omitted.

Algorithm 2 ODR Placement
Require: Two ordered sequences of cells.
Ensure: Shift cells to minimize wirelength.

1: . . . // prepare data SC
2: SolveOuterLevel(SC);
3: return
4:
5: function SOLVEOUTERLEVEL(SC)
6: . . .

7: for each zi ∈ SC, i← 2 to r do
8: for each di ∈ [−M, M] do
9: for each di−1 ∈ [−M, M] do

10: costi(di)←ComputeDPCost(di−1, di)
11: +SolveInnerLevel(di−1, di, PCi);

� process costi(di) in DP
12: end for
13: end for
14: end for
15: . . . // apply solution
16: end function
17:
18: function SOLVEINNERLEVEL(di−1, di, PCi)
19: cost1 ← solve DP for lower row in PCi;
20: cost2 ← solve DP for upper row in PCi;
21: return cost1 + cost2;
22: end function

The wirelength cost computed in ComputeDPCost adopts
the cost function defined in [18] for single-row placement. If
a cell ci connects to another cell cj in the same row and cj is
on the left of ci, we assume the position of cj is on the left
boundary of the row for wirelength cost computation; if cj is
on the right of ci in the same row, the position of cj is assumed
to be the right boundary of the row. For any cj in a different
row to ci, its actual position is used. This wirelength cost turns
out to be equivalent to HPWL in single-row placement and the
equivalence holds in the ideal case of double-row placement
as well.

Lemma 2: Algorithm 2 gives optimal solution for the wire-
length cost to the ODR placement under the ideal case.

The proof is omitted here due to page limit.
The runtime for Algorithm 2 turns out to be O(M2n) where

n is the total number of cells in Rdr. Considering the r + 1
partitions defined by r splitting cells, within each partition
PCi, the lower row contains bi cells and the upper row con-
tains ti cells. Assume ComputeDPCost takes constant time
and n 	 r. The DP scheme takes O(Mn) to solve single-
row placement [37]. So solving partition PCi for one time

1244 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018

takes O(Mbi)+O(Mti) in SolveInnerLevel. The runtime
complexity for Algorithm 2 can be computed as follows:

complexity ≈
r+1∑

i=1

M · (O(Mbi)+O(Mti))

= O
(

M2(n− r)
)
≈ O

(
M2n

)
. (7)

3) Extension to General Cases: The potential overlaps to
Rdr must be considered due to the existence of large splitting
cells and crossing cells in a general case. During the ODR
placement, any position of a cell overlapping with any place-
ment site already taken by other cells in Rdr should be avoided;
i.e., assign a very large cost to such positions. We can add a
large penalty to a position in ComputeDPCost without los-
ing the optimality since such penalty only depends on the
position of the cell itself.

However, under a general case, the wirelength cost com-
puted by ComputeDPCost in the inner-level problem is no
longer always equivalent to HPWL. because a cell in the lower
row of a partition may have connection with another cell in
the upper row. Such inaccuracy from the wirelength cost usu-
ally comes from short inter-row connections, so the overhead
is small. Besides wirelength, the nested DP scheme can also
be adapted to support other objectives, such as displacement
and local congestion.

Although ODR placement can minimize wirelength, it may
squeeze the whitespaces in dense regions and result in conges-
tion. To mitigate such side effects, we fix the cells in congested
regions and only move cells in low-density regions. In gen-
eral the algorithm can also be applied to resolve overlaps for
legalization, but the computation effort becomes an issue for
layouts with large amount of overlaps due to its quadratic rela-
tion with maximum displacement. Therefore, we adopt it as
an incremental optimization technique for legal designs.

C. Ordered Multiple-Row Placement

Despite various algorithms designed for single-row place-
ment mentioned in Section III-B, the dual network flow
formulation [25] is flexible enough to handle multiple rows
at the same time for total displacement minimization or wire-
length minimization while it is not limited by any constraint
from multiple-row height cells. The network flow can be
solved by various algorithms for dual min-cost flow with
proper graph transformation. Although there are brief theo-
retical derivations for this formulation [25], [40], its practical
insight and details remain to be explored.

We extend the definition of OMR placement from ODR
placement problem.

Problem 3 (OMR Placement): Given arbitrary number of
rows of cells that are ordered from left to right in each row,
horizontally move the cells to optimize total displacement or
HPWL without ruining the order of cells in each row.

The formulation of OMR is quite different from ODR. First,
supposing that OMR solves R rows simultaneously, it returns
the optimal solution of cells within the entire region of R
rows. If ODR is used to solve the same region, it needs to run
�(R/2)� times. In other words, ODR has to divide the region
before solving any region with R > 2. When the objective
includes wirelength which involves connections of cells in dif-
ferent rows, such division loses optimality even if ODR returns
optimal solutions of every two rows. Second, current algorithm
for ODR is realized by enumerating discrete displacement sites

for each cell in a nested DP scheme. In spite of its flexibil-
ity in the objective, its runtime complexity is quadratically
related to maximum displacement M, while in the network
flow formulation of OMR, the maximum displacement M does
not have to appear explicitly in the runtime complexity. We
do not need to tradeoff M for runtime at the cost of quality
degradation. Third, while ODR returns optimal solutions in
ideal case, it loses optimality in general cases as mentioned in
Section III-B3. The network flow algorithm can solve OMR
optimally even for general cases. Although generally most
multiple-row height cells are double-row height cells, OMR
is expected to outperform ODR if OMR is affordable in terms
of reasonable runtime.

