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Abstract: Uncertainty analysis plays a pivotal role in identifying the important parameters affecting building energy
consumption and estimate their effects at the early design stages. In this work, we consider the adaptive Lasso for
uncertainty analysis in building performance simulation. This procedure has several appealing features: (1) We can
introduce a large number of possible physical and environmental parameters at the initial stage to obtain a more
complete picture of the building energy consumption. (2) The procedure could automatically select parameters and
estimate influences simultaneously and no prior knowledge is required. (3) Due to computational efficiency of the
procedure, non-linear relationship between the building performance and the input parameters could be
accommodated. (4) The proposed adaptive Lasso can use a small number of samples to achieve high modeling
accuracy and further reduce the huge computational cost of running building energy simulation programs.
Furthermore, we propose a stable algorithm to rank input parameters to better identify important input parameters that
affect energy consumption. A case study shows the superior performance of the procedure compared with LS and
OMP in terms of modeling accuracy and computational cost.
1 Introduction

Smart buildings are able to offer numerous opportunities to improve
the energy efficiency and comfort level by efficient temperature and
energy control systems, thus currently are playing an important role
in the everyday lives of people providing a more comfortable and
smart environment. As people’s demands such as the comfort level
and energy efficiency increase speedily, advanced technologies
greatly promote the development of smart buildings. On the other
hand, building stock, including commercial and residential
buildings, is a major energy consumption entity in electricity
market. As estimated by the Department of Energy, buildings
account for 40% of the total energy consumption and 70% of
electricity usage, and also contribute to 40% of greenhouse gas
emission in the United States [1]. The global energy demand of
buildings keeps upward in recent years, mainly due to the growth
in the population and the increasing demand for building services
and conform levels [2].

To achieve a high energy efficiency and provide a high energy
comfort level, an accuracy temperature and energy model
predicting in-building temperature and energy consumption is
imperative. With an accuracy modelling, sensitivity and
uncertainty analysis is able to conduct identifying the most
important factors that influence building performance most.
Nowadays, building simulation is widely used at different stages to
predict the thermal performance and energy at the building design
stage [3]. Typically, the inputs of a building simulation program
include the building system and components, the climate, internal
gains from lighting, equipments and occupants, heating and
cooling systems, schedules of occupants, equipments and lighting
and so on. The simulator runs the heat balance algorithm and then
predicts the energy and temperature of the building [3]. Through
building simulation, we can achieve many advantages for
designing energy-efficient smart buildings.

In addition, it is of importance to quantify the impact of these
uncertainties on the energy and thermal performance by a
probabilistic approach. Such uncertainty analysis is usually
accompanied with a sensitivity analysis, which aims to identify the
most important parameters contributing to the uncertainties of the
building performance. In this way, we can obtain the key
parameters that influence the building performance most.

Many building uncertainty and sensitivity analyses are proposed,
which can be broadly divided into two categories [4]: the first one is
local analysis that focuses on the effects of uncertain parameters
around nominal values; and the second one is global analysis that
focuses on the influences of uncertain parameters over the entire
variation space. Compared with local analysis, global analysis
usually is with higher reliability due to the global view searching
variation space. Linear regression methods are widely utilised in
global analysis [5–8]. Zhao et al. [9] applied recurrent neural
network (RNN) to build non-linear compact thermal model of the
building. Liu et al. [10] employed cross-validation (CV) technique
to search for appropriate model order. However, since a building
performance can be impacted by thousands of parameters,
conventional regression may result in a high-dimensional regression
model, which may be expensive in terms of computational cost.

To reduce building model complexity, Rahni et al. [11] proposed
cluster-based method, which groups uncertainty parameters with
similar sensitivity magnitude or sharing the same sign of
sensitivity, and thus depends on the prior knowledge. Recently,
Chen et al. [12] proposed sparse regression method based on
orthogonal matching pursuit (OMP) [13], which aims to solve a
large number of model coefficients from a small set of simulation
samples without over-fitting. It is a two-step procedure: (i) apply
OMP to select a set of parameters; (ii) estimate coefficients of
selected parameters by least-squares (LS). However, OMP-based
method may suffer from runtime overhead problem thus cannot be
applied in practical large scale building modelling cases.

