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Abstract—In recent years, memristive crossbar-based neuromorphic
computing systems (NCS) have provided a promising solution to the
acceleration of neural networks. However, stuck-at faults (SAFs) in
the memristor devices significantly degrade the computing accuracy of
NCS. Besides, the memristor suffers from the process variations, causing
deviation of the actual programming resistance from its target resistance.
In this paper, we propose a reliability-driven network training framework
for a memristive crossbar-based NCS, with taking account of both SAFs
and device variations challenges. A dropout-inspired approach is first
developed to alleviate the impact of SAFs. A new weighted error function,
including cross-entropy error (CEE), the l2-norm of weights, and the sum
of squares of first-order derivatives of CEE with respect to weights, is
further proposed to obtain a smooth error curve, where the effects of
variations are suppressed. Experimental results show that the proposed
method can boost the computation accuracy of NCS and improve the
NCS robustness.

Index Terms—neuromorphic computing system, memristive crossbar,
fault tolerance, robustness

I. INTRODUCTION

Neuromorphic computing systems (NCS) based on hardware designs
intend to mimic neuro-biological architectures [1]. Different from
conventional von Neumann architectures, NCS has been often con-
structed with highly parallel, extensively connected, and collocated
computing and storage units, which eliminate the gap between
CPU computing capacity and memory bandwidth [2]. However,
the implementation of NCS on CMOS technology suffers from a
mismatch between NCS building blocks (neuron and synapse) and
CMOS primitives (Boolean logic). Recently, the emerging memris-
tive technology is adopted to implement the synapse circuit thanks
to the similarity between memristive and synaptic behaviors [3],
[4]. For example, the memristor is suitable to store the weight of
synapse because the resistance of a memristor can be programmed
by applying current or voltage. Besides, compared with the state-
of-the-art CMOS design, the memristive crossbar has been proven
as one of the most efficient nanostructures that carry out matrix-
vector multiplications while hardware cost and computation energy
are significantly reduced [1].

Despite these tremendous advantages, NCS implementations on
memristive crossbars encounter some reliability challenges. First,
memristors suffer from stuck-at faults (SAFs), which make the
memristor stuck at high or low resistance state, leading to a sig-
nificant yield loss in NCS. Second, in a memristor-based NCS,
programming the resistance of the memristors induces stochastic
device variations [5]. As a result, the actual programming resistance
is deviated from its target resistance and finally results in significant
errors to the output of the neural network.

To tolerate SAFs, a number of solutions have been proposed.
Huangfu et al. [6] proposed a mapping algorithm for tolerating SAFs
by using extra memristive crossbars. Xia et al. [7] presented a re-
mapping scheme with inner fault tolerance to eliminate the impact of
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Fig. 1: The memristive crossbar with SAFs and device variations.

SAFs. But redundant memristors are needed in the mapping-based
fault tolerant methods, thus inevitably brings hardware overhead. Re-
cently, machine learning techniques have been successfully utilized
to address SAFs problem. Liu et al. [8] presented a re-training based
method to tolerate SAFs. Xia et al. [9] proposed a fault tolerant
training with re-mapping technique by using the sparsity of neural
networks. However, the solutions only focus on SAFs, overlooking
the programming device variations.

Besides, to address stochastic device variations, Liu et al. [10]
developed a variation tolerant training by adjusting the training
goal according to the impact of the variations. Thus a set of pre-
trained neural networks is generated. By testing the network models,
the best one is applied to the memristive crossbar. However, for
a crossbar with stochastic variations, the optimal network model
can hardly be derived. Chen et al. [11] investigated a fault and
variation tolerant framework for memristive crossbar-based NCS.
It first finds an optimal mapping between weights and memristors
for SAF and variation tolerance. Then the re-training process based
on conventional gradient descent technique is further adopted to
tune weights. But the resistance variation values of memristors are
assumed to be known in advance, thus the method is essentially no
different from the SAFs-aware approaches.