1) Displacement Minimization: The problem to minimize
total displacement can be written as the following mathemat-
ical program:

Pm: min
∑

i∈N

∣∣∣xi − x0
i

∣∣∣ (8a)

s.t. xi − xj ≤ −wi, ∀(i, j) ∈ O (8b)

li ≤ xi ≤ ui, ∀i ∈ N (8c)

where N denotes the set of cells, O denotes the set of cell
pairs in which the order should be maintained without over-
lap, xi denotes the horizontal position of cell i, wi denotes
its width, and x0

i denotes its original position. The objective
in (8a) minimizes total displacement in L1 norm. The con-
straint (8b) ensures overlap free between horizontally abutting
cell i and j with wi as the width of cell i. The constraint (8c)
limits cell i to be within a movable range. We can further
remove the absolute operation in the objective by introducing
additional variable dl

i and dr
i for each cell and add constraints

dl
i − xi ≤ 0, ∀i ∈ N (9a)

dl
i ≤ x0

i , ∀i ∈ N (9b)

xi − dr
i ≤ 0, ∀i ∈ N (9c)

dr
i ≥ x0

i , ∀i ∈ N (9d)

where (9a) and (9b) guarantee that dl
i is no larger than the

smaller one of xi and x0
i , and (9c) and (9d) guarantee that dr

i
is no smaller than the larger one of xi and x0

i . The objective
in (8a) is changed to

min
∑

i∈N

dr
i − dl

i. (10)

The bound constraints in (8c), (9b), and (9d) can be converted
to differential constraints by introducing a single variable x̄
and replace all xi with x′i = xi + x̄, all dl

i with d′li = dl
i + x̄,

and all dr
i with d′ri = dr

i + x̄. Then the problem Pm(xi, dl
i, dr

i)

is transformed to problem P ′m(x′i, d′li , d′ri , x̄) with differential
constraints only as follows:

P ′m: min
∑

i∈N

d′ri − d′li , ∀i ∈ N (11a)

s.t. d′li − x′i ≤ 0, ∀i ∈ N (11b)

d′li − x̄ ≤ x0
i , ∀i ∈ N (11c)

x′i − d′ri ≤ 0, ∀i ∈ N (11d)

x̄− d′ri ≤ −x0
i , ∀i ∈ N (11e)

x′i − x′j ≤ −wi, ∀(i, j) ∈ O (11f)

li ≤ x′i − x̄ ≤ ui, ∀i ∈ N. (11g)

LIN et al.: MrDP OF HETEROGENEOUS-SIZED CELLS FOR ADVANCED NODES 1245

Once problem P ′m is solved, the solutions to Pm can be
easily derived by deducing x̄.

2) Generalized Formulation: We generalize all the vari-
ables x′i, d′li , d′ri , x̄ in (11a) to πi, introduce bi as the coefficient
of each variable in the objective, and introduce cij as the right
hand side for each differential constraint. Problem P ′m in (11a)
can be transformed to problem P(πi, αij) with additional slack
variable αij for each constraint

P: min
∑

i∈N

biπi +
∑

(i,j)∈E

uijαij (12a)

s.t. πi − πj − αij ≤ cij, ∀(i, j) ∈ E (12b)

sαij ≥ 0, ∀(i, j) ∈ E (12c)

where N represents the set of variable πi, E represents the set
of differential constraints, and uij is relatively large compared
with bi. For example, to construct (12a) from the objective
in (11a), the coefficients for d′ri are mapped to bi = 1, while
the coefficients for d′li are mapped bi = −1; to construct (12b)
from (11f), we set cij = −wi, and so forth.

While problem P matches problem P ′m exactly without vari-
able αij, the reason of introducing variable αij lies in the fact
that the input placement may not be legal in detailed placement
which often results in infeasible models of problem P ′m, it is
more meaningful to optimize the objective while minimizing
the violations to the constraints. Note that the infeasible model
not only comes from regions with utilization larger than 100%,
it may also come from the regions with utilization smaller
than 100% due to the existence of dead spaces introduced
by multiple-row height cells [12], [13]. Thus the objective
here is to optimize total displacement or HPWL with mini-
mum overlaps between cells. If problem P ′m is feasible, then
αij = 0 in the optimal solution of problem P due to large
uij and the optimal solutions to both problems are equivalent;
otherwise, problem P is still feasible and return a minimum
objective

∑
i∈N biπi + ∑

(i,j)∈E uijαij with some nonzero αij
indicating the violations to some differential constraints. If
uij is large enough, such violations can be minimized. For
an extreme case, when uij goes to infinity, problem P goes
unbounded when problem P ′m is infeasible. In the experiment,
we give uij a large enough value such as twice of the width
of a placement row.