To overcome the limitation of previous sparse regression methods,
in this work we consider the adaptive Lasso [14] for uncertainty
analysis in building performance simulation. Our key contributions
are as follows:

† Our method is able to automatically select parameters and
estimate coefficients simultaneously and no prior knowledge is
required.
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† Due to computational efficiency of the procedure, non-linear
relationship between the building performance and the input
parameters could be accommodated by including quadratic or
higher order polynomial terms in the uncertainty analysis.
† The number of samples is allowed to be less than the number of
input parameters, the adaptive Lasso can use a small number of
samples to achieve high modelling accuracy and further reduce the
huge computational cost of running building energy simulation
programs.
† We further propose a stable algorithm to rank input parameters to
better identify important input parameters that affect energy
consumption.

The remaining of this paper is organised as follows. In Section 2,
we provide some preliminaries and the problem formulation. In
Section 3, we propose an adaptive Lasso based uncertainty
analysis. In Section 4, we report the experimental results, followed
by the conclusion in Section 5.
2 Preliminary

In general, an uncertainty analysis can be divided into three steps:
pre-processing, simulation and post-processing [5]. In the
pre-processing, input parameters (e.g. building geometry,
fenestration and building materials amongst others) that may affect
the energy consumption of a building and the associated
probability distributions are determined. Let x = (x1, . . . , xp) be a
vector of input parameters of a building. Random samples
x(1), . . . , x(N ) are generated by Latin hypercube sampling method
[15], where N is the number of samples. Each sample is
independently ran on building energy simulation programs (e.g.
EnergyPlus [16], ESP-r [17] etc.) to quantify the building
performance. In this paper, we consider the annual energy
consumption. In the post-processing, uncertainty analysis is
implemented to identify the key parameters that affect the building
energy consumption and gain insight the relationship between
these input parameters and the building performance.

Let y = (y1, . . . , yN ) be the vector of building performance
generated by building energy simulation programs and
X = (x(1), . . . , x(N )) be the design matrix, i.e. Xij = x(i)j . We
consider the following linear regression model

yi =
∑p
j=0

bjXij , (1)

where Xi0 equals to 1. The linear regression model is widely used as
a global uncertainty analysis tool in the literature [4, 6]. To make the
coefficients comparable, and without loss of generality, we can
assume that the building performance is centred and the
parameters are standardised

∑N
i=1

yi = 0,
∑N
i=1

Xij = 0 and
∑N
i=1

X 2
ij = N ,

for j = 1, 2, . . . , p. The linear regression model (1) is equivalent to

y = Xb, (2)

where b = (b1, b2, . . . , bp) contains the model coefficients. The
effects due to the scale of the input parameters are eliminated
and these coefficients are directly comparable, i.e. magnitudes of
the coefficients representing the influences of parameters to the
response. The method of LS provides estimates of the coefficients
by minimising the LS objective function

min
b

‖y− Xb‖22 ,
2 This is an open access article published by the IET
where ‖·‖2 denotes the L2-norm. However, LS method has its
drawbacks. First, if the number of samples N is less than the
number of parameters p, the LS estimates are not unique. In fact,
there is an infinite number of solutions that make the objective
function equal to zero and almost surely overfit the dataset [18].
Thus, when we consider a large number of input parameters, a
large number of samples should be generated. However, it is often
time consuming to run the building energy simulation programs.
This makes the whole uncertainty analysis process computationally
intensive. Second, due to low bias, but the large variance of the
LS estimate and the accumulation of noise, prediction accuracy of
the final model is often compromised in practice. Finally, all of the
LS estimates are typically not zero, which makes it more
challenging to identify the key input parameters and characterise
the precise contribution of each input parameter to the building
energy performance.