Although recent works have investigated the SAFs and variations
tolerance, the SAFs tolerant solutions can be derived only if the
exact locations of SAFs in crossbar are known in advance. Although
the SAFs locations in the crossbar can be obtained by March-C
algorithm or squeeze-search algorithm based testing methods [12],
[13], the test overheads may be too high for the NCS implemented
by many memristive crossbars. Therefore, a general reliability design
of the memristive crossbar-based NCS without the prior testing is
required. Besides, despite a general variation tolerant design of NCS
is presented in [10], the impact of SAFs are not considered. Funda-
mentally different from these approaches, we propose a reliability-
driven neural network training framework for a memristive crossbar-
based NCS. To the best of our knowledge, this is the first NCS
reliability-driven training flow with taking account of both SAFs and



variations challenges simultaneously. Key technical contributions of
this work are listed as follows.

• We propose a general reliability-driven neural network training
algorithm to enhance the robustness of NCS to SAFs and device
variations.

• A dropout-inspired approach is developed to alleviate the impact
of SAFs.

• A new weighted error function, including cross-entropy error
(CEE), the l2-norm of weights, and the sum of squares of first-
order derivatives of CEE with respect to weights, is designed
to obtain a smooth error curve, where the effects of device
variations are suppressed.

• Experimental results show that our method not only improves
the robustness of NCS to SAFs and device variations, but also
boosts the computation accuracy of NCS.

The remainder of this paper is organized as follows. Section II
presents the preliminary and introduces the problem to be addressed
in the paper. Section III describes the proposed reliability-driven
design framework for neuromorphic computing systems. Section IV
presents experimental results, followed by conclusion in Section V.

II. PRELIMINARIES

A. Fault and Variation Models on Memristor
Due to the immature fabrication technology, manufacturing reliability
is still a major concern in a memristive crossbar-based NCS. The
memristor faults can be divided into soft faults and hard faults.
For a soft fault, the resistance of an RRAM cell is not correct
but can still be tuned. However, for hard faults, the resistance of
a memristor cannot be changed; thus, the computational accuracy of
NCS is limited. Among all kinds of hard faults, stuck-at-one (SA1)
faults and stuck-at-zero (SA0) faults appear rather frequently. The
permanent open switch defects and broken word-lines lead to SA1
faults which behave that 9.04% of the memristors are in a high
resistance state. Meanwhile, the SA0 faults, which are caused by
over-forming defects, reset failures, or short defects, force 1.75% of
the on-chip memristors in a low resistance state [11], [13].

Various types of variations are observed in memristors, which are
divided into two categories, i.e., parametric variation and switching
variation. The device-to-device parametric variation is caused by
fabrication imperfection, such as random discrete dopants and the line
edge roughness [14]. On the other hand, the switching variation is a
cycle-to-cycle variation triggered by driving circuit design. Any small
fluctuations in the magnitude and pulse-width of the programming
current or voltage can produce resistance variations. Throughout
this paper, we use matrix C to represent the resistance states of
the crossbar. The work in [15] have reported that the programmed
resistance states of the memristors follow a lognormal distribution,
which is shown as follows:

c̃ij = cij · exp (θij), θij ∼ N (0, σ2), (1)

where c̃ij and cij are actual resistance and target resistance of a
memristor in the i-th row and j-th column of C, θij denotes the
zero-mean Gaussian variation with a variance of σ. An example of
a memristive crossbar with SAFs and variations is shown in Fig. 1.

B. Problem Formulation
In this work, the computation accuracy of NCS is given by the
probability that the trained NCS can successfully classify the test
samples. Specifically, the higher, the better. We define the fault and
variation tolerance problem in NCS as follows:

Training samples 

SAF and Variation-aware 
robust training 

Testing with trained 
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on memristor 

Reliable NCS model 

Fig. 2: The proposed reliability-driven network training for NCS.

Input: Training and testing sets, and the device variation model.
Output: A neural network model for the memristive crossbar-

based NCS, which the impacts of faults and device variations are
alleviated.

Objective: Improving the NCS robustness and boosting the com-
putation accuracy of NCS.

C. Overall Flow
The overall flow of the proposed reliability-driven network training
framework for NCS is shown in Fig. 2. Given the training samples
and the memristor SAF and variation models, a general SAF and
variation-aware robust training is performed. Through a dropout-
inspired technique and a new weighted error function, the robustness
of NCS to SAFs and device variations is enhanced. Then the trained
neural network model is tested on test samples with Monte-Carlo
simulation method to show the robustness. Finally, a reliable NCS
model is achieved.

III. RELIABILITY-DRIVEN NETWORK TRAINING FOR NCS
In this section, we first introduce our dropout-inspired technique.
Then we give the details about the new weighted error function.