The dual problem of problem P is associated to the min-cost
flow problem as follows [40]:

D: min
∑

(i,j)∈E

cijfij (13a)

s.t.
∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = −bi, ∀i ∈ N (13b)

0 ≤ fij ≤ uij, ∀(i, j) ∈ E (13c)

where fij denotes the flow on arc (i, j), cij denotes the cost of
flow, uij denotes the flow capacity on an arc, and −bi denotes
the supply of vertex i. Fig. 7(a) shows an example of mapping
from problem P to a network flow graph where the variable
πi is associated with the mass balance constraint of vertex i
and its solution can be obtained from the vertex potential.

An example of OMR placement and its corresponding
network flow graph are shown in Fig. 7(b) and (c) with total
displacement minimization. Each cell i introduces three ver-
tices where vertices dl

i and dr
i associate with variables d′li and

d′ri in problem P ′m (11a). Vertex xi associates with variable x′i.

(a) (b)

(c)

Fig. 7. (a) Mapping problem P to vertices and arcs in a network flow graph
where each vertex has a supply value and each arc has a cost value and a
capacity value. Example of (b) three cells for OMR placement problem P ′m
in (11a) and (c) corresponding network flow graph with nonzero vertex supply
values and nonzero arc cost values labeled, while arc capacity values are not
labeled.

The additional vertex introduced by variable x̄ is split into ver-
tices s and t for typical representation of network flow graph.
The dashed line between s and t means they can be either
merged or kept separate for min-cost flow algorithm. Each
differential constraint in (12b) corresponds to an arc with cost
cij and capacity uij. The nonzero supply values are labeled
next to each vertex and the overall supply is zero. Nonzero
costs are labeled along with arcs. The capacity uij of each arc
(i, j) is not shown in the figure for brevity. It can be an arbi-
trary large enough number to avoid violations of constraints in
problem P as aforementioned. By solving the network flow,
we can extract the potential of each vertex which is associated
with the solution of πi to problem P .

3) Wirelength Minimization: As mentioned, the OMR
placement problem with network flow formulation is also
capable of minimizing HPWL

Ph: min
∑

i∈E

ri − li (14a)

s.t. li − xj ≤ oj, ∀i ∈ E, j ∈ Ei (14b)

xj − ri ≤ −oj, ∀i ∈ E, j ∈ Ei

(8b) and (8c) (14c)

where E denotes the set of interconnections and Ei denotes the
set of cells in net i. Variables li and ri denote the left and right
boundary of the bounding box of net i, respectively. Variable
oj indicates the pin offset of cell j in net i. Similar transfor-
mation as above can be applied to construct an optimization
problem with differential constraints only such that it can be
transformed to the min-cost flow problem.

In general it is expensive to solve the OMR placement for
full layout, but we can divide the layout into row chunks
where each chunk takes R rows to trade performance for run-
time. For multiple-row height cells at the boundary of each
chunk, we treat them as fixed. Suppose there are R̂ rows in

1246 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018

the layout. Then we need to invoke the min-cost flow algorithm
for �(R̂/R)� times. Problem Ph (14a) generalizes and extends
the ODR placement problem in Section III-B. It is able to
solve more than two rows simultaneously and its runtime com-
plexity is correlated with number of cells and nets rather than
maximum displacement M, which indicates potential tradeoffs
under different configurations of R.

There are various min-cost flow algorithms like network
simplex, cost scaling, capacity scaling, etc. [41], while not
all of them support negative costs on arcs. To construct the
network flow graph that is compatible to different algorithms,
the negative costs can be removed by arc reversal [40] where
we can flip the sign of arc cost by adjusting the supply values
of its two vertices. With the flexibility of the network flow for-
mulation, the technique can be applied to either legalization
stage to remove as much overlap as possible, or post refine-
ment stage to further improve wirelength. While the technique
is not limited to constraints from multiple-row height cells, it
might suffer from efficiency issues if simply applied to full
layout. We demonstrate the performance, efficiency and vari-
ous tradeoffs of the multiple-row placement in Section IV. In
addition, both (11a) and (14a) describe linear programs, so we
also compare the efficiency of network flow algorithms with
LP algorithms. It needs to mention that since the row-based
placement techniques do not change the vertical positions of
cells, they follow the power line alignment constraints as long
as there is no violation in the input.

IV. EXPERIMENTAL RESULTS

Our algorithm was implemented in C++ and tested on
an eight-core 3.40-GHz Linux server with 32-GB RAM.
GUROBI [42] is used as the LP solver and LEMON [43] is
used as the min-cost flow solver. Single thread is used in the
experiment. We validate our algorithm on two sets of bench-
marks. The first set of benchmarks are generated from ACM
International Symposium on Physical Design (ISPD) 2005
placement benchmark suite by [11] with only single-row and
double-row height cells. Double-row height cells are randomly
generated from about 30% single-row height cells. The state-
of-the-art wirelength-driven global placer POLAR [9] is used
for global placement. We obtain the binary from [11] and all
the results are collected from our machine. The second set of
benchmarks are modified from ICCAD 2014 placement bench-
mark suite [44] in which we resize cells such as flip-flops to
double-row height and some large cells such as NAND4_X4
and INV_X32 to three- and four-row height cells. We adopt
the evaluation script from ICCAD 2013 placement contest to
verify the legality, wirelength and density of our placement
solution. The bin sizes are set to 9× 9 row heights according
to the evaluation script. The target pin density dp

t for APU
evaluation is set to the average pin density of top 60% dens-
est bins. Benchmarks and programs are released at link (http://
www.cerc.utexas.edu/utda/download/MrDP/index.html).

