
75

Incremental Layer Assignment for Timing Optimization

DERONG LIU, The University of Texas at Austin, Austin, Texas
BEI YU, The Chinese University of Hong Kong, Hong Kong
SALIM CHOWDHURY, Austin, Texas
DAVID Z. PAN, The University of Texas at Austin, Austin, Texas

With VLSI technology nodes scaling into the nanometer regime, interconnect delay plays an increasingly
critical role in timing. For layer assignment, most works deal with via counts or total net delays, ignoring
critical paths of each net and resulting in potential timing issues. In this article, we propose an incremental
layer assignment framework targeting delay optimization in timing the critical path of each net. A set of novel
techniques are presented: self-adaptive quadruple partition based on K×K division benefits the runtime;
semidefinite programming is utilized for each partition; and the sequential mapping algorithm guarantees
integer solutions while satisfying edge capacities; additionally, concurrent mapping offers a global view of
assignment and post delay optimization reduces the path timing violations. The effectiveness of our work is
verified by ISPD’08 benchmarks.

Categories and Subject Descriptors: B.7.2 [Hardware, Integrated Circuit]: Design Aids

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Layer assignment, critical path timing, semidefinite programming

ACM Reference Format:
Derong Liu, Bei Yu, Salim Chowdhury, and David Z. Pan. 2017. Incremental layer assignment for timing
optimization. ACM Trans. Des. Autom. Electron. Syst. 22, 4, Article 75 (June 2017), 25 pages.
DOI: http://dx.doi.org/10.1145/3083727

1. INTRODUCTION

In emerging technology nodes, transistor and interconnect feature sizes are scaling
further into the nanometer regime, and thus timing issues on interconnects are dom-
inant in modern design closure [Chen et al. 2014]. As an integral part of the timing
convergence flow, global routing determines the topologies of all nets and thus is critical
for performance optimization [Hu and Sapatnekar 2001].

As a key step of global routing, layer assignment is important for assigning net
segments into appropriate metal layers. Many metrics should be considered during
layer assignment, such as via counts, congestion, timing issues, and so forth. Since each
net may have one or several timing paths, layer assignment should also pay attention
to the segments on these critical paths to avoid potential timing violations. Besides,
in advanced technology nodes, resistance and capacitance values vary significantly

This work is supported in part by NSF SRC, NSFC, Oracle, and the Chinese University of Hong Kong
(CUHK) Direct Grant for Research.
Authors’ addresses: D. Liu and D. Z. Pan, Department of Electrical and Computer Engineering, The
University of Texas at Austin, TX USA; emails: {deronliu, dpan}@cerc.utexas.edu; B. Yu, Department
of Computer Science and Engineering, The Chinese University of Hong Kong, NT, Hong Kong; email:
byu@cse.cuhk.edu.hk; S. Chowdhury, Austin, TX USA; email: salimuc@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1084-4309/2017/06-ART75 $15.00
DOI: http://dx.doi.org/10.1145/3083727

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

http://dx.doi.org/10.1145/3083727
http://dx.doi.org/10.1145/3083727

75:2 D. Liu et al.

among different metal layers [Hsu et al. 2014]: higher metal layers are wider with
lower resistance, while lower metal layers are thinner with higher resistance values.
Thus, high layers are more attractive for timing critical nets that may introduce serious
timing issues. Nevertheless, since there exist edge capacity constraints for edges on
global routing grids for each metal layer, not all segments are allowed to be assigned
on higher layers. The segments leading to critical sinks of a net are preferred to be
assigned on high metal layers to reduce the potential timing violations. Therefore, an
intelligent layer assignment framework is necessary to reduce the critical path timing.

There are many layer assignment works, targeting minimization of via count, an-
tenna effect avoidance, timing optimization, and so forth [Lee and Wang 2008; Dai et al.
2009; Liu and Li 2011; Lee and Wang 2010; Ao et al. 2013; Yu et al. 2015a; Shi et al.
2016]. For via count minimization, a polynomial-time algorithm determines the net
order and then solves one net each time through dynamic programming considering
congestion issues [Lee and Wang 2008]. Dai et al. [2009] also apply a dynamic pro-
gramming for net-by-net layer assignment. However, the sequential net ordering lacks
a global view and thus affects the final performance because nets with higher priorities
have more layer selections while those nets with lower priorities lack better resources.
To alleviate the net order limitation, Liu and Li [2011] adopt a negotiation-based
methodology to minimize via count and capacity violations. Meanwhile, antenna avoid-
ance is included during layer assignment where via counts are also reduced through
the min-cost max-flow model [Lee and Wang 2010]. Ao et al. [2013] focus on optimizing
via counts and net delay. Nevertheless, the via capacity model is not considered, and
thus, more wires may be assigned on high metal layers, resulting in capacity violations.
Very recently, Yu et al. [2015a] proposed an incremental layer assignment integrated
with a timing optimization engine. The proposed framework, TILA, is able to provide
a global view of minimizing the total net delay for the selected nets. As an extension,
Liu et al. [2017] additionally reduce the slew violations with a control of via overheads.
Also, Livramento et al. [2017] guide the global optimization of timing critical paths by
decoupling the layer assignment from timing analysis.

Although TILA [Yu et al. 2015a] can achieve the state-of-the-art layer assignment
results targeting timing optimization, it may still suffer from the following shortcom-
ings: (1) The optimization engine of TILA is based on Lagrangian relaxation, whose
performance may heavily rely on the initial values of multipliers. (2) In addition, when
via delay and via capacity are considered, layer assignment is similar to a quadratic
assignment problem [Queyranne 1986], which is essentially a nonlinear optimization
problem. However, to achieve extremely fast speed, TILA artificially approximates
some quadratic terms to a linear model, which may impact the layer assignment accu-
racy and performance. (3) Compared to TILA, we focus more on critical path timing in
each net instead of the total sum of net delays.

In this article, we propose a novel incremental layer assignment framework targeting
timing optimization for critical timing paths in nets, where our layer assignment tool
is able to achieve better timing optimization. Figure 1 compares the layer assignment
results between TILA and our work. Figure 1(a) gives the results from TILA, where
many pins have a delay of over 4.2 × 106. On the other hand, from Figure 1(b), we can
see that our framework can reduce the maximum delay since the worst pin has a delay
around 4.2 × 106. The contributions of our work are listed as follows:

—An integer linear programming (ILP) formulation is presented to optimize the critical
path delay of selected critical nets.

—A self-adaptive partitioning methodology based on K × K division benefits the
runtime.

—A semidefinite programming (SDP) relaxation is adopted for further speedup with a
post mapping methodology to guarantee integer solutions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

Incremental Layer Assignment for Timing Optimization 75:3

Fig. 1. Pin delay distribution of critical nets for benchmark adaptec1, where 0.5% of the nets are released
as critical nets. (a) Results from TILA [Yu et al. 2015a]. (b) Results from our incremental layer assignment
framework.

Fig. 2. Layer and grid model. (a) Layer model. (b) Net routing on grid model.

—A concurrent matching flow is attached to provide more concrete solutions for SDP
results, followed by a post delay optimization algorithm.

The remainder of this article is organized as follows. In Section 2, we provide some
preliminaries and the problem formulation. In Section 3, we first present the math-
ematical formulation to optimize critical path timing. Then we discuss a set of novel
techniques to further achieve a better tradeoff between solution quality and runtime.
In Section 4, we report the experimental results, followed by the conclusion in Section 5.

2. PRELIMINARIES

2.1. Graph Model

Figure 2(a) shows a layer model, where each layer supports unidirectional wires, ei-
ther in the horizontal or vertical direction, and the dotted lines represent the preferred
routing directions for each layer. Based on this, the layer assignment problem can
be modeled on a 3-dimensional grid graph [Hu and Sapatnekar 2001], as shown in
Figure 2(b). We can see that a layer is divided into a large set of rectangular tiles, rep-
resented by the vertices in the grid model. Furthermore, the edges connecting vertices
are divided into two sets: edges in the x/y-direction are for routing wires on layers and
edges in the z-direction are for vias between layers. Figure 2(b) shows a net routing on
the three-layer grid, which consists of segments and vias along the edges.

For x/y-direction edges, each of them has a specified routing capacity on different
layers, that is, cape(l) for each layer l. This is to say that the number of wires placed
on layer l of this edge should not be higher than cape(l). Figure 3(a) provides a detailed
illustration of edge capacity model, where the number of wires passing on Metal 2,
that is, M2, should not exceed four. Notably, for an incremental layer assignment
tool, considering that the nonreleased segments also occupy the routing resources,
we should deduct these segments from the original cape(l) so that the total number
of passing wires cannot exceed the number of physical tracks. Therefore, as seen in
Figure 3(a), when there is a non-released segment routed on the edge marked as blue

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

75:4 D. Liu et al.

Fig. 3. Illustration of capacity model. (a) Edge capacity model. (b) Via capacity model.

on M2, the current edge capacity, cape(l), should be set to three for released segments
to assign.