A. Dropout-inspired Technique
In the general reliability-driven network training scheme, a dropout-
inspired technique is proposed to prevent the complicated dependen-
cies between weights and make the network robust against SAFs. We
train the network with the mini-batch gradient descent (MGD) [16]
approach, which can provide a more efficient computation process
than the stochastic gradient descent (SGD). A group of instances are
randomly picked from the training set in each training iteration. For
each batch, we sample a network with random SAFs distribution. The
weight with SA0 fault or SA1 fault is temporarily set to the maximum
value or the minimum value in the current network. Note that the
weights with SAFs will not participate in the back-propagation.
Hence, the operation of injecting SAFs into weights is similar to
the dropout strategy in deep learning [17], where the neurons are
temporarily removed from the network. As a result, a weight in the
network does not rely on other specific weights, and the complex
co-adaptation of weights is prevented.

B. Weighted Error Function
To obtain a smooth error curve, where the effects of variations are
suppressed, a new weighted error function is designed. Generally,
regularization is adopted to control the complexity of the network
model and avoid over-fitting. The regularization term can be ex-
pressed by adding a penalty to the error function of the learning
algorithm as Equation (2):

Ẽ(W ) = E(W ) + λΩ, (2)



Algorithm 1 General Reliability-driven Network Training
Input: Training set, Wt and ηt.
Output: Wt+1 and ηt+1.

1: for i← 1 to T do
2: Sample a mini-batch Bi from training set;
3: Inject randomly distributed SAFs into network;
4: Calculate error Ẽ(Wt); . Equation (5)
5: Obtain the accumulated gradient of error ∂Ẽ(Wt)

∂Wt
;

6: Update Wt; . Equation (6)
7: end for

where W is the weight matrix, and the parameter λ > 0 controls
the relative importance of the data-dependent error E(W ) (typically
cross-entropy error) and regularization penalty Ω.

Two popular regularizers are l1-norm regularizer and l2-norm
regularizer as Equations (3) and (4):

Ωl1(W ) = ‖W ‖1 , (3)

Ωl2(W ) = ‖W ‖22 . (4)

L1-norm regularizer has the property that if λ is sufficiently large,
some weights wij are driven to zero, leading to a sparse network
model. Compared with l1-norm regularizer, l2-norm regularizer gives
more bias to the large weights during training and shrinks the weight
distribution to the small value range [18]. To compensate for the
impact of faults and device variations, a smooth error curve is needed.
According to the work [19], l2-norm can reduce the sensitivity of
the network and thus enhance the training robustness. Besides, if the
first-order derivatives of the error function with respect to weights
are adopted as a regularizer, it disfavors error functions that change
rapidly. Therefore, the first-order derivative regularizer helps to avoid
sharp changes in error (and hence in output) with minor changes in
weights. Combining Equation (2), (4) and the first-order derivative
term, we can derive our joint objective function as:

min
W

E(W ) + λ1 ‖W ‖22 + λ2

∥∥∥∥W � ∂E(W )

∂W

∥∥∥∥2
2

, (5a)

where

E(W ) = −
N∑

r=1

n∑
i=1

{ỹri ln yri + (1− ỹri) ln (1− yri)}, (5b)

where ỹr = {ỹri}ni=1 denotes a target vector, and yri(·) refers to
the i-th element of activation function output y(xr,W ). xr ∈ Rm

is an input vector. Meanwhile, N is the total number of training data
in each batch.

During training, neural weights with SAFs are fixed, while other
weights can still be updated in the backward process as follows:

Wt+1 = g(Wt, ηt,
∂Ẽ(Wt)

∂Wt
), (6)

where Wt and ηt are the current weight and the current learning
rate, and Wt+1 denotes the updated weight. Meanwhile, g(·) refers
to the optimizer for updating weights and learning rate.

The details of the proposed general reliability-driven network
training scheme are illustrated in Algorithm 1. We use the adaptive
moment estimation (Adam) optimizer [20] to train the network
model. In each training iteration, we sample a mini-batch from
the training set (line 2). Then the randomly distributed SAFs are
injected into the current network (line 3). A feed-forward calculation
is performed on each instance in the mini-batch. We calculate the

TABLE I: Original computation accuracy.