To make the uncertainty analysis process computationally
efficient and more reliable in analysing the influence of input
parameters, it is essentially important to reduce the dimension of
the parameters. The methods for reducing dimensionality in the
uncertainty analysis can be divided into two categories:
cluster-based methods and variable selection methods.
Cluster-based methods focus on grouping uncertainty parameters
with similar sensitivity magnitude or sharing the same sign of
sensitivity. The cluster-based methods are straightforward and easy
to implement. However, grouping the parameters depends on the
prior knowledge that is usually unavailable at the early stage of
planning. On the other hand, variable selection typically does not
need prior knowledge. In practice, there are only a small number
of uncertainty parameters that affect the building energy
performance. In such cases, the p-dimensional parameters are
assumed to be sparse with many coefficients being zero. Non-zero
coefficients indicate the importance of the corresponding
parameters. Under the assumption of sparsity, variable selection
can improve the prediction accuracy by reducing the variance and
enhance the ability of uncertainty analysis by automatically
identifying the important parameters. Besides, variable selection
methods allow N < p. This alleviates the need of large samples as
LS estimate, and thus, reduces the computational cost in the
uncertainty analysis.
3 Uncertainty analysis by adaptive Lasso

In this section, we consider the adaptive Lasso [14] that minimises
the penalised LS objective function taking the form

arg min
b

‖y− Xb‖22 + l
∑p
i=j

wj|bj|, (3)

where l is a non-negative regularisation parameter and
w = (w1, . . . , wp) is a known weight vector. When w = 1, the
second term in (3) is the so-called ‘ℓ1 penalty’. The penalised LS
objective function (3) becomes the Lasso [19]. Both methods have
been widely used for simultaneously choosing important
parameters and estimating their effects in high-dimensional
statistical inference.

In practice, weight wj is usually set to be absolute of the inverse of
an initial estimator, i.e. wj = 1/|b̂ j,init|. We propose to use the

estimator of Lasso b̂Lasso as the initial estimator. If b̂ j,Lasso = 0,

we set wj = 1/|b̂ j,Lasso|; if b̂ j,Lasso = 0, we set b̂ j,adapt = 0.

Furthermore, if |b̂ j,asso| is large, the adaptive Lasso employs a
small penalty for the coefficient bj, this means the coefficient bj

could enjoy less bias compared with Lasso. Conversely, if
|b̂ j,Lasso| is small, the adaptive Lasso tends to shrink the coefficient
bj to zero, this yields a more sparse solution and reduces the
number of unimportant parameters compared with Lasso. Figs. 1
and 2 show the estimates of regression coefficients
b̂j , j = 1, . . . , 4, for a simple simulated example by Lasso and the
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Fig. 1 Estimates of regression coefficients b̂j, j = 1, . . . , 4, for a simple
simulated example by Lasso and the adaptive Lasso. Lasso estimates as a
function of ln(l). Coefficients shrink as l increases
adaptive Lasso. At the first stage, b3 is identified as 0 and the
estimates of coefficients for the remainder three parameters are
b̂1 = 0.87, b̂2 = −0.04 and b̂4 = −0.99, respectively. Therefore,
we set b̂3,adapt = 0 and w1 = 1/0.87, w2 = 1/0.04 and
w4 = 1/0.99. At the second stage, it is easier to shrink b2 to 0,
since w2 is very big, while the adaptive Lasso only shrink b1 and
b4 slightly since the weights for these two parameters are
relatively small.

The simple dataset is generated from linear model

y = Xb+ e,

where true coefficients of this simulated example is
b = (1, 0, 0, −1), the design matrix is generated from standard
normal distribution independently and the error e is also generated
from standard normal distribution. We let N = 100.