Similarly, there is also a specified via capacity constraint for vias passing through
each routing grid. The via capacity constraint is determined by the available routing
capacity of two edges associated with this vertex. Additionally, since stacked vias are
known to consume extra routing resources in each grid, here we mainly consider the
overflow caused by stacked vias in our framework, the same as Hsu et al. [2008], and
the impact of nonstacked vias will be taken into account as a future work. To make it
explicit, an illustration of via capacity model is shown in Figure 3(b). Meanwhile, we
should also take care of those nonreleased vias based on the original via capacity. In
fact, capg(l) represents the available routing via spaces for those released nets in our
framework. Therefore, for the lower left grid in Figure 3(b), the gray square represents
a via from a nonreleased net, so its occupied area should be counted for residual via
capacity constraints. As layer assignment works as an important step in global routing,
the available via capacity is computed as follows [Hsu et al. 2008]:

capg(l) =
⌊

(ww + ws) · Tilew · (rcape0 (l) + rcape1 (l))
2 · (vw + vs)2

⌋
− n′

v, (1)

where ww,ws, vw, vs, Tilew represent wire width, wire spacing, via width, via spacing,
and tile width, respectively. n′

v denotes the number of vias from nonreleased nets. For
vias between two layers, each layer has two edges connecting with grid g, that is, e0
and e1. Their available routing capacities are represented by rcape0 (l), rcape1 (l), respec-
tively, which are the residual available routing tracks considering the assignments of
segments. Different from cape(l) earlier, which does not consider released segments on
edge e, here rcape(l) provides the exact residual edge capacity including both released
and nonreleased segments. Therefore, from Equation (1), we can see that the allow-
able via number in each tile should not exceed the residual space divided by the via
area. This means the resulting stacked vias can only take advantage of the residual
routing spaces after all the wires have been routed. In Figure 3(b), for the circled edge,
its cape(2) is set to 2 but rcape(2) is set to 0 since two released segments occupy the
left routing resources. Then no vias are allowed to pass through this grid because two
connected edges are full to the capacity, that is, no residual space.

2.2. Timing Model

To calculate the timing cost of each net, we adopt the Elmore delay model, which is
generally utilized to estimate the wire delay during timing analysis. The timing costs
consist of segment delays and via delays, both of which depend on the layer resistance
and their corresponding downstream capacitance. Equation (2) gives the timing cost
calculation of segment si on layer l:

ts(i, l) = Re(l) · (Ce(l)/2 + Cd(i)), (2)

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

Incremental Layer Assignment for Timing Optimization 75:5

where Re(l), Ce(l) refer to the wire resistance and capacitance of the layer l on which
segment i passing edge e is assigned, and Cd(i) is the downstream capacitance of
segment i. It is seen that the timing cost of si depends on its downstream capacitance
Cd(i) and the corresponding resistance/capacitance values of its assigned layer. During
calculating Cd(i), the layer assignments of all downstream segments of segment si
should be taken into account. Thus, we compute Cd(i) from sinks to source in a bottom-
up manner based on the Elmore delay model. Besides, Re(l), Ce(l) can be computed
from specified technology libraries. With these provided parameters, the timing cost of
segment si for the Elmore delay is obtained.

Similarly, via timing cost is calculated as in Equation (3), which is determined by
via resistance and the downstream capacitance of its connected segments [Yu et al.
2015a]:

tv(i, j, p, q) =
q−1∑
l= j

Rv(l) · Cd(V (si, sp)), (3)

where segment si on layer j is connected with segment sp on layer q, Rv(l) is the
resistance of via between layers l and l + 1, and we assume layer j is lower than
layer q, while V (si, sp) corresponds to the set of stacked vias connecting segment si
and segment sp. Thus, the calculation of via delay mainly depends on via resistances
between layers and its corresponding downstream capacitance. In this work, the via
downstream capacitance, that is, Cd(V (si, sp)), is equal to that of its upstream segment,
which refers to the segment closer to the net driver, because via capacitance is not
considered in this work. Additionally, for vias through multiple layers, it is required
to add the via delay between two adjacent layers from the lowest to the highest layer.
Therefore, the integration of via delay is also able to benefit via consumptions.

2.3. Problem Formulation

Based on the grid model and timing model discussed in the preceding section, we define
the critical path layer assignment (CPLA) problem as follows:

Problem 1 (CPLA). Given a 3D grid graph, edge and layer information, initial
routing and layer assignment, and a set of critical nets, layer assignment reassigns
layers among critical and noncritical nets sharing metal resources onto layers in order
to minimize their critical path timing while satisfying the edge capacity constraints.

3. CPLA ALGORITHMS

In this section, we discuss the details of our framework to solve the CPLA problem.
First, we propose an integer linear programming (ILP) formulation. Then we relax this
formulation into semidefinite programming (SDP). To make this problem solvable for
SDP, a self-adaptive quadruple partitioning methodology is also presented to select
appropriate problem sizes for SDP. Then, we give the sequential mapping algorithm to
locate integer solutions, and a further concurrent matching strategy follows for better
optimization. Finally, we present a post delay optimization step to reduce potential
path timing violations.

3.1. ILP Formulation

As an incremental layer assignment work, similar to TILA, we take an initial solution
as an input and release a certain ratio of nets to be optimized. This ratio is termed
“critical ratio,” which determines the problem size intuitively. From the perspective of
timing optimization, we prefer to locate those critical nets on high and thick layers,
while the same ratio of nets with good timing will also be released and reassigned on

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

75:6 D. Liu et al.

low layers to provide the required routing resources. These nets are termed “noncritical
nets.” To make it explicit, both critical and noncritical nets will be reassigned in our
framework. Based on the grid model shown in Figure 2(b), each net is composed of a
sequence of segments that have the same length as a routing grid. Thus, those segments
belonging to “critical nets” are denoted as “critical segments,” and vice versa.

It is seen that CPLA utilizes a similar framework as TILA but distinguishes from
TILA in the following aspects: First, TILA cares about the sum of segments’ delay in a
net, while CPLA focuses on each net’s worst timing path. As a single net can be divided
into a set of paths, where each path corresponds to a single sink, the sink with the
worst timing overhead is identified as the critical sink, and its connected path is this
net’s critical path. Then the maximum path timing of each net can be acquired through
the delay of its critical sink. Here we do not take the cell information into account,
so we focus on the maximum path timing of each critical net. Therefore, during the
selection of critical nets, we choose those with the worst maximum path timing rather
than total delays. Second, the same ratio of noncritical nets should also be selected
to release high layer resources for those critical nets. Instead of optimizing all the
critical and noncritical nets simultaneously in TILA, CPLA places more emphasis on
those critical nets that will be assigned at first. After the assignment of critical nets,
a greedy method is adopted to assign these noncritical nets in a one-by-one way. Since
our optimal target is the maximum path timing of those critical nets, the assignment
details of noncritical nets will not be covered, but we follow a dynamic programming
method in order to control the via counts in Lee and Wang [2008]. Through optimizing
critical and noncritical nets separately, CPLA is able to provide sufficient high layer
resources for those critical nets to achieve better timing.

During the selection of critical nets, we measure the maximum path timing of each
net and select those with the worst values based on the specified ratio. Then, to select
a set of noncritical nets efficiently, we should search for those nets with the best timing
that also share the same edges with the critical ones as much as possible. And the
assigned layers of the noncritical nets should be higher than critical nets for resource
releasing. In summary, the selection procedure of noncritical nets is similar to Yu et al.
[2015a], but with one main difference: here we select the critical/noncritical nets based
on their maximum path timing instead of their total sum delays. Therefore, with the
maximum path timing and given critical ratio, a set of critical nets and noncritical nets
are selected for reassignment. More details of our proposed ILP formulation are given
as follows, while noncritical nets are not included in this formulation. As introduced in
Section 2, segment delay can be calculated based on Equation (2), and via delay based
on Equation (3). For convenience, notations used are listed in Table I.

Thus, we can obtain the ILP formulation as shown in Equation (4). This formulation
concerns all the segments and vias along the critical timing paths in all critical nets,
and also contains the branches due to the fact that they would affect the downstream
capacitance of the maximum path.