Table III shows the statistics of ISPD 2005 benchmarks
and Table IV shows the comparison between our algo-
rithm [11], [45]. The sizes of the designs vary from 200 K
to 2 M with utilizations from 67.70% to 91.10%. The ratio of
multiple-row height cells are shown as “DH.” The wirelength
for the input global placement solution is shown as “GP,”
which is not legalized yet. The results of our algorithm is
shown as “MrDP.” Runtime is shown as “CPU” in seconds.

TABLE III
ISPD 2005 BENCHMARK SUITE [11]

Since [11] only considers wirelength, we first compare
wirelength in which MrDP achieves smaller HPWL in all
benchmarks on an average of 1.2%. We can also see from the
table that MrDP can achieve even more significant improve-
ment in sHPWL, 3.7% on average, which indicates better cell
density in the placement solution. The ABU penalty from
MrDP is 20.2% smaller than that from [11] and APU penalty
shows 13.4% improvement. Although MrDP is slightly slower
than [11], even the largest benchmark with 2 million cells
can be finished within 10 min, which is still affordable in
placement.

Table V gives experimental results on modified ICCAD
2014 benchmarks. To the best of our knowledge, no published
detailed placers are reported to explicitly handle such bench-
marks with various multiple-row height cells yet. The ratio of
multiple-row height cells varies from 17.17% to 41.09% for
different benchmarks, shown as “MH.” The average percentage
of three-row height cells and four-row height cells is around
0.1%, which indicates most of the multiple-row height cells
are double-row height cells. We keep the same target utiliza-
tions as the contest setting. The data under “initial” denotes
the evaluation of initial solutions that still contain overlaps.
We can see that MrDP achieves 3.2% improvement in HPWL
and 4.7% improvement in sHPWL. The cell and pin density
penalty also decrease by 42.6% and 20.0%, respectively, from
initial placement, which is significantly improved from [45].
We ascribe the improvement in density to the OMR place-
ment and density recovery mode of chain move, where the
former achieves more wirelength reduction than ODR place-
ment and thus the latter has more margin to smooth density
with affordable wirelength increase.

A. HPWL and Runtime Breakdown

Fig. 8 shows the HPWL improvement and runtime break-
down of three benchmarks, b19, leon2, and netcard. The
HPWL improvement in Fig. 8(a) is the cumulative nor-
malized improvement after executing each step in the flow.
“Chain move WL” denotes the chain move in wirelength
minimization mode and “chain move density” denotes the
density refinement step. It is shown generally chain move
in wirelength minimization mode gives the most of wire-
length improvement, which also takes most part of the overall
runtime [around 60% in Fig. 8(b)], while OMR can further
reduce the wirelength after the convergence of chain move
with small runtime overhead [around 10% in Fig. 8(b)]. The
performance of OMR varies from benchmark to benchmark;
e.g., in benchmark b19, it improves the wirelength by
around 1.5%, while in benchmark netcard, the improvement
is only around 0.1%. The density refinement step slightly
degrades wirelength for density improvement.

http://www.cerc.utexas.edu/utda/download/MrDP/index.html
http://www.cerc.utexas.edu/utda/download/MrDP/index.html

LIN et al.: MrDP OF HETEROGENEOUS-SIZED CELLS FOR ADVANCED NODES 1247

TABLE IV
COMPARISON OF OUR ALGORITHM WITH WU et al. [11]

TABLE V
EXPERIMENTAL RESULTS ON MODIFIED ICCAD 2014 BENCHMARKS

(a)

(b)

Fig. 8. HPWL and runtime breakdown of benchmarks b19, leon2, and
netcard.

B. Visiting Order of Cells in Chain Move

Fig. 9 shows the comparison of various visiting order of
cells in chain move mentioned in Section III-A4. We can
see that it is not a good strategy to fix the visiting order of
cells, while random shuffling or sorting by distances to optimal
regions of cells gives better wirelength. The results indicate
that it is better to perturb the visiting order of cells in each
iteration for convergence to better wirelength.

C. Tradeoffs in Ordered Double-Row Placement

We also study the tradeoff between performance and run-
time for different maximum displacement M in ODR in

Fig. 9. Comparison between various ordering strategies in chain move on
ICCAD 2014 benchmarks. “Fixed” means no shuffling during each iteration
of chain moves. “Random” means the visiting order of cells is randomly
shuffled during each iteration. “Dist2OptRegion” means cells are ordered in
descending order of the distances to the optimal regions.