The regularisation parameter l controls the tradeoff between the
LS loss function and penalty. When l = 0, all coefficients are
typically non-zero and the model is unidentifiable when p >N.
When l = 1, all coefficients are set to zero, which indicates that
none of the input parameters is important. This indicates that l
governs the complexity of the model: the smaller values of l tends
to free up more parameters and the larger values of l tends to
restrict the parameters more and lead to a sparser model. An
optimal choice of l could balance the tradeoff between biases and
variances and yield a small generalised mean squared error. CV is
often adopted to select the optimal l. The CV procedure will be
discussed in detail later.

3.1 Computations: a two-stage procedure

Given the weights, the adaptive Lasso is essentially a convex
optimisation with a weighted ℓ1 constraint and it has the same
order of computational complexity as Lasso [20]. We will describe
a two-stage procedure for minimising (3): firstly, we set w = 1 and
optimise (3) by pathwise coordinate optimisation algorithm [21];
and secondly, given the initiate estimator, we transform the
Fig. 2 Estimates of regression coefficients b̂j, j = 1, . . . , 4, for a simple
simulated example by Lasso and the adaptive Lasso. The same plot for the
adaptive Lasso. The vertical dotted line indicates the logarithm of l
selected by CV
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adaptive Lasso to a Lasso problem to simultaneously select the
important uncertainty parameters and estimate coefficients [14].

If p <N, one could define the weights vector as the inverse of the
absolute of LS solutions. However, in uncertainty analysis, it is
time-consuming to generate samples and run the build energy
simulation programs. To reduce the computational cost, we
propose to define the weights vector by the Lasso with penalty
parameter chosen by ten-fold CV, when the number of uncertainty
parameters is large. Moreover, it is computationally efficient to
solve Lasso problem by pathwise coordinate optimisation. The
computational cost is the same order of computation of a single
LS fit.

Given ŵ, define b∗
j = ŵj|bj|. We can rewrite the objective

function (3)

arg min
b∗

∑N
i=1

(
yi −

∑p
j=1

X ∗
ijb

∗
j

)2

+ l
∑p
i=j

|b∗
j |, (4)

where X ∗
ij = Xij/ŵj. Pathwise coordinate optimisation can be

adopted to solve the objective function (4). The estimates of
adaptive Lasso are defined by b̂adapt = b̂∗/ŵ. The details of the
two-stage procedure are illustrated in Algorithm 1.

Algorithm 1: A two-stage procedure for the adaptive Lasso
Require: X, input matrix; y, building performance; l, regularisation
parameter.
Ensure: An estimate of b for given l.

1: Solve the Lasso problem

b̂init = arg min
b

‖y− Xb‖22 + l
∑p
i=j

|bj|; (5)

2: If b̂ j,init = 0, define ŵj = 1/|b̂ j,init| and X ∗
.j = X.j/ŵj; otherwise,

b∗
j,adapt = 0 and X ∗

.j = 0;
3: Solve the Lasso problem

b̂ ∗
adapt = arg min

b
‖y− X∗b‖22 + l

∑p
i=j

|bj|; (6)

4: Set b̂ j,adapt = b̂∗
adapt/ŵj, if b̂ j,init = 0; otherwise b̂ j,adapt = 0, if

b̂ j,init = 0.

3.2 Choice of regularisation parameter

The regularisation parameter l controls the tradeoff between the data
fitting and model complexity. A larger value of l tends to select
fewer uncertainty parameters and the model may underfit the data,
whereas a smaller value of l tends to select more uncertainty
parameters and the model may overfit the data. In our case study,
we adopt ten-fold CV method to select l for both Lasso and
adaptive Lasso. The flows of CV method are presented in
Algorithm 2 (see Fig. 3).

Another practical issue about selecting the regularisation
parameter l is how to general candidates of l for CV. We first
find the range of candidates for l, [lmin, lmax]. The value of lmax
is set to be maxj |(1/N )xjy| that would let all coefficients be zero,
while the value of lmin be d · lmax. Let d be 0.0001 or 0.01 for the
situation p <N or p > N, respectively. We then generate 100
candidates within [lmin, lmax] such that they are evenly distributed
in the log scale.