In our mathematical formulation, the constraint in Equation (4b) guarantees that one
segment can be assigned on one and only one layer. The constraint in Equation (4c) sets
the routing wire limit for those released segments of edge e on layer j, that is, cape(j).
Notably, cape(l) not only depends on its initial track number but also those nonreleased
segments passing through e on layer l. As shown in Figure 3(a), when the blue edge on
M2 has four available tracks initially but one of them has already been occupied by a
nonreleased net, the exact allowable routing capacity, that is, cape(2), should be set to
3. This means that at most three wires are allowed to be routed through this edge for
the released nets. In this way, we can see that cape(l) may vary for each edge e on the
same layer, due to the variance of existing nonreleased nets. Thus, for an incremental
assignment problem, the edge capacity constraint is more stringent than the initial

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

Incremental Layer Assignment for Timing Optimization 75:7

Table I. Notations Used for ILP Formulation

Nc set of all critical nets
L set of all layers
S set of all segments
E set of all edges in the whole grid model
G set of global routing grids

S(Nc) set of all segments for all critical nets Nc
Sx(Nc) set of all pairs of segments of critical nets Nc while two

segments in a pair are being connected by one or more vias
Sx(Nc, g) set of all pairs of segments of critical nets Nc passing

through one routing grid g
Se set of released critical segments on edge e ∈ E

V (si, sp) set of vias connecting critical segments si and segment sp
xij binary variable, set to 1 if segment si is assigned to layer j

ts(i, j) timing cost when critical segment si is assigned to layer j
yijpq binary variable, set to 1 if both xij and xpq are set to 1

tv(i, j, p, q) timing cost for vias in V (si, sp) from layer j to q
cape(l) available routing capacity of edge e on layer l for released segments
rcape(l) residual routing capacity of edge e on layer l after routing all nets
capg(l) available via capacity of node g on layer l for released nets

problem.

min
∑

i∈S(Nc)

L∑
j=1

ts(i, j) · xij +
∑

i,p∈Sx(Nc)

L−1∑
j=1

L−1∑
q=1

tv(i, j, p, q) · yijpq, (4a)

s.t.
∑

j

xij = 1, ∀i ∈ S(Nc), (4b)

∑
i∈S(e)

xij ≤ cape(j), ∀e ∈ E, (4c)

∑
(i,p)∈Sx(Nc,g)

yijpq + nv(xij + xpq) ≤ capg(l), ∀l, j < l < q, g ∈ G, (4d)

xij ≥ yijpq, ∀(i, p) ∈ Sx(Nc), j, q ∈ L, (4e)

xpq ≥ yijpq, ∀(i, p) ∈ Sx(Nc), j, q ∈ L, (4f)

xij + xpq ≤ yijpq + 1, ∀(i, p) ∈ Sx(Nc), j, q ∈ L, (4g)

yijpq is binary, ∀(i, p) ∈ Sx(Nc), j, q ∈ L, (4h)

xij is binary, ∀i ∈ S(Nc), j ∈ L. (4i)

Considering the possible existing edge overflows from the input, we extend this
constraint to comply for both legal and illegal solutions. For legal solutions free of
overflows, it is clear to keep cape(l) as noted earlier, that is, the initial number of edge
capacity excluding those nonreleased segments; however, for those solutions with edge
overflows, we increase cape(l) to accommodate the routing wires accordingly. This is to
say, for an edge e on layer l, if the input solution provides five routing wires but its
capacity should be 4, then an edge overflow does exist. To deal with that, if there are
two nonreleased segments on it, then cape(l) will be set to 3 for those released segments
and no further edge overflows will be produced.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

75:8 D. Liu et al.

Similarly, the constraint in Equation (4d) places the limitation of the via number
to pass through each grid g for different layers. Similar to cape(l), the calculation of
capg(l) should take those nonreleased nets into consideration as well. Still, as shown by
the lower left grid in Figure 3(b), we assume that the initial via capacity for this grid
from M2 to M3 is 16, where each track is able to locate four vias and there are in total
four tracks. Meanwhile, there is already a nonreleased via passing through M2 and
one track is also occupied by another nonreleased net. Then we reduce the available
via space further by deducting the utilized resources of nonreleased nets, that is, five
vias in total. Notably, a newly assigned segment will also take another available track
for routing, thus resulting in further reduction of four vias. The final residual space is
for routing vias belonging to those released segments. Therefore, in the constraint in
Equation (4d), we should consider not only those existing nonreleased nets but also the
newly assigned segments. Take Figure 3(b) as an example; at most seven stacked vias
are allowed to be inserted from released segments for the lower left grid. Through this
setting, our framework is able to provide an estimation of the number of allowable vias
for an incremental approach.

In Equation (4a), yijpq represents the via connecting segment si on layer j and seg-
ment sp on layer q. Affected by xij and xpq, yijpq should be set to 1 if and only if both xij
and xpq are set to 1 simultaneously. Therefore, yijpq can be understood as the product of
xij and xpq. Then in the constraints in Equations (4e) to (4g) yijpq is the product of xij and
xpq because all xij and yijpq are binaries according to the constraints in Equations (4h)
and (4i).

Nevertheless, there is a potential problem for the constraint in Equation (4d). If
via capacity violations already exist in the input solution and cannot be eliminated
completely, this constraint may be too stringent that no legal solutions can be obtained.
To avoid this case, we relax this constraint by adding a slack variable Vo, representing
the number of maximum allowable violations. Then the constraint in Equation (4d)
can be rewritten as follows:∑

(i,p)∈Sx(Nc,g)

yijpq + nv · (xij + xpq) ≤ capg(l) + Vo,∀l, j < l < q,∀g ∈ G.

Vo is considered in the objective formulation with a weighting parameter α, which is
set to 2, 000 in our implementation. Thus, the ILP formulation can guarantee reason-
able solutions with legal edge capacities and controllable via violations. Similar to Yu
et al. [2015a], our framework solves layer assignment through an iterative scheme and
stops when no further optimizations can be achieved. However, for large benchmarks,
ILP could lead to a huge calculation overhead with considerable runtime. In order to
alleviate this overhead, speedup techniques are introduced in the following sections.

3.2. Self-Adaptive Partition Algorithm

For layer assignment work, the routing wires are adjusted in the z-dimension among
different layers. Thus, the whole grid model can be divided into K × K partitions in
x/y-dimensions, and each division is solved separately from its neighbors. Also, as
mentioned in Gunawardena et al. [1991], the newly updated assignment results of
neighboring partitions benefit each current partition. Figure 4(a) gives examples of
several nets to be divided by 3 × 3 divisions, which are identified with different colors.
Through partitioning, the problem size can be reduced by 1

K×K times on average. How-
ever, Figure 4(b) shows that the routing congestion density varies significantly for each
division. Here various colors imply the routing distribution of nets passing through
these regions. We can see that uniform division by K × K may lead to unbalanced com-
puting resource allocation among these congested regions and those marginal regions

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

Incremental Layer Assignment for Timing Optimization 75:9

Fig. 4. Example of grid partition. (a) Nets partition. (b) Routing density for benchmark adaptec1 by NCTU-
GR.

Fig. 5. Subgrid partition illustration. (a) Subgrid partition. (b) Subgrid corresponding partition tree.

containing fewer routing nets. Therefore, we propose a self-adaptive quadruple parti-
tion algorithm to further divide all K× K regions so that each region contains a similar
number of critical segments.

Figure 5(a) gives the example of partition results for the lower left one in 5 × 5
divisions, where each division contains a similar number of critical segments. Here we
limit the allowable maximum number of critical segments in each partition by setting a
constraint. If the original division does not satisfy this constraint, then further partition
operations are executed. Besides, Figure 5(b) shows the quadruple tree corresponding
to Figure 5(a). If a partition has a small enough problem size, it will exist as a leaf
node in the tree; otherwise, further quadruple partition continues until it meets the
requirement. Note that for some dense regions, the constraint may be so tight that the
number of segments on one edge may exceed the requirement, but no further partition
should be allowed in fact. To avoid this, we also check if the current partition size is
smaller than the tile width/height. If so, the partition should stop to avoid deadlocks.

After partitioning is completed, we obtain the leaf nodes as colored in Figure 5(a).
There are two leaf nodes in the first level representing these two left partitions. In
Figure 5(b), the bottom colored nodes represent four partitions with the same colors.
With this partition methodology, we can adjust constraints to suit different algorithms
efficiently. Furthermore, each partition can be solved in parallel with multiple threads.
Since each of them has a similar problem size, each thread deals with a workload in a
well-balanced manner.

3.3. Semidefinite Programming Relaxation

In the previous section, we propose a self-adaptive algorithm to partition the original
problem to the appropriate size considering the density distribution. This provides

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

75:10 D. Liu et al.

us an opportunity for further speedup. In our work, we relax this problem from ILP
into semidefinite programming (SDP). SDP also contains a linear objective function
constrained by linear equations, similar to Linear Programming (LP), but it is more
general than LP due to its symmetric matrix forms. SDP is solvable in polynomial time
and it provides a theoretically better solution than LP [Vandenberghe and Boyd 1996],
and thus it has been applied in many circuit design problems, such as circuit sizing
[Vandenberghe et al. 1997], high-level synthesis [Cong and Liu 2012], power/ground
network optimization [Kahng et al. 2006; Du et al. 2011], and layout decomposition
[Yu et al. 2015b; Kohira et al. 2015]. To the best of our knowledge, this is the first work
to adopt SDP to solve the layer assignment problem. We rewrite the formulation into
the following standard SDP form:

min T • X, (5a)

s.t. C • X = b, (5b)

X � 0, (5c)

where

T • X =
∑

i∈S(Nc)

∑
j∈L

Tij Xij = trace(TᵀX). (6)

In Equation (5), matrices T and X are both |S · L|-dimension symmetric matrices,
where |S| is the number of segments belonging to critical nets in each partition and
|L| is the number of layers. In Equation (6), T • X is the inner product of these two
matrices T and X. Besides, Tij and Xij are the entries lying in the ith row and the jth
column of matrices T and X, respectively.