Fig. 10. With the increase of M, wirelength drops while
the runtime rises quadratically. The wirelength starts to sat-
urate after M goes larger than 8. To tradeoff runtime and
performance, we set M to 8 placement sites in the experiment.

D. Tradeoffs in Ordered Multiple-Row Placement

Although ODR is able to improve wirelength efficiently, it
is limited to solve two rows at a time. On the other hand,
the network flow formulation in Section III-C is able to solve
multiple rows simultaneously. We compare the wirelength and
runtime between ODR and OMR in Fig. 11. Since the solution
space of ODR is related to the maximum displacement M,
we try various M values. The row chunk size R for OMR is
set to 18. In the experiment, OMR can on average achieve
3.6× HPWL improvement than ODR with M = 8 and 3.4×
HPWL improvement than that with M = 16, while the average
runtime for OMR is comparable to ODR with M = 16.

Fig. 12 gives the tradeoffs between wirelength and runtime
for R. With the increase of R, the wirelength drops while the

1248 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018

Fig. 10. HPWL and runtime tradeoffs for M in ODR on benchmark leon2.

(a)

(b)

Fig. 11. Comparison between ODR (maximum displacement M = 8 and
M = 16) and OMR (R = 18) on ICCAD 2014 benchmarks. (a) HPWL
improvement. (b) Runtime.

runtime almost increase linearly. We choose R = 18 with
affordable runtime and reasonable wirelength improvement.
With the HPWL improvement from OMR, there is more mar-
gin for the follow-up density recovery step in Section III-A7 to
improve density while allowing slight wirelength degradation,
which explains the improvements of ABU and APU from [45]
in Tables IV and V.

The comparison of runtime between various min-cost flow
algorithms and LP is shown in Fig. 13. The efficiency of min-
cost flow algorithms varies from problem to problem. Previous
study shows that cost scaling algorithm in general is suitable to
large graph with relatively low degree, while network simplex
algorithm is suitable to small graph with high degree [41].
In our experiment, network simplex is the most efficient for
OMR among all the algorithms including LP (on average 2.2×
slower). The vertices with large degree are probably from ver-
tices to denote left and right boundaries of nets which involve
in a lot of cells. The capacity scaling algorithm turns out to
be the slowest (on average 209.0× slower than network sim-
plex) due to large number of arcs and large capacity values

Fig. 12. Trend of HPWL and runtime with R for OMR based on the results
of benchmark leon2.

Fig. 13. Runtime comparison between various min-cost flow algorithms and
LP to solve OMR with R = 18 on various sizes of ICCAD 2014 benchmarks.
NS: network simplex; LP: linear programming; COS: cost scaling; and CAS:
capacity scaling. Both axes are in log scale for easier analysis.

on arcs. Our experiments actually show almost linear correla-
tion between the runtime of network simplex and the sizes of
benchmarks. Therefore, we adopt network simplex algorithm
to solve the min-cost flow problem.

It needs to mention that our objective aims at wirelength
and density optimization under given maximum displacement,
while the problem in [4] tries to remove overlaps and min-
imize total displacement. Our techniques often end up with
better wirelength than [4], but larger total displacement, due
to different objectives.

V. CONCLUSION

In this paper, we have addressed the placement challenges
in advanced technology nodes and proposed a detailed placer
for heterogeneous-sized cells to help resolve these challenges.
Three major techniques have been introduced to generalize the
optimization of both single-row height cells and multiple-row
height cells, including a chain move scheme to find maximum
prefix sum of wirelength improvement, a nested DP algorithm
for double-row placement, and a network flow-based algorithm
for multiple-row placement. Experimental results demon-
strate our algorithm outperforms the most recent detailed
placer for multiple-row height cells in both wirelength and
density.

REFERENCES

[1] M. P.-H. Lin, C.-C. Hsu, and Y.-T. Chang, “Recent research in clock
power saving with multi-bit flip-flops,” in Proc. IEEE Int. Midwest Symp.
Circuits Syst. (MWSCAS), Seoul, South Korea, 2011, pp. 1–4.

[2] C.-C. Tsai, Y. Shi, G. Luo, and I. H.-R. Jiang, “FF-bond: Multi-bit
flip-flop bonding at placement,” in Proc. ACM Int. Symp. Phys.
Design (ISPD), Stateline, NV, USA, 2013, pp. 147–153.

LIN et al.: MrDP OF HETEROGENEOUS-SIZED CELLS FOR ADVANCED NODES 1249

[3] C.-C. Hsu, Y.-C. Chen, and M. P.-H. Lin, “In-placement clock-tree
aware multi-bit flip-flop generation for power optimization,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose, CA,
USA, 2013, pp. 592–598.

[4] W.-K. Chow, J. Kuang, X. He, W. Cai, and E. F. Y. Young, “Cell density-
driven detailed placement with displacement constraint,” in Proc. ACM
Int. Symp. Phys. Design (ISPD), Petaluma, CA, USA, 2014, pp. 3–10.