3.3 Stable ranking of input parameters

In addition to build an improved prediction model, it is also critical to
know important input parameters that affect the energy consumption,
so that building designer is able to create energy-efficient smart
building by optimising energy consumption at the early stages.
3ommons Attribution-NonCommercial License



Fig. 3 Select optimal l by CV
If there are B training datasets generated from the same building
simulated setting, different models may be identified by the same
variable selection algorithm for different datasets. It is natural to
assume that important input parameters can be included in most
models. On the other hand, unimportant input parameters could
only be randomly included in few models. Thus, unimportant
input parameters are included in the B models with very low
probability. However, it is time-consuming to generate luxury B
training sets in reality. In practice, we only have one data set at
hand. Moreover, in order to reduce the total computational time,
the sample size of the data set is usually small.

Here, we propose a stable ranking algorithm based on bootstrap
and the adaptive Lasso (Sadapt). We draw B bootstrap datasets
with replacement from the original training set. Let Sb denotes the
model selected by the adaptive Lasso in bth bootstrap dataset. Let
indicator function I(xj [ Sb) be 1 if input parameter xj contained
in Sb and 0 otherwise. For every input parameter j = 1, . . . , p, the
relative frequency is given by

∑B
b=1 I(xj [ Sb)

B
.

The details of Sadapt are illustrated in Algorithm 3.

Algorithm 3: Sadapt: Ranking the input parameters
Require: X, input matrix; y, building performance; B, number of
bootstrap datasets.

1: for k = 1 to B do
2: Generate a bootstrap dataset with replacement.
3: Select a set of variables, Sb, via the adaptive Lasso with CV
method.
4: end for
5: Compute the relative frequency for every input parameter
j = 1, . . . , p

rj =
∑B

b=1 I(xj [ Sb)

B
.

6: Sort the rjs in a decreasing order.

4 Case study

4.1 Simulation setup

In this section, the empirical efficiency for uncertainty analysis of the
adaptive Lasso algorithm is assessed by a building simulation data.
4 This is an open access article published by the IET
The simulation setup was used in [12]. A ten-storey building is
created and each storey is divided into nine zones. We assume the
temperature is the same within each zone and different zones can
have different temperatures. We consider p = 1106 input
parameters as candidate uncertainties that may affect the energy
consumption and the temperature of the building. Then, 8000
independent samples are generated by Latin hypercube sampling
method [15]. The building is modelled using the energy
calculation software EnergyPlus [16] performed on an Intel core i7
cpu 3.6 GHz with 16 GB memory. The data are split randomly
into two disjoint groups with 6000 samples as training set
Dt = {X t , yt} and the remaining 2000 samples as validation set
Dv = {X v, yv}.

To test the performance of the adaptive Lasso (adapt) procedure,
we compare it with the following three global uncertainty analysis
algorithms:

† Classic linear regression (LS). The coefficients of parameters are
provided by the LS equation function

b̂ = (XX )−1Xy.

† OMP, a greedy algorithm for sparse approximation of the ℓ0-norm
regularisation method

minimise ‖y− Xb‖, subject to ‖b‖0 ≤ l,

where ‖b‖0 denotes the ℓ0 norm of a vector and is defined as
‖b‖0 =

∑p
i=1 I{bi=0}. OMP does a forward search; in each step, it

adds the most correlated parameter with the residual of the current
model and the residual is updated by LS after each step. As in
[12], five-fold CV is used to find the regularisation parameter l.
Under the assumption that only a small number of parameters
significantly affect the building performance, we often choose a
maximum value of l to reduce the computational cost, especially
when N < p. In our experiments, we let lmax = min (N , p)/2.
† The least absolute shrinkage and selection operator (Lasso) is a
regularisation technique by setting w = 1 in the objective function
(3). Lasso was implemented by R package ‘glmnet’ [21]. Ten-fold
CV is used to find the regularisation parameter l in Lasso.