Equation (7) shows all coefficients in matrix T, where the items on the diagonal
line represent the timing costs, that is, ts(i, j), for assigning segment i on layer j.
Besides, tv(i, j, p, q) is the via cost on assigning segments i and p into layer j and layer
q, respectively. Each tv(i, j, p, q) is in the same row as ts(i, j) and the same column as
ts(p, q). Matrix X in Equation (8) gives the SDP solution to the layer assignment, where
each xij is on the diagonal line. Similarly, yijpq is in the same row as xij and the same
column as xpq.

T =
(ts(i, j) . . . tv(i, j, p, q)

.
tv(i, j, p, q) . . . ts(p, q)

)
, (7)

X =
(xij . . . yijpq

.
yijpq . . . xpq

)
. (8)

For each xij , it is expected to be binary and placed in the diagonal line of objective
matrix X. If xij is equal to 1, then x2

i j is also 1; if xij is equal to 0, then its square form
is also 0. The item yijpq needs to satisfy the constraints in Equations (4e) to (4g), which
also apply for continuous solutions. Because the constraints in Equations (4e) to (4g)
are mainly inequalities, extra slack variables are added into the objective matrix, for
SDP cannot support inequality constraints. With these constraints, SDP considers via
costs as quadratic terms (same as in Equation (4a)).

To guarantee an effective solution, the constraints in ILP Equation (4) should also
be included in SDP through Equation (5b). The constraints in Equations (4b) and (4c)
can be formulated into the constraints of SDP easily since they are linear constraints.
As all the constraints are constructed in a similar way, here we mainly provide the

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

Incremental Layer Assignment for Timing Optimization 75:11

Fig. 6. An example of layer assignment through SDP.

Fig. 7. T matrix and solution X matrix of the example.

details for the first constraint (Equation (4b)). Evidently, a set of coefficient matrices,
Cbs, is required, and the set size is equal to the number of segments in critical nets
in each division. The dimension of each Cb is the same as T and X. Thus, for each Cb,
according to the constraint in Equation (4b), we set each location in Cb corresponding
to each xij in X as 1; meanwhile, the value of b in the right side of Equation (5b) is
also 1. Through this setting, for segment si, the sum of xij is equal to 1 constrained
by this equation. During construction of Equation (4c), because of the existences of
inequalities, we require more slack variables in the objective matrix as the sum of
variables should be smaller than the given edge capacity. The number of additional
slack variables is equal to the number of edge capacity constraints. For the constraint
in Equation (4d), we prefer to move it into the objective matrix by adding the penalty to
save the runtime. Then penalty is represented as λi, j,p,q, which is added to tv(i, j, p, q)
in matrix T. The penalty is calculated by dividing the existing number of vias by its
capacity.

To make it more clear, here we give an example of how SDP can be applied to the
layer assignment problem. Figure 6 shows part of one net. Due to space limitations,
we just focus on two segments, s1 and s2. We also assume there are only two available
layers in each x/y-dimension: layer 1 and layer 3 for the x-dimension, and layer 2 and 4
for the y-dimension. Thus, the matrices T and X should both be 4×4 matrices, for each
segment has two layers to assign. For convenience, we skip the slack matrices here
because they are helping to satisfy the constraints. In our formulation, the entries on
the diagonal line of matrix T are basically xijs, representing whether they are assigned
on the corresponding layers. The entries in the same column and row with xij and xpq
represent the potential via costs from layer j to layer q. Based on Figure 6, s1 only
connects with s2, so we just need to consider the via costs between s1 and s2.

In Figure 7, we list an example of matrix T, as well as matrix X after solving the
SDP. For matrix X, four values on the diagonal line represent x11, x13, x22, and x24,
respectively, where xij denotes segment si to be assigned on layer j. Thus, we see that
s1 should be assigned on layer 3 as x13 is very close to 1. Meanwhile, for s2, both x22 and
x24 are not so close to 1 because there is one segment released on the same edge. The
edge capacity constraints may limit its value as floating points. In this case, we adopt
a sequential mapping strategy to determine its layer to be assigned.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

75:12 D. Liu et al.

3.4. Sequential Mapping Algorithm

SDP provides us a continuous solution, which, however, cannot be applied to our prob-
lem directly. Therefore, an efficient mapping algorithm is necessary to provide discrete
integer solutions while satisfying the stringent edge capacity constraints. In this sec-
tion, we propose a sequential mapping algorithm to transfer a continuous SDP solution
into a discrete layer assignment solution.

ALGORITHM 1: Sequential Mapping Algorithm
Input: Solution matrix X;

1: Save entries (xij) for each segment i;
2: for each edge e containing critical segments do
3: for j = Lm; j ≥ 1; j = j − 2 do
4: ne j = cape(j);
5: Select ne j highest xijs on edge e;
6: Assign selected segment i on layer j;
7: Update cape(j);
8: end for
9: end for

As stated, the basic idea of this sequential mapping algorithm is to map each contin-
uous solution to an integer solution while satisfying the hard edge capacity constraints.
Therefore, we should focus on each edge e on which some critical segments are assigned.
Since a critical segment has a specified solution for each candidate layer of edge e, we
should take advantage of the solution value to provide a reasonable assignment. By
this way, we prefer to traverse each layer and select those segments endowed with the
highest solutions on this layer, because these segments are most competitive for this
layer. Due to the existing competition of high metal layers, we start from the highest
layer for each edge and locate each segment based on their solutions.

The details of our mapping algorithm are shown in Algorithm 1, whose input is the
original solution matrix X. Initially, we read all the solution entries and save those
xijs to each corresponding segment. Then we traverse each edge with these released
segments in the whole grid (line 2) following the order from the highest layer to the
lowest layer (line 3), for a higher metal layer has a lower resistance and is more
competitive for segments to assign. Since edges are divided into x-dimensions and y-
dimensions for different layers, we skip the layers containing all y-dimension edges
for x-dimension edges and vice versa. As for layer j of edge e, there is a specified edge
capacity constraint, that is, cape(j). This means that the number of those released
segments to assign should not exceed this constraint. Here we select the top cape(j)
entries and assign these segments to layer j (line 6). In this way, edge capacity overflows
can be avoided based on the value of cape(j). To avoid unnecessary conflicts, those
segments that have been assigned on higher layers in previous iterations are skipped.
In this way, the edge capacity constraint can be satisfied. Finally, the edge capacity is
updated for this division. The runtime of this mapping algorithm is O(|E||L|log|Se|),
where |E| is the number of edges with critical segments, |L| is the number of layers,
and |Se| is the number of critical segments on this edge.

3.5. Concurrent Matching Algorithm

The mapping algorithm proposed in Section 3.4 gives a sequential assignment of seg-
ments for different edges. The assignment is acquired based on the solutions from SDP,
but for those segments whose solution values on one single layer are very close, their
assignments may be a little coarse without considering detailed neighboring condi-
tions. For instance, when both SDP solution values of two segments, that is, s1 and s2,

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

Incremental Layer Assignment for Timing Optimization 75:13

Fig. 8. Example of solution candidate generation. (a) Nets partition. (b) Solution candidate generation for
N3.

routed on the same edge, are equal to 0.5 for one layer but only one track is available,
which segment to be assigned may be decided randomly. Although the impact of this
assignment on timing may be slight, due to the closure of exact SDP results, the previ-
ous sequential algorithm lacks a global view of all nets to some extent. To handle this
conflicting assignment, in this section we propose a concurrent matching methodology,
which adopts new rounding strategies and targets more concrete solutions.

From the sequential algorithm, we obtain only one exact assignment for each edge
based on noninteger solutions. Nevertheless, when the number of released segments on
one edge is very high, keeping them on one assignment may lose some potential optimal
solutions. In the following, we present how to produce more assignment candidates
based on the SDP results.

As depicted in Section 3.2, the whole grid graph is partitioned into collections of divi-
sions, and thus each division is able to possess one or more candidates. In one division,
all the candidates are formed as a single solution set, while only one assignment is
selected from this set as the result. Figure 8(a) provides an instance of four nets in dif-
ferent divisions. To make it explicit, all the segments in a division share the same color,
even for multiple nets, like net N1 and N2. For net N4, although some of its segments
are on the boundary between two divisions, we assume these segments belong to their
connecting left/bottom division. After making sure of the division details, we generate
possible assignment candidates based on the SDP solutions.