[5] T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang, “NTUplace:
A ratio partitioning based placement algorithm for large-scale mixed-size
designs,” in Proc. ACM Int. Symp. Phys. Design (ISPD), San Francisco,
CA, USA, 2005, pp. 236–238.

[6] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0: A fast multilevel
quadratic placement algorithm with placement congestion control,” in
Proc. IEEE/ACM Asia South Pac. Design Autom. Conf. (ASPDAC),
Yokohama, Japan, 2007, pp. 135–140.

[7] M.-C. Kim, D.-J. Lee, and I. L. Markov, “SimPL: An effective placement
algorithm,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 31, no. 1, pp. 50–60, Jan. 2012.

[8] M.-C. Kim, N. Viswanathan, C. J. Alpert, I. L. Markov, and S. Ramji,
“MAPLE: Multilevel adaptive placement for mixed-size designs,” in
Proc. ACM Int. Symp. Phys. Design (ISPD), Napa, CA, USA, 2012,
pp. 193–200.

[9] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev, “POLAR:
A high performance mixed-size wirelengh-driven placer with density
constraints,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 34, no. 3, pp. 447–459, Mar. 2015.

[10] J. Lu et al., “ePlace-MS: Electrostatics-based placement for mixed-
size circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 34, no. 5, pp. 685–698, May 2015.

[11] G. Wu and C. Chu, “Detailed placement algorithm for VLSI design with
double-row height standard cells,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 35, no. 9, pp. 1569–1573, Sep. 2016.

[12] W.-K. Chow, C.-W. Pui, and E. F. Y. Young, “Legalization algorithm for
multiple-row height standard cell design,” in Proc. ACM/IEEE Design
Autom. Conf. (DAC), Austin, TX, USA, 2016, pp. 1–6.

[13] C.-H. Wang et al., “An effective legalization algorithm for mixed-cell-
height standard cells,” in Proc. IEEE/ACM Asia South Pac. Design
Autom. Conf. (ASPDAC), 2017, pp. 450–455.

[14] C.-Y. Hung, P.-Y. Chou, and W.-K. Mak, “Mixed-cell-height stan-
dard cell placement legalization,” in Proc. ACM Great Lakes Symp.
VLSI (GLSVLSI), Banff, AB, Canada, 2017, pp. 149–154.

[15] J. Chen, Z. Zhu, W. Zhu, and Y.-W. Chang, “Toward optimal legaliza-
tion for mixed-cell-height circuit designs,” in Proc. ACM/IEEE Design
Autom. Conf. (DAC), Austin, TX, USA, 2017, pp. 1–6.

[16] Y. Lin, B. Yu, and D. Z. Pan, “Detailed placement in advanced tech-
nology nodes: A survey,” in Proc. IEEE Int. Conf. Solid-State Integr.
Circuit Technol. (ICSICT), Hangzhou, China, 2016, pp. 836–839.

[17] U. Brenner and J. Vygen, “Faster optimal single-row placement with
fixed ordering,” in Proc. IEEE/ACM Design Autom. Test Eurpoe (DATE),
Paris, France, 2000, pp. 117–121.

[18] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed
placement algorithm,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), San Jose, CA, USA, 2005, pp. 48–55.

[19] S. Popovych et al., “Density-aware detailed placement with instant
legalization,” in Proc. ACM/IEEE Design Autom. Conf. (DAC),
San Francisco, CA, USA, 2014, pp. 1–6.

[20] T. Taghavi et al., “New placement prediction and mitigation tech-
niques for local routing congestion,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), San Jose, CA, USA, 2010,
pp. 621–624.

[21] M.-C. Kim, N. Viswanathan, Z. Li, and C. Alpert, “ICCAD-2013 CAD
contest in placement finishing and benchmark suite,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), San Jose, CA, USA, 2013,
pp. 268–270.

[22] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Syst. Tech. J., vol. 49, no. 2, pp. 291–307,
Feb. 1970.

[23] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Proc. ACM/IEEE Design Autom.
Conf. (DAC), Las Vegas, NV, USA, 1982, pp. 175–181.

[24] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning: Application in VLSI domain,” in Proc. ACM/IEEE
Design Autom. Conf. (DAC), Anaheim, CA, USA, 1997, pp. 526–529.

[25] J. Vygen, “Algorithms for detailed placement of standard cells,” in Proc.
IEEE/ACM Design Autom. Test Eurpoe (DATE), Paris, France, 1998,
pp. 321–324.

[26] A. B. Kahng, P. Tucker, and A. Zelikovsky, “Optimization of lin-
ear placements for wirelength minimization with free sites,” in
Proc. IEEE/ACM Asia South Pac. Design Autom. Conf. (ASPDAC),
Hong Kong, 1999, pp. 241–244.

[27] A. B. Kahng, I. L. Markov, and S. Reda, “On legalization of row-based
placements,” in Proc. ACM Great Lakes Symp. VLSI (GLSVLSI), Boston,
MA, USA, 2004, pp. 214–219.

[28] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: Fast legal-
ization of standard cell circuits with minimal movement,” in Proc. ACM
Int. Symp. Phys. Design (ISPD), Portland, OR, USA, 2008, pp. 47–53.