4.2 Comparisons of the algorithms on modelling error
and computational cost

In what following, we examine different aspects of these algorithms,
including computational cost, number of selected parameters and
IET Cyber-Phys. Syst., Theory Appl., pp. 1–7
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Fig. 4 MAPE of the energy assumption by the four methods. The number of
samples, n, varies from 200 to 6000. MAPEs by the four methods without
quadratic terms

Fig. 6 Number of selected variables by OMP, Lasso and adapt for number
of samples from 200 to 6000

Fig. 7 Number of selected variables by OMP2, Lasso2, and adapt2 for
number of samples from 200 to 6000
modelling error, on the response that measures the annual energy
consumption. To accommodate possible non-linear relationship
between the response and the input parameters, we also apply all
four methods to the extended data that include all quadratic terms
of the original uncertain parameters. This expands the scope of the
model and allows a non-linear fit. These procedures are denoted as
LS2, OMP2, Lasso2 and adapt2, respectively. There are 2212
parameters in the extended data. The out-of-sample performance
was evaluated using mean absolute percentage error (MAPE)

1

2000

∑
i[Dv

yi − xib̂

yi

∣∣∣∣∣
∣∣∣∣∣.

To test whether or not these algorithms successfully fit the simulated
dataset, we studied the performance of the models chosen by the four
algorithms (LS considers the full model) given N samples varying
from 200 to 6000. As shown in Fig. 4, sparse regression methods,
OMP, Lasso and the adaptive Lasso, consistently outperform LS,
especially when the number of samples is small. Besides, sparse
regression methods with quadratic terms perform significantly
better in terms of modelling error (Fig. 5), because they allow to
capture the non-linear relationship between the input parameters
and the energy consumption. For example, when N = 6000, MAPE
of adapt is about 1.00%, while MAPE of adapt is 0.74% with
quadratic terms considered. When the number of samples is
relatively small, the modelling error of Lasso and the adaptive
Lasso is often substantial smaller than that of OMP. When the
number of samples is large, the Lasso and the adaptive Lasso do
not improve. The adaptive Lasso yields comparable results with
Lasso. As the increasing of the number of samples, the adaptive
Lasso improves slightly.

The number of selected parameters for each method is shown in
Figs. 6 and 7. In most settings, the adaptive lasso selects around
130 parameters for the original dataset and 120 parameters when
quadratic terms are included. The number of parameters selected
Fig. 5 MAPE of the energy assumption by the four methods. The number of
samples, n, varies from 200 to 6000. MAPEs by the four methods with
quadratic terms
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by Lasso increases as the number of samples increases. The
number of parameters selected by OMP is very small when the
number of samples is small and it stabilises at around 110 when
the number of samples is larger than 1000.

Fig. 8 shows the elapsed running time for the four methods with
and without quadratic terms. Due to the fact that it adds one input
Fig. 8 Running time (in seconds) of LS, LS2, OMP, OMP2, Lasso, Lasso2,
adapt and adapt2. Algorithms were asked to search for a model given p =
1106 or 2212. The number of training samples n varies from 200 to 6000.
The zoom-in figure shows a close-up plot for number of samples varying
from 200 to 800

a Running time for n varying from 200 to 6000
b Running time for n varying from 200 to 800

5ommons Attribution-NonCommercial License



Table 2 Comparison of modelling error, number of selected
parameters and computational cost by the four algorithms with quadratic
terms given the number of samples, N = 2500

LS2 OMP2 Lasso2 Adapt2

MAPE, % 1.90 0.81 0.82 0.82
number of parameters 2212 107 645 128
simulation time, h 22.8 22.8 22.8 22.8
fitting time, s 15.4 1330 135.5 137.4
total cost, h 22.8 23.2 22.8 22.8