Compared with the sequential mapping method, our concurrent matching flow
mainly consists of two steps: candidate generation and solution mapping. The first
step, how to generate a set of candidate solutions according to the floating-point solu-
tions, deserves exploration. A procedure of candidate generation for segments in net
N3 is shown in Figure 8(b), where we adopt a top-down method to traverse all the
possible assignments of net N3. Since there are in total three segments for N3, it is
essential to seek three levels for promising solutions. For each reassigned segment,
if its SDP value is smaller than a threshold, we will take its second-highest solution
as its alternate assignment. The threshold is set to 0.9 here. To reduce the solution
space, at most two possible layers are allowed for each segment to reassign. Even in
this way, the whole solution size will get doubled after each segment has its second
layer candidate. Furthermore, edge capacity checking is accompanied with each stage
to guarantee the legality of possible solutions. As shown in Figure 8(b), when there is
a violation, symbolized as a gray node, this intermediate solution will be abandoned.
This stage guarantees that illegal solutions will be bounded beforehand and the so-
lution candidates to be selected can satisfy the required capacity constraint. Through
these two bounding methods, the solution space is controlled efficiently, and possibly

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

75:14 D. Liu et al.

Table II. Notations for Post Stage Algorithms

D set of all divisions containing segments
D(Nc) set of all divisions containing critical nets Nc

Dx(Nc) set of all pairs of divisions containing critical nets Nc
Dm the mth division in D(Nc)

Sol(m) set of solutions of division Dm ∈ D(Nc)
amn binary variable, set to 1 if the nth solution is selected for Dm

bmnuv binary variable, set to 1 if the nth solution is selected for Dm,
and the vth solution is selected for Du

cd(m, n) cost when the nth solution is selected for division Dm
cdx(m, n, u, v) via costs of the selected solutions of neighboring divisions Dm, Du

Pc set of critical paths violating timing constraints
t(p) current timing of path p
sc, ss a segment of critical path pc; a segment to switch with sc
l(s) layer on which segment s is assigned

long runtime overhead can be prevented. In Figure 8(b), the bottom circle indicates a
set of candidates for the division where net N3 is. For divisions with a significant num-
ber of solutions, we sort the solutions based on their internal via violation costs, and
20 solutions with the least violations are taken as final candidates for such a division.

With these generated solution candidates, we formulate our solution selection prob-
lem as ILP as in Equation (9). The notations are listed with details in Table II. Explicitly,
ILP Equation (9) targets optimizing both the division’s internal via violation costs and
its external costs with neighboring divisions. Since much attention has been devoted
to timing throughout candidate generation, only vias and via violations are counted
as elements of costs in Equation (9a). For a solution n of division m, its corresponding
cost, cd(m, n), is the sum of its internal vias and violations, both of them multiplied
with weights; while considering vias on the boundary between two divisions m and u,
as shown in the red points in Figure 8(b), we attempt all the combinations of different
candidates belonging to these two divisions and calculate cdx(m, n, u, v) based on the
via costs still. As the number of via violations is much fewer than the vias, we prefer
to set the violation weight 10 times as high as the weight of vias. The constraint in
Equation (9b) guarantees that only one solution can be selected for each division, Dm.
Meanwhile, the constraints in Equations (9c) to (9e) limit that bmnuv is the product of
amn and auv, based on the condition that amn is binary from the constraint in Equation
(9g). Its form is very similar to Equation (4), due to their essence of solving the same
assignment problem, and thus we omit the very detailed description of this formulation.

min
∑

m∈D(Nc)

∑
n∈Sol(m)

cd(m, n) · amn

+
∑

m,u∈Dx(Nc)

∑
n∈Sol(m)

∑
v∈Sol(u)

cdx(m, n, u, v) · bmnuv, (9a)

s.t.
∑

n

amn = 1, ∀m ∈ D(Nc), n ∈ Sol(m), (9b)

amn ≥ bmnuv, ∀(m, u) ∈ Dx(Nc), n, v ∈ Sol(m), Sol(u), (9c)

auv ≥ bmnuv, ∀(m, u) ∈ Dx(Nc), n, v ∈ Sol(m), Sol(u), (9d)

amn + auv ≤ bmnuv + 1, ∀(m, u) ∈ Dx(Nc), n, v ∈ Sol(m), Sol(u), (9e)

bmnuv is binary, ∀(m, u) ∈ Dx(Nc), n, v ∈ Sol(m), Sol(u), (9f)

amn is binary, ∀m ∈ D(Nc), n ∈ Sol(m). (9g)

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

Incremental Layer Assignment for Timing Optimization 75:15

Fig. 9. Algorithm flow including matching algorithm.

To make this whole process more clear, we provide an overall algorithm flow including
the proposed algorithm flow in Figure 9. After critical net selection and solving SDP,
as shown in the left block, the iterative flow assigns segments through the sequential
method to ensure convergence of SDP solutions. Considering that, if we integrate this
concurrent algorithm into the same flow, the runtime overhead may be nonnegligible
because of its ILP form. Therefore, we prefer to add this strategy as a post stage, as
listed in the right block.

The flow in the right box takes the acquired SDP solutions as inputs. Based on these
solutions, we generate more potential solution candidates to take more possibilities
into account. Due to the massive number of divisions, we prefer to relax Equation (9)
to iterative linear programming (LP) so that the promising solution can be selected
for each division to form a whole assignment progressively. As the LP flow provides
the noninteger solutions, we still set a threshold to determine its assignment. Here
the threshold is set to 0.6. During each iteration, if the candidate’s value exceeds 0.6,
it is assigned to its corresponding division. Finally, to guarantee the completeness of
the solution, when the number of residual divisions is small enough (i.e., smaller than
2,000), we prefer to resolve the rest divisions through the ILP and terminate this
concurrent matching flow. In this manner, more solutions can be selected efficiently to
avoid potential via violations and provide more reliable assignments.

3.6. Post Delay Optimization

The algorithm flow aforementioned gives a global view of timing optimization for crit-
ical path timing in nets, where these critical nets are selected as those with the most
timing overheads. Considering existing timing constraints in practice, here we present
a post sequential algorithm to reduce the timing violations as much as possible. As
depicted beforehand, a net consists of one or more paths, where each path may lead to
a possible timing violation. For those paths violating the specified constraint, they are
symbolized as critical paths and endowed with priorities for high metal layers. With
this premise, we present the details of our post greedy algorithm in Algorithm 2.

The outline of the post delay violation algorithm is listed in Algorithm 2, while the
notations are also listed in Table II. As seen, a group of violating paths belonging
to different critical nets are taken as the input to this algorithm. Different from ILP
formulation, the post delay strategy targets reducing potential delay violations for a
specified timing constraint. Thus, without overutilizing high layer resources for those

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

75:16 D. Liu et al.

ALGORITHM 2: Post Delay Violation Algorithm
Input: A set of critical paths Pc;

1: Sort p with decreasing t(pc);
2: for each pc ∈ Pc do
3: for each sc ∈ pc do
4: for j = Lm; j ≥ 1; j = j − 2 do
5: if j ≤ l(sc) then
6: Break;
7: end if
8: Select ss with the least vias;
9: Switch l(sc) and l(ss);

10: Update t(pc) and t(ps);
11: if t(ps) < T0 then
12: Break;
13: else
14: Restore l(sc), l(ss), t(pc), t(ps);
15: end if
16: end for
17: if t(pc) ≤ T0 then
18: Break;
19: end if
20: end for
21: end for

nets with large timing overheads, we allocate layer resources in a more balanced
manner because these nets are no longer critical if they satisfy the timing constraint.
This could provide more opportunities for those nets with slight violations. Notably,
here we still focus on the maximum path timing of nets with violations, which complies
with the ILP formulation. In our future work, we will consider timing paths consisting
of multiple nets and cells simultaneously as an extension.

Since the clock frequency is generally affected by the path with the worst timing, we
sort all the critical paths in decreasing order of their critical path timing (line 1). By
starting from the path that has the worst violations compared to the given constraint,
we traverse each critical segment, sc, from its driver to sinks in a top-down manner,
and search for higher metal layers to meet the delay constraint. With this objective, we
search from the highest metal layer, the same as Algorithm 1, for a switching segment,
ss, which exists on a noncritical timing path.

To reduce its algorithmic complexity, instead of traversing all the segments on this
edge, we prefer to choose one switching segment from a collection of segments sharing
the edge with sc. In this collection of segments, all their corresponding sink timing is
smaller than 95% of the given constraint, T0. Thus, we are able to avoid further delay
violations induced by these reassigned segments. Before selecting ss, as stated in lines 5
to 7, we check if the current layer is lower than the assigned layer of sc. If so, we would
turn to the next sc on this path to reduce the timing overhead.