Network Dataset Accuracy

MLP MNIST 92.8%
LeNet CIFAR-10 86.2%

AlexNet CIFAR-100 58.5%
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Fig. 3: Training curves.

error on each instance (line 4) and obtain the accumulated gradient
of errors with respect to the weights (line 5). Finally, Wt is updated
based on Equation (6) (line 6). The above process is terminated until
satisfying the training iteration number T .

IV. EXPERIMENTAL RESULTS

The framework is implemented based on Tensorflow library [21]
and validated on a Linux server with 8-core Intel CPU and Nvidia
Tesla K40M GPU. To verify the effectiveness of our algorithm, we
experiment on three datasets, including MNIST [22], CIFAR-10, and
CIFAR-100 [23]. First a two-layer multi-layer perceptron (MLP) is
trained for MNIST. Then LeNet [22] for CIFAR-10 is implemented,
which consists of two convolutional (Conv) layers and three fully
connected (FC) layers. In the convolutional layers, 64 kernels of size
5×5 are employed; three FC layers are consistent, whose dimensions
are 384, 192, and 10. Finally AlexNet [24] is trained for CIFAR-100.
We use 3×3 kernel size to make it suitable for input images. The
lognormal distribution is adopted as our memristor variation model,
shown as in Equation (1). Besides, according to the results in [25],
Conv layers are very sensitive to SAFs, and hence the randomly
distributed SAFs are injected into the FC layers. The performance of
the proposed framework is evaluated by a Monte Carlo simulation.
TABLE I shows the original computation accuracy of NCS without
the impacts of SAFs and variations, which serves as the upper bound
of the reliability design.

A. Effectiveness of General Reliability-driven Network Training
In the first experiment, we demonstrate the robustness of the proposed
general reliability-driven network training to the SAFs and the device
variations. The memristor variation model is injected into the weights
across all different layers in the network. SAFs with 9.04% SA1
faults and 1.75% SA0 faults are added to the last FC layers [11].
We apply the proposed general reliability-driven training to train the
three neural networks. For comparison, we also employ a traditional
learning strategy to train the neural networks (Baseline), where the
proposed dropout-inspired approach and the first-order derivative
regularizer are not included. The device variation σ is set to 1. The
curves of the two training methods on MNIST dataset are depicted in
Fig. 3, where x-axis indicates training steps and y-axis is computation
accuracy. We can see that our general reliability-driven training is a
more stable training procedure and converges to a higher accuracy.

Fig. 4 illustrates the accuracy of the three neural networks derived
by the two training methods, respectively. We vary σ to change the
influence of stochastic device variation. It can be seen from the figure
that as σ increases, the traditional learning strategy suffers from
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Fig. 4: Effectiveness of the proposed general reliability-driven training.

0.5 0.6 0.7 0.8 0.9 1
53

63

73

83

93

σ

A
cc

ur
ac

y
(%

)

Ours
Vortex [10]

Fig. 5: Comparison between Vortex [10]
and our training method.

severer accuracy degradation. Meanwhile, our general reliability-
driven training can significantly improve accuracy, demonstrating the
robustness to SAFs and variations. For example, our training method
boosts the accuracy of MLP MNIST from 65.63% to 78.34% even
under the significant variation σ = 1.3, shown as in Fig. 4(a).
A similar trend can also be observed for LeNet CIFAR-10 and
AlexNet CIFAR-100, as shown in Fig. 4(b) and Fig. 4(c).

B. Comparison with Previous Works
In the second experiment, we compare the proposed general
reliability-driven training with Vortex [10]. In Vortex, a general
variation tolerant training is developed by adjusting the training
goal according to the impact of the variations. The comparison is
performed on MNIST dataset by using a two-layer MLP and the
results are depicted in Fig. 5. The simulation results show that
the proposed general reliability-driven training outperforms Vortex
in terms of accuracy by 16.49% on average. Besides, a specific
variation tolerant method based on mapping and re-training is pre-
sented in [11]. However, in reality, the stochastic variation value of
memristors in crossbar can hardly be tested in advance.

V. CONCLUSION

In this paper, we have proposed a reliability-driven neural network
training framework for memristive crossbar-based neuromorphic
computing systems, with taking account of both SAFs and varia-
tions challenges simultaneously. Experimental results show that the
proposed method can improve the computation accuracy of NCS and
enhance the NCS robustness to SAFs and resistance variations.
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