[29] B. Yu et al., “Design for manufacturability and reliability in extreme-
scaling VLSI,” Sci. China Inf. Sci., vol. 59, pp. 1–23, Jun. 2016.

[30] J.-R. Gao, B. Yu, R. Huang, and D. Z. Pan, “Self-aligned double
patterning friendly configuration for standard cell library considering
placement,” in Proc. SPIE, vol. 8684. San Jose, CA, USA, 2013,
Art. no. 868406.

[31] H. Tian, Y. Du, H. Zhang, Z. Xiao, and M. D. F. Wong, “Triple patterning
aware detailed placement with constrained pattern assignment,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose, CA,
USA, 2014, pp. 116–123.

[32] J. Kuang, W.-K. Chow, and E. F. Y. Young, “Triple patterning lithog-
raphy aware optimization for standard cell based design,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose, CA,
USA, 2014, pp. 108–115.

[33] B. Yu et al., “Methodology for standard cell compliance and detailed
placement for triple patterning lithography,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 5, pp. 726–739, May 2015.

[34] H.-A. Chien, Y.-H. Chen, S.-Y. Han, H.-Y. Lai, and T.-C. Wang, “On
refining row-based detailed placement for triple patterning lithography,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 5,
pp. 778–793, May 2015.

[35] Y. Lin, B. Yu, B. Xu, and D. Z. Pan, “Triple patterning aware
detailed placement toward zero cross-row middle-of-line conflict,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 7,
pp. 1140–1152, Jul. 2017.

[36] Y. Du and M. D. F. Wong, “Optimization of standard cell based detailed
placement for 16 nm FinFET process,” in Proc. IEEE/ACM Design
Autom. Test Europe (DATE), Dresden, Germany, 2014, pp. 1–6.

[37] Y. Lin et al., “Stitch aware detailed placement for multiple E-beam
lithography,” Integr. VLSI J., vol. 58, pp. 47–54, Jun. 2017.

[38] W. Ye et al., “Placement mitigation techniques for power grid
electromigration,” in Proc. IEEE Int. Symp. Low Power Electron.
Design (ISLPED), Taipei, Taiwan, 2017, pp. 1–6.

[39] S. Chowdhury, “Analytical approaches to the combinatorial optimiza-
tion in linear placement problems,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 8, no. 6, pp. 630–639, Jun. 1989.

[40] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Beijing, China: Pearson, 2005.

[41] Z. Király and P. Kovács, “Efficient implementations of minimum-cost
flow algorithms,” CoRR, vol. abs/1207.6381, 2012. [Online]. Available:
http://arxiv.org/abs/1207.6381

[42] Gurobi Optimizer Reference Manual, Gurobi Optim. Inc., Houston, TX,
USA, 2016. [Online]. Available: http://www.gurobi.com

[43] LEMON. Accessed: Sep. 30, 2015. [Online]. Available:
http://lemon.cs.elte.hu/trac/lemon

[44] M.-C. Kim, J. Hu, and N. Viswanathan, “ICCAD-2014 CAD contest
in incremental timing-driven placement and benchmark suite,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose, CA,
USA, 2014, pp. 361–366.

[45] Y. Lin et al., “MrDP: Multiple-row detailed placement of heterogeneous-
sized cells for advanced nodes,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Austin, TX, USA, 2016, pp. 1–8.

Yibo Lin received the B.S. degree in microelectron-
ics from Shanghai Jiaotong University, Shanghai,
China, in 2013. He is currently pursuing the
Ph.D. degree with the Department of Electrical
and Computer Engineering, University of Texas at
Austin, Austin, TX, USA.

Mr. Lin was a recipient of the Franco Cerrina
Memorial Best Student Paper Award at the
SPIE Advanced Lithography Conference 2016, the
University Graduate Continuing Fellowship in 2017.

http://arxiv.org/abs/1207.6381
http://www.gurobi.com
http://lemon.cs.elte.hu/trac/lemon

1250 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 6, JUNE 2018

Bei Yu (S’11–M’14) received the Ph.D. degree
from the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin,
TX, USA, in 2014.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Dr. Yu was a recipient of four best paper awards
at the 2017 International Symposium on Physical
Design, the 2016 SPIE Advanced Lithography
Conference, the 2013 International Conference on

Computer Aided Design, and the 2012 Asia and South Pacific Design
Automation Conference 2012, and three ICCAD contest awards in 2012,
2013, and 2015. He has served in the Editorial Board of Integration, the
VLSI Journal and IET Cyber-Physical Systems: Theory and Applications.

Xiaoqing Xu (S’15–M’17) received the B.S. degree
in microelectronics from Peking University, Beijing,
China, in 2012 and the M.S.E. and Ph.D. degrees
in electrical and computer engineering from the
University of Texas at Austin, Austin, TX, USA, in
2015 and 2017, respectively.

He is currently a Senior Research Engineer with
ARM Research, Austin, TX, USA.