Then, during the selection of ss, since all the segments with possible timing violations
have been discarded before, we pay more attention to the resulting via costs. Thus, we
prefer to select the segment with the least via costs as ss. When there exists such an
appropriate segment to switch with sc, we exchange their assigned layers and update
their path delays (lines 9–10). Before moving to the next sc, we prefer to check the
updated timing of path ps and guarantee its legality (line 11). If ps still satisfies the
constraint, it is evident that a legal switching segment has been found for current
sc, and the rest of the lower layers can be skipped; otherwise, we should restore the
previous assignment and seek for the next possible layer (line 14). To bound the surplus

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

Incremental Layer Assignment for Timing Optimization 75:17

Fig. 10. Comparison between ILP and SDP on some small test cases. (a) On average delay for all critical
paths. (b) On maximum delay for all critical paths. (c) On runtime.

search, we evaluate the updated timing of this critical path after each adjustment. If it
meets the timing requirement, we freeze this path and continue to next critical path.
Through this improvement, delay violations can be reduced explicitly with certain
timing constraints.

4. EXPERIMENTAL RESULTS

4.1. Timing Results

The proposed layer assignment framework is implemented in C++ and tested on a 32-
core Linux machine with 2.9GHz Intel R© Core and 192GB memory. We select GUROBI
[Gurobi Optimization Inc. 2016] as the ILP solver, and CSDP [Borchers 1999] as the
SDP solver. Besides, we utilize OpenMP [Chandra 2001] for parallel computing and set
the thread number to 16. As in Yu et al. [2015a], we test our framework on ISPD 2008
global routing benchmarks [Nam et al. 2008]. It should be noted in our experiments
that both the resistance and capacitance values are from industrial settings, and thus
our experimental results may have better agreement with industry timing.

In the first experiment, we compare the ILP formulation (see Section 3.1) with the
SDP-based methodology (see Section 3.3 and Section 3.4). Since ILP formulation may
suffer from the runtime overhead problem (i.e., it cannot finish in 2 hours for some large
test cases), we select some small test cases for the comparison as shown in Figure 10.

Note that the partitioning technique is applied to both methods. We can see from
Figure 10(a) and Figure 10(b) that SDP can obtain very similar average timing and
maximum timing with ILP for these cases. This means that our SDP-based method-
ology provides an efficient relaxation with ILP formulation. Meanwhile, for these test
cases, SDP can achieve significant speedup (see Figure 10(c)).

In the second experiment, we further evaluate our SDP-based method by comparing
it with TILA [Yu et al. 2015a]. To make a fair comparison, we release the same set
of nets for both TILA and our SDP. Table III lists the comparison results for the
SDP-based method with TILA-0.5%. Here “0.5%” means 0.5% of most critical nets are
released for both methodologies. Columns “Avg (Tcp)” and “Max (Tcp)” give the average
and maximum timing of the critical path for all critical nets, respectively. Meanwhile,
Columns “# of OV” and “# of via” list via capacity overflow and via count. The runtime
is also reported in the Column “CPU(s).” From Table III, we can see that comparing
with TILA, our SDP-based method can reduce the average timing by 11%, while the
maximum timing can also be decreased by 4%. Since TILA also devotes efforts in
maximum timing optimization, the improvement of maximum timing is reasonable.
Our work also pays a slight penalty of via violations by 2% and keeps the same via
count number as TILA. In addition, the reported runtime of SDP increases by 1.35 times
in comparison with TILA, because the SDP problem is more complicated than min-cost
flow problem. However, since we adopt the adaptive partitioning in the SDP-based

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

75:18 D. Liu et al.

Table III. Performance Comparison on ISPD’08 Benchmarks

TILA-0.5% [Yu et al. 2015a] SDP-0.5%
Avg(Tcp) Max(Tcp) # of via CPU(s) Avg(Tcp) Max(Tcp) # of via CPU(s)

bench (103) (103) # of OV (105) (s) (103) (103) # of OV (105) (s)
adaptec1 228.57 4,378.42 49,205 19.31 132.9 204.88 4,205.71 50,947 19.26 112.5
adaptec2 97.94 1,435.79 38,173 19.25 133.8 93.88 1,421.68 38,480 19.32 91.2
adaptec3 220.00 4,613.89 90,961 36.74 322.5 209.41 4,583.29 92,299 36.76 569.0
adaptec4 121.67 5,616.23 72,695 32.22 272.4 117.43 5,590.84 73,185 32.44 494.3
adaptec5 249.51 5,406.11 81,151 55.21 444.8 216.15 5,311.75 84,537 55.26 472.0
bigblue1 402.81 2,673.18 44,399 21.69 174.7 322.41 2,065.42 46,256 21.56 142.1
bigblue2 100.94 10,821.67 114,343 43.38 188.7 95.58 10,728.23 115,240 43.49 264.9
bigblue3 27.38 789.61 65,718 52.62 333.5 21.53 373.80 66,795 52.92 547.7
bigblue4 37.98 3,779.11 95,348 109.94 747.1 33.56 3,750.95 97,148 110.37 804.3
newblue1 43.11 344.32 57,063 22.34 106.9 39.52 343.09 57,744 22.44 98.7
newblue2 110.76 6,171.37 35,994 28.97 151.4 107.85 6,130.09 35,566 29.25 146.4
newblue4 111.53 5,660.31 84,684 47.57 305.9 105.53 5,395.42 85,159 47.73 365.2
newblue5 170.45 2,789.52 152,770 86.65 605.1 151.41 2,771.55 157,944 87.00 1,564.4
newblue6 144.42 2,373.86 94,489 78.47 683.4 124.75 2,298.74 97,859 78.53 562.2
newblue7 30.03 1,301.30 143,087 163.81 1,161.2 25.33 1,254.22 144,580 164.28 1,555.7
average 139.81 3,896.98 81,339 54.54 384.3 124.61 3,748.32 82,916 54.71 519.4

ratio 1.00 1.00 1.00 1.00 1.00 0.89 0.96 1.02 1.00 1.35

Fig. 11. Partition size impact on three small cases. (a) The impact on Avg(Tcp). (b) The impact on Max(Tcp).
(b) The impact on runtime.

method (see Section 3.2), this method can still achieve reasonable runtime. During
partitioning, we set its allowed number of segments in each partition as 10 for further
self-adaptive partitioning methodology.

In the third experiment, we demonstrate the effectiveness of our self-adaptive par-
titioning methodology for SDP, as shown in Figure 11. We try different partition
granularities (from five to 40) for three small test cases, where the maximum num-
ber of segments in each partition is limited. From Figure 11(a) and Figure 11(b), the
average and maximum timing are quite similar, which means that partitioning has a
negligible impact on performance because the tighter constraints would lead to more
partitions. Although each partition is dealt in parallel with multiple threads, the impact
of the performance is insignificant. Furthermore, Figure 11(c) shows that the runtime
increases drastically with the partition granularity. Notably, without a self-adaptive
partitioning methodology, the number of critical segments to deal with is so high that it
takes around 1,000 seconds to run even a small benchmark by releasing 0.5%. There-
fore, we can see that self-adaptive partitioning methodology benefits the runtime for
SDP significantly. Meanwhile, we can observe that when the constraint is set to 10,

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

Incremental Layer Assignment for Timing Optimization 75:19

Fig. 12. Partition size impact on three large cases. (a) The impact on Avg(Tcp). (b) The impact on Max(Tcp).
(b) The impact on runtime.

the runtime can reach its lowest point. Considering that small benchmarks may not be
able to represent all the cases, here we also adopt the same set of experiments on three
relatively large benchmarks, as shown in Figure 12. With the same selection of gran-
ularity, almost no difference is observed for the average and maximum timing results,
respectively. Notably, the best runtime is still acquired when the granularity reaches 10
for each partition. One difference from small benchmarks is that the granularity of 20
segments in each partition is able to reach a similar runtime for benchmark “adaptec3,”
and 20-segment granularity can even spend less runtime than five-segment granular-
ity, on average. The main reason is that, for larger benchmarks, a higher number of
tasks are acquired from fine-grained partitions, which may lead to more runtime over-
heads. Thus, to balance the tradeoff between partition granularity and task number,
a slightly larger partition granularity can be desired, because a fine-grained partition
provides more opportunities for parallel execution, while a coarse-grained partition re-
duces the task number. But even for large benchmarks, the granularity of 10 segments
can still achieve the lowest point while maintaining the similar performance of average
and maximum timing. Therefore, in our implementation, we set the default partition
granularity as 10.

In the fourth experiment, we evaluate the impact of thread number with the same
partition granularity on three small benchmarks in Figure 13. As limited by machine
resources, the thread number can be lower than 16 and higher than four; thus, we select
four numbers, four, eight, 12, and 16, as the thread number for comparison. Observe
that for both average and maximum timing results the performance differences are
negligible, similar to the results shown in Figure 11 and Figure 12. In comparison, with
the increase of threads, the runtime keeps decreasing until it reaches 16. It is seen that
with the same problem size, a slight increase of threads will lead to obvious speedups,
but when the number reaches a certain threshold, the speedup space will be limited due
to the increasing communication overheads among various threads. Therefore, we set
the number of threads in our framework to 16, which would lead to the most speedups.