Fig. 10 ROC-curves for Sadapt and OMP with n = 800

Table 1 Comparison of modelling error, number of selected
parameters and computational cost by the four algorithms without
quadratic terms given the number of samples, N = 1600

LS OMP Lasso Adapt

MAPE, % 1.67 1.07 1.10 0.87
number of parameters 1106 117 419 159
simulation time, h 14.6 14.6 14.6 14.6
fitting time, s 2.87 622.0 10.1 13.3
total cost, h 14.6 14.8 14.6 14.6

Fig. 9 ROC-curves for Sadapt and OMP with n = 200
parameter at a time, the OMP algorithm is very slow when the
number of training samples or the number of input parameters
becomes large. Compared with Lasso, the adaptive Lasso only
added slightly computational burden. This is expected since the
first round of adaptive Lasso has already reduced the
dimensionality of the dataset significantly, the second round can
be implemented very quickly. It is interesting to note that sparse
regression methods with quadratic terms do not add much
computational cost.

Tables 1 and 2 summarise the modelling error, number of selected
parameters and computational cost for simulation and fitting when
the number of samples is 1600 or 2500. First, we can see that
simulation time dominates the total computational cost for all
algorithms. Second, the adaptive Lasso seems advantageous,
selecting proper number of parameters and achieving small
modelling error under relatively small computational cost. For
OMP the computational cost increases very fast with the
increasing of either the number of parameters or the number of
samples. For Lasso, the number of selected parameters seems
unreasonably large.
4.3 Comparisons of the algorithms on ranking

For this task, we adopt the ROC curves to assess the performance of
Sadapt and OMP algorithm. Two evaluation metrics are defined as
follows: true positive rate (tpr) = TP/(TP + FN) and false positive
rate (fpr) = FP/(FP + TN), where TP, TN, FN and FP represent
the number of truly related input parameters correctly included, the
number of truly unrelated input parameters correctly rejected, the
number of truly related input parameters incorrectly rejected, and
the number of truly unrelated input parameters incorrectly included.

Although we do not know the truly related input parameters in
reality, in theory, the accuracy of identifying truly related input
parameters improves with the increase of training samples.
Besides, the R2 of linear regression model is 97% when n = 8000.
We therefor can evaluate the performance of an algorithm for a
small number of training samples against a proxy for the truth in
which 8000 training samples are used. Specifically, we denote the
intersection of input parameters identified by OMP and adapt as
the truth for 8000 training samples.

As the number of training samples increases, both algorithms
perform better, as shown in Figs. 9 and 10. However, Sadapt has
the best overall performance, i.e. Sadapt is able to achieve
substantially higher tpr than the OMP algorithm at the same fpr.
For instance, when the number of samples is 200, the tpr of
Sadapt is around 0.21 with fpr fixed at 0.1, while the tpr of OMP
is 0.18.
6 This is an open access article published by the IET
5 Conclusion

Efficiently finding important parameters from a large number of
candidates using a small number of samples can improve the
modelling accuracy and greatly alleviate the huge computational
task of running the building energy simulation programs. In this
work, we considered the adaptive Lasso for uncertainty analysis in
building performance simulation. The adaptive Lasso can identify
which input parameters are significantly affected the building
performance and estimate the influences of these parameters to it
simultaneously. Besides, we proposed a stable ranking algorithm
that is able to rank important input parameters ahead of
unimportant ones. The experimental results show that the
advantage of the adaptive Lasso over the recently proposed
method [12] that adopted OMP lies in both computational cost and
the modelling accuracy. Furthermore, due to its computational
efficiency, quadratic terms and even higher polynomial terms are
allowed to be included for adaptive Lasso to accommodate
possible non-linear relationship between the building performance
and the input parameters. Based on these results, we believe that
the adaptive Lasso can be fruitfully applied to the uncertainty
analysis in building energy analysis.
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