Dr. Xu was a recipient of numerous awards,
including the Golden Medal at ACM Student
Research Competition at ICCAD 2016, the

University Graduate Continuing Fellowship in 2016, the SPIE BACUS
Fellowship in 2016, the Best in Session Award at SRC TECHCON 2015,
the William J. McCalla Best Paper Award at ICCAD 2013, and the CAD
Contest Award at ICCAD 2013.

Jhih-Rong Gao received the B.S. and M.S. degrees
in computer science from National Tsing Hua
University, Hsinchu, Taiwan, in 2005 and 2007
respectively, and the Ph.D. degree in electrical and
computer engineering from the University of Texas
at Austin, Austin, TX, USA, in 2014.

She was an Research and Development Engineer
with Synopsys Inc., Hsinchu, Taiwan, from 2007 to
2009. In 2014, she joined Cadence Design Systems
Inc., Austin, TX, USA, where she is a Principle
Software Engineer researching on improving the

algorithms and interactions for placement, routing, and clock tree synthesis.
Dr. Gao was a recipient of the BACUS Photomask Scholarship from SPIE

in 2013.

Natarajan Viswanathan received the Ph.D. degree
in computer engineering from Iowa State University,
Ames, IA, USA, in 2009.

From 2006 to 2016, he was with IBM Research
and IBM Systems, Austin, TX, USA. architecting
core design automation tools and methodologies
used in the design of multiple generations of high-
performance microprocessor and ASIC designs. He
joined Cadence Design Systems Inc., Austin, TX,
USA, in 2016, where he is a Software Architect
researching on next-generation solutions for clock-

ing. He has published over 30 refereed conference and journal papers and
holds over 20 patent grants in the field of EDA.

Dr. Viswanathan was a recipient of the Best Paper Award at ISPD 2004, the
best paper nomination at DAC 2007, two best paper nominations at ISPD 2012
for his work on IC placement, and the ACM SIGDA Technical Leadership
Award for his work in organizing worldwide CAD contests. He was the
Contest Chair for the ISPD 2011, DAC 2012, and ICCAD 2012 CAD contests
on placement. He has served on the Technical Program Committee of major
conferences, including DAC, ICCAD, and ISPD. Over the last two years, he
has served as the Subcommittee Co-Chair for the back-end design and IP
track at DAC.

Wen-Hao Liu received the B.S. and Ph.D. degrees
in computer science from National Chiao Tung
University, Hsinchu, Taiwan, in 2008 and 2013,
respectively.

He is currently a Senior Principal Engineer with
Cadence Design Systems Inc., Austin, TX, USA. He
is the main developer of the next-generation global
routing, clock routing, and Steiner tree generation
engines used in Cadence’s tools. His current research
interests include routing, placement, and clock syn-
thesis. He has published 27 papers and holds five

patents in the above areas.
Dr. Liu has served on the Technical Program Committee of DAC, ISPD,

and ASPDAC in the physical design tracks.

Zhuo Li (S’01–M’05–SM’09) received the B.S. and
M.S. degrees in electrical engineering from Xi’an
Jiaotong University, Xi’an, China, and the Ph.D.
degree in computer engineering from Texas A&M
University, College Station, TX, USA, in 2005.

He is currently with Cadence Design Systems,
Austin, TX, USA, where he manages a team to
deliver high performance clocking solutions for the
Innovus Place&Route digital product.

Dr. Li was a recipient of IEEE CEDA Early
Career Award in 2013, and was selected to partic-

ipate in National Academy of Engineering’s 21st Annual U.S. Frontiers of
Engineering Symposium as one of 89 nations top engineering talent in both
academia and industry for ages 30–45 in 2015. He is an Associate Editor of
the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS. He currently serves as the Designer Track Chair
for the IEEE/ACM Design Automation Conference.

Charles J. Alpert (F’05) received the bachelor’s
degree from Stanford University, Stanford, CA,
USA, and the Doctorate degree in computer sci-
ence from University of California at Los Angeles,
Los Angeles, CA, USA, in 1996.

He is currently with Cadence Design Systems,
Austin, TX, USA, where he manages the clock team
for the Innovus Place&Route digital implementation
product.

David Z. Pan (S’97–M’00–SM’06–F’14) is cur-
rently the Engineering Foundation Professor with the
University of Texas at Austin, Austin, TX, USA. He
has published over 280 refereed technical papers,
and holds eight U.S. patents. He has graduated over
20 Ph.D. students who are currently holding key aca-
demic and industry positions. His current research
interests include cross-layer nanometer IC design
for manufacturability, reliability, security, physical
design, analog design automation, and CAD for
emerging technologies.

Prof. Pan was a recipient of a number of awards for his research con-
tributions, including the SRC 2013 Technical Excellence Award, DAC Top
10 Author in Fifth Decade, ASP-DAC Frequently Cited Author Award, and
14 best paper awards. He has served as a Senior Associate Editor for ACM
Transactions on Design Automation of Electronic Systems, an Associate Editor
for a number of other journals. He has served in the Executive and Program
Committees of many major conferences, including ASPDAC 2017 Program
Chair and ICCAD 2018 Program Chair. He is a fellow of SPIE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