To prove the effectiveness of our post delay optimization, we show the results by ex-
cluding this stage in the framework. Since a similar number of vias and via violations
can be achieved, we provide the differences of maximum path timing and delay viola-
tions with and without the post optimization, as shown in Table IV. From Table IV, the
maximum path timing of those selected critical nets can be improved slightly by 0.2%.
Because we start to fix delay violations from the most critical net, for some designs the
maximum path timing can be improved sufficiently; nevertheless, considering that both
TILA and CPLA have placed adequate emphasis on that of critical nets, the further
improving space has been constrained. Thus, this little improvement is reasonable.
Also, we can observe that the number of delay violations can be well controlled with

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

75:20 D. Liu et al.

Table IV. Performance Comparison With/Without Post Opt

WO Post W Post
Max(Tcp) Max(Tcp)

bench (103) # of Vio (103) # of Vio
adaptec1 4,205.71 6,215 4,205.71 5,474
adaptec2 1,421.68 5,148 1,421.68 3,820
adaptec3 4,583.44 9,812 4,583.40 8,367
adaptec4 5,591.10 11,091 5,591.10 8,429
adaptec5 5,311.75 21,273 5,273.78 17,583
bigblue1 2,065.42 12,871 2,056.57 11,329
bigblue2 10,728.70 18,211 10,725.35 16,004
bigblue3 373.80 5,122 304.20 1,149
bigblue4 3,751.01 10,451 3,751.06 2,294
newblue1 343.09 8,282 343.09 7,044
newblue2 6,130.09 11,065 6,130.09 6,961
newblue4 5,395.42 12,599 5,395.42 9,327
newblue5 2,771.74 40,471 2,771.74 32,196
newblue6 2,298.74 15,288 2,298.74 11,286
newblue7 1,254.22 13,823 1,254.22 4,555
average 3,748.39 13,448 3,740.41 9,721

ratio 1.000 1.000 0.998 0.723

Fig. 13. Performance evaluation based on the number of threads on some small test cases. (a) Maximum
delay for critical paths. (b) Average delay for critical paths. (c) Runtime.

the integration of post delay optimization. In our post optimization strategy, when a
critical net satisfies the timing constraint, we will turn to the next violating one and
this will leave more routing resources for the residual critical nets. In this way, this
post optimization stage helps to fix 27.7% delay violations on average.

In the sixth experiment, we further analyze the impact of critical ratio to the perfor-
mance of the SDP-based method. Critical ratio is an important parameter to determine
how many critical nets are released. In Table III, we release 0.5% critical nets to see
the improvement. Here we evaluate the SDP-based method by releasing more critical
nets. Meanwhile, we compare the average critical path timing, maximum critical path
timing, and runtime with TILA for one small benchmark adaptec1. From Figure 14(a)
and Figure 14(b), we see that the average timing decreases slightly with the increase
of critical ratio for both SDP and TILA. However, for maximum timing comparison,
we see that TILA does not control the maximum timing well. The reason may be that
TILA applies a Lagrangian-based relaxation optimization for via capacity constraints,
which may affect the timing improvements. In Figure 14(c), we observe that for the

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

Incremental Layer Assignment for Timing Optimization 75:21

Fig. 14. Critical ratio impact on benchmark adaptec1. (a) The impact on Avg(Tcp). (b) The impact on
Max(Tcp). (b) The impact on runtime.

SDP-based method the runtime increases in proportion to the critical ratio. This illus-
trates that our method has a well-controlled scalability.

4.2. Timing Violation Results

The third-last experiment manifests the effect of our post stage to reduce timing vio-
lations. To compare with CPLA results in Liu et al. [2016], we work on the same ISPD
2008 global routing benchmarks, which do not contain any delay constraint informa-
tion. Considering the different sizes of test cases, we prefer to arrange appropriate
criteria based on their initial timing conditions. Therefore, we set the delay constraint
to 80% of the minimum timing of those critical nets in Table III. Table V lists the
compared delay violations, also with the corresponding timing and via results.

From the results, it is shown that the overall number of timing violations is reduced
by 28%. Meanwhile, both average and maximum critical path timing are very similar
compared to CPLA. Considering the partial adjustment of the layers of segments on
these paths, we can see the timing effect is quite obscure. Meanwhile, the number of
via costs and violations is also well controlled. The only penalty we pay is runtime
overhead, which increases by 43%. Due to the integration of concurrent mapping and
post delay optimization, this runtime overhead is acceptable.

Additionally, we provide a comparison on via costs between sequential mapping and
concurrent mapping, both of which occur in those divisions with one more candidate.
The evaluation is tested on five benchmarks with different sizes to show its effective-
ness. As seen from Figure 15(a), around 2% of via violations can be reduced; meanwhile,
the number of via violations decreases by 0.34% in Figure 15(b). Therefore, under rea-
sonable runtime overhead, the concurrent matching strategy is deserved.

Besides, to provide an explicit view of overflow distribution among layers, we measure
the number of edge overflows on each layer and via violations between every two
adjacent layers for NVM [Liu and Li 2011], TILA, and CPLA. As the initial input
from NVM provides very few edge overflows, here we selectively pick three test cases
with edge violations originally to show the violation distribution. Due to the existent
control mechanism, both TILA and CPLA will not aggravate the initial edge violations
throughout the whole procedure. Thus, they are able to keep the same edge violations
as NVM, as shown in Figure 16(a), Figure 16(b), and Figure 16(c). Then, in the view
of via violations, we observe that the majority of them occur in the bottom layers for
all the results, although high metal layers have been utilized efficiently for timing
optimization. This observation is also acceptable because ISPD 2008 global routing
benchmarks provide much fewer tracks for lower metal layers than higher layers.
Based on Equation (3), when there is no free track on a certain layer, via violations
cannot be avoided anyway. From this perspective, via violations tend to appear on

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

75:22 D. Liu et al.

Ta
bl

e
V.

D
el

ay
V

io
la

tio
ns

C
om

pa
ris

on
on

IS
P

D
’0

8
B

en
ch

m
ar

ks

C
P

L
A

in
[L

iu
et

al
.2

01
6]

C
P

L
A

N
ew

A
vg

(T
cp

)
M

ax
(T

cp
)

#
of

vi
a

C
P

U
(s

)
A

vg
(T

cp
)

M
ax

(T
cp

)
#

of
vi

a
C

P
U

(s
)

be
n

ch
#

of
V

io
(1

03
)

(1
03

)
#

of
O

V
(1

05
)

(s
)

#
of

V
io

(1
03

)
(1

03
)

#
of

O
V

(1
05

)
(s

)
a
d
a
p
t
e
c
1

62
15

20
4.

88
42

05
.7

1
50

94
7

19
.2

6
12

7.
4

54
74

20
4.

21
42

05
.7

1
50

86
5

19
.2

6
19

2.
8

a
d
a
p
t
e
c
2

51
47

93
.8

8
14

21
.6

8
38

48
0

19
.3

2
10

5.
2

38
20

94
.0

6
14

21
.6

8
38

47
9

19
.3

3
16

7.
2

a
d
a
p
t
e
c
3

98
12

20
9.

41
45

83
.2

9
92

29
9

36
.7

6
56

9.
0

83
67

20
9.

28
45

83
.4

0
92

31
1

36
.7

7
79

3.
4

a
d
a
p
t
e
c
4

11
08

9
11

7.
43

55
90

.8
4

73
18

5
32

.4
4

49
4.

3
84

29
11

7.
60

55
91

.1
0

73
18

3
32

.4
6

63
9.

1
a
d
a
p
t
e
c
5

21
26

9
21

6.
15

53
11

.7
5

84
53

7
55

.2
6

47
2.

0
17

58
3

21
5.

08
52

73
.7

8
84

47
2

55
.2

6
64

8.
0

b
i
g
b
l
u
e
1

12
85

2
32

2.
41

20
65

.4
2

46
25

6
21

.5
6

15
0.

4
11

32
9

32
1.

27
20

56
.5

7
46

21
9

21
.5

7
24

2.
6

b
i
g
b
l
u
e
2

18
21

5
95

.5
8

10
72

8.
23

11
52

40
43

.4
9

26
4.

9
16

00
4

95
.4

0
10

72
5.

35
11

52
17

43
.4

9
39

1.
1

b
i
g
b
l
u
e
3

51
22

21
.5

3
37

3.
80

66
79

5
52

.9
2

54
7.

7
11

49
21

.9
2

30
4.

20
66

76
8

52
.9

6
82

2.
1

b
i
g
b
l
u
e
4

10
43

4
33

.5
6

37
50

.9
5

97
14

8
11

0.
37

80
4.

3
22

94
34

.9
8

37
51

.0
6

97
12

7
11

0.
46

12
72

.2
n
e
w
b
l
u
e
1

82
96

39
.5

2
34

3.
09

57
74

4
22

.4
4

98
.7

70
44

39
.5

1
34

3.
09

57
75

6
22

.4
5

16
1.

8
n
e
w
b
l
u
e
2

11
05

6
10

7.
85

61
30

.0
9

35
56

6
29

.2
5

14
6.

4
69

61
10

8.
03

61
30

.0
9

35
55

2
29

.2
6

21
3.

2
n
e
w
b
l
u
e
4

12
59

9
10

5.
53

53
95

.4
2

85
15

9
47

.7
3

36
5.

2
93

27
10

5.
68

53
95

.4
2

85
13

9
47

.7
4

53
9.

3
n
e
w
b
l
u
e
5

40
44

4
15

1.
41

27
71

.5
5

15
79

44
87

.0
0

15
64

.4
32

19
6

15
1.

43
27

71
.7

4
15

79
55

87
.0

6
19

78
.5

n
e
w
b
l
u
e
6

15
27

3
12

4.
75

22
98

.7
4

97
85

9
78

.5
3

56
2.

2
11

28
6

12
4.

26
22

98
.7

4
97

68
5

78
.5

3
90

9.
0

n
e
w
b
l
u
e
7

13
82

3
25

.3
3

12
54

.2
2

14
45

80
16

4.
28

15
55

.7
45

55
25

.2
9

12
54

.2
2

14
45

68
16

4.
36

21
66

.1
av

er
ag

e
13

44
3

12
4.

61
37

48
.3

2
82

91
6

54
.7

1
52

1.
8

97
21

12
4.

53
37

40
.4

1
82

88
6

54
.7

3
74

2.
4

ra
ti

o
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

72
1.

00
1.

00
1.

00
1.

00
1.

43

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

Incremental Layer Assignment for Timing Optimization 75:23

Fig. 15. Comparison between sequential mapping and concurrent matching. (a) Via violations. (b) Number
of vias.

Fig. 16. Violation comparison of NVM, TILA, and CPLA. (a) Edge overflows in NVM;. (b) Edge overflows in
TILA. (c) Edge overflows in CPLA. (d) Via overflows in NVM. (e) Via overflows in TILA. (f) Via overflows in
CPLA.

layers with few available routing tracks. Meanwhile, we can also see that CPLA shows
a similar distribution of via violations of TILA, based on the fact that they have a
similar optimal objective. Additionally, the number of via violations on high layers in
Figure 16(f) is slightly higher than that in Figure 16(e). This corresponds to the fact
that high layers have been employed more sufficiently through CPLA for better timing
achievement. Here we assume that via violations result only from stacked vias, so no
violations exist on the lowest and highest layers.

5. CONCLUSION

This article targets optimizing critical path timing during the layer assignment stage.
First, we propose the ILP formulation for the problem and then present the self-
adaptive quadruple partition algorithm to benefit the runtime for SDP. Based on this
speedup algorithm, the SDP-based method is developed. Additionally, an iterative LP
framework is integrated as the post stage with another algorithm to reduce delay
violations for paths. The experimental results show that our work can outperform

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

75:24 D. Liu et al.

TILA by 11% for the average delay and 4% for the maximum delay of the critical
paths. Besides, with the post delay optimization, timing violations can also be reduced
efficiently. Since both TILA and CPLA focus on intranet delays, critical nets are selected
based on their individual delays. As a future work, we plan to take timing paths into
consideration that consist of multiple nets and cells together and coordinate the layer
assignments of segments from different paths to meet the final constraint, with the
consideration of transition vias affecting routing resources potentially.

REFERENCES

Jianchang Ao, Sheqin Dong, Song Chen, and Satoshi Goto. 2013. Delay-driven layer assignment in global
routing under multi-tier interconnect structure. In ACM International Symposium on Physical Design
(ISPD’13). 101–107.

Brian Borchers. 1999. CSDP, A C library for semidefinite programming. Optimization Methods and Software
11 (1999), 613–623.

Rohit Chandra. 2001. Parallel Programming in OpenMP. Morgan Kaufmann.
James Hsueh-Chung Chen, Theodorus E. Standaert, Emre Alptekin, Terry A. Spooner, and Vamsi Paruchuri.

2014. Interconnect performance and scaling strategy at 7 nm node. In IEEE International Interconnect
Technology Conference (IITC’14). 93–96.

Jason Cong and Bin Liu. 2012. A metric for layout-friendly microarchitecture optimization in high-level
synthesis. In ACM/IEEE Design Automation Conference (DAC’12). 1239–1244.

Ke-Ren Dai, Wen-Hao Liu, and Yih-Lang Li. 2009. Efficient simulated evolution based rerouting and
congestion-relaxed layer assignment on 3-D global routing. In IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC’09). 570–575.

Peng Du, Shih-Hung Weng, Xiang Hu, and Chung-Kuan Cheng. 2011. Power grid sizing via convex program-
ming. In International Conference on ASIC (ASICON’11). 337–340.

Ananda D. Gunawardena, S. K. Jain, and Larry Snyder. 1991. Modified iterative methods for consistent
linear systems. Linear Algebra Applications 154 (1991), 123–143.

Gurobi Optimization Inc. 2016. Gurobi Optimizer Reference Manual. http://www.gurobi.com.
Chin-Hsiung Hsu, Huang-Yu Chen, and Yao-Wen Chang. 2008. Multi-layer global routing considering via

and wire capacities. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD’08).
350–355.

Meng-Kai Hsu, Nitesh Katta, Homer Yen-Hung Lin, Keny Tzu-Hen Lin, King Ho Tam, and Ken Chung-Hsing
Wang. 2014. Design and manufacturing process co-optimization in nano-technology. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD’14). 574–581.

Jiang Hu and Sachin S. Sapatnekar. 2001. A survey on multi-net global routing for integrated circuits.
Integration, the VLSI Journal 31, 1 (2001), 1–49.

Andrew B. Kahng, Bao Liu, and Sheldon X.-D. Tan. 2006. Efficient decoupling capacitor planning via convex
programming methods. In ACM International Symposium on Physical Design (ISPD’06). 102–107.

Yukihide Kohira, Tomomi Matsui, Yoko Yokoyama, Chikaaki Kodama, Atsushi Takahashi, Shigeki Nojima,
and Satoshi Tanaka. 2015. Fast mask assignment using positive semidefinite relaxation in LELECUT
triple patterning lithography. In IEEE/ACM Asia and South Pacific Design Automation Conference
(ASPDAC’15). 665–670.

Tsung-Hsien Lee and Ting-Chi Wang. 2008. Congestion-constrained layer assignment for via minimization
in global routing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) 27, 9 (2008), 1643–1656.

Tsung-Hsien Lee and Ting-Chi Wang. 2010. Simultaneous antenna avoidance and via optimization in layer
assignment of multi-layer global routing. In IEEE/ACM International Conference on Computer-Aided
Design (ICCAD’10). 312–318.

Derong Liu, Bei Yu, Salim Chowdhury, and David Z. Pan. 2016. Incremental layer assignment for critical
path timing. In ACM/IEEE Design Automation Conference (DAC’16). 85:1–85:6.

Derong Liu, Bei Yu, Salim Chowdhury, and David Z. Pan. 2017. TILA-S: Timing-driven incremental layer as-
signment avoiding slew violations. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD) (2017).

Wen-Hao Liu and Yih-Lang Li. 2011. Negotiation-based layer assignment for via count and via overflow
minimization. In IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC’11). 539–
544.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

http://www.gurobi.com

Incremental Layer Assignment for Timing Optimization 75:25

Vinicius Livramento, Derong Liu, Salim Chowdhury, Bei Yu, Xiaoqing Xu, David Z. Pan, Jose Luis Guntzel,
and Luiz C. V. dos Santos. 2017. Incremental layer assignment driven by an external signoff timing
engine. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) (2017).

Gi-Joon Nam, Cliff Sze, and Mehmet Yildiz. 2008. The ISPD global routing benchmark suite. In ACM
International Symposium on Physical Design (ISPD’08). 156–159.

Maurice Queyranne. 1986. Performance ratio of polynomial heuristics for triangle inequality quadratic
assignment problems. Operations Research Letters 4, 5 (1986), 231–234.

Daohang Shi, Edward Tashjian, and Azadeh Davoodi. 2016. Dynamic planning of local congestion from
varying-size vias for global routing layer assignment. In IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC’16). 372–377.

Lieven Vandenberghe and Stephen Boyd. 1996. Semidefinite programming. SIAM Review (SIREV) 38, 1
(1996), 49–95.

Lieven Vandenberghe, Stephen Boyd, and Abbas El Gamal. 1997. Optimal wire and transistor sizing for
circuits with non-tree topology. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD’97). 252–259.

Bei Yu, Derong Liu, Salim Chowdhury, and David Z. Pan. 2015a. TILA: Timing-driven incremental layer
assignment. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD’15). 110–117.

Bei Yu, Kun Yuan, Duo Ding, and David Z. Pan. 2015b. Layout decomposition for triple patterning lithog-
raphy. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 34, 3
(March 2015), 433–446.

Received October 2016; revised January 2017; accepted March 2017

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 75, Pub. date: June 2017.

