
Incorporating Cut Redistribution with Mask
Assignment to Enable 1D Gridded Design

Jian Kuang, Evangeline F. Y. Young, Bei Yu

The Chinese University of Hong Kong

香 港 中 文 大 學

Outline
• Background
• Problem Formulation
• ILP
• Graph Model and Algorithm
• Post-processing
• Results and Conclusions

1

Lithography Technologies
§ DPL (double patterning lithography)

§ One layout is decomposed into two masks
§ Litho-etch process is repeated twice
§ Resolution can be improved
§ Like 2-coloring

§ EBL (e-beam lithography)
§ Directly creates features by electron beams w/o mask
§ Excellent resolution

2

Fabrication of 1D Layout
§ Line-end cuts

§ Simultaneous DPL and cut redistribution

§ Native conflict: Even redistribution plus DPL decomposition
cannot solve the conflict. Requires EBL.

3

Target Dense lines Line-end cuts

Redistribution DPL of cuts Redistribution+DPL

EBL cut

Cut

Dummy

Extension

Dist < d

Resolving Conflicts between Cuts

§ Three ways to resolve a conflict
§ DPL (coloring)

§ Redistribute (move the location)
cost of wire extension

§ Manufacture one cut by EBL
cost of EBL

4

EBL cut

Outline
• Background
• Problem Formulation
• ILP
• Graph Model and Algorithm
• Post-processing
• Results and Conclusions

5

Problem Definition

§ Given a layout of n wires and 2n cuts, decide the
fabrication method (using EBL or not), the mask and
the location of each cut, such that
§ All design rules are satisfied.
§ wire_extension ≤ limit for each wire

§ min. ∑wire_extension�
� + 𝜕) EBL_cut#

6

Design Rules
§ Wires can be extended but not shortened.

§ No conflict between two cuts if they are merged.

7

Merging on the same
track (overlap or abut)

Adjacent tracks
(aligned)

Non-adjacent tracks
(a,b,c aligned)

a and b

c d
a
b

b
c

a

Outline
• Background
• Problem Formulation
• ILP
• Graph Model and Algorithm
• Post-processing
• Results and Conclusions

8

ILP

§ Existing ILP [DAC’14] solves problem for EBL plus
redistribution but no DPL considerations.

§ Our contributions:
§ Analyze the potential problems in [DAC’14].
§ Show how to fix the problems.
§ Consider DPL besides EBL and redistribution.

9

[DAC’14] Ding et al. “Throughput optimization for SADP and e-beam based manufacturing of 1D
layout”, In Proc. DAC, 2014

Outline
• Background
• Problem Formulation
• ILP
• Graph Model and Algorithm
• Post-processing
• Results and Conclusions

10

Flow

11

conflict graph will
change with cut shifting

conflict graph
constructioninput graph splitting

every
component is 2-

colorable?

output

yes

move selection

any move is
selected?

perform the
selected moves

no

EBL cut selection

no yes

for each
non-2-colorable

component

post-
processing

a
b
c
de

a
b

c
de

What is a “Move”?
§ A move 𝑐𝑖	 	 	 , ±𝑑𝑖

§ Cut 𝑐𝑖
§ Right/Left: ±
§ Discrete moving distance 𝑑𝑖
§ Cost = Wire extension resulted

12

(a, -1): space a and b
(b,+1): align b and c
(c,+1): space b and c

a
b
c
de

Move Selection
§ Select moves to change locations of cuts such that

no odd cycle is created in conflict graph
§No odd cycle ≡ 2-colorable

§ Select moves based on an integrated graph model
§Obtained by integrating G1, G2 and G3

13

odd cycle, not 2-colorable

a
b

c
de

Graph Model 1
§ G1: constraint graph for move operations:

§ Two moves are incompatible (have an edge) if
§ Exceed limit on wire extension, or
§ Both shift a cut in different directions, or
§ Applying both cannot resolve the targeted conflicts

14

𝑎,−1 :
𝑏,+1 :
𝑐, +1 :

m1
m2
m3

a
b
c
de m1

m3

m2

Graph Model 2
§ G2 is a bipartite graph between conflicts and moves:

e.g. Moving a to the left 1 step (m1) can resolve the
conflict between (a,c) and m1. Thus there is an edge
between (a,c) and m1.

15

𝑎,−1 :
𝑏,+1 :
𝑐, +1 :

m1
m2
m3

a
b
c
de (a,c)

(a,b)
(b,c)
(c,d)

m1

m3
m2

Graph Model 3
§ G3: bipartite graph between conflicts and odd cycles

§ The edge between cl0 and (a,c) means that resolving
conflict (a,c) can break odd cycle cl0.

§ All odd cycles should be broken.
§ Number of odd cycles can be exponential.

§ Only consider odd cycles in a cycle basis - a set of cycles that
can be combined to form every cycle in a graph.

16

odd cycle cl0

a
b
c
de cl0

(a,c)
(a,b)
(b,c)

a
b

c
de

Integrated Graph Model

17

§ Constraints between moves (dash lines) are copied.

§ cl0—(a,c) in G3 and (a,c)—m1 in G2 gives cl0—m1 in the
final graph meaning that move m1 can break cycle cl0.

integrated
m1
m2
m3

cl0

m1

m3

m2cl0
(a,c)
(a,b)
(b,c)

(a,c)
(a,b)
(b,c)
(c,d)

m1

m3
m2

G3 G2 G1

Move Selection by Constrained Set Cover

§ Select moves to break all the identified odd cycles

§ Constrained set cover problem:

§ Select a set of min-cost moves to break all cycles
under some constraints.

18

m1
m2
m3

cl0

Solving Constrained Set Cover
§ Use ILP to solve the constrained set cover problem:

§ Constant aij indicates if an edge exists btw. cycle i and move mj

§ Variable bj indicates if move mj is selected

§ Much smaller and simpler than the ILP solving the original
problem directly.

19

min.7𝑏𝑗) 𝑐𝑜𝑠𝑡 𝑚𝑗

=

>?@

𝑏1 + 𝑏2 + 𝑏3 ≥ 1
𝑏2 + 𝑏3 ≤ 1

e.g. m1
m2
m3

cl0

EBL Cut Selection

§ When a cut is an EBL cut, its corresponding node is deleted
from the conflict graph.

§ Problem: Delete a minimum number of nodes from the
conflict graph such that at least one node will be deleted from
each cycle in a cycle basis.

§ Solution: Use a similar ILP without incompatible constraints
20

Flow (Review)
do

Select some moves.
Perform selected moves.
Rebuild conflict graph.

until all cuts 2-‐‑colorable or no moves are available.

Select some cuts as EBL cuts.

Accelerating by Potential Conflict Graph
§ Conflict graph G of cuts:

Conflicts between cuts can change dynamically if cuts can move.

§ Potential conflict graph Gp.
An edge between two nodes iff there is a potential conflict
between the two cuts with cut redistribution

§ Gp is stable and can be safely split into sub-layouts to
reduce problem size

21
Gp

c2i c2i+1

c2j c2j+1

c2i+2

c2j
c2j+1

c2i c2i+1 c2i+2

Handling Vertically Aligned Cuts
§ #cut=2: a and b never conflict

§ As we can merge them if color(a)=color(b)

§ #cut=3: no conflict if color(b) = color(a) or color(c)
§ Conflict edge a—c : unnecessary

§ # vertically aligned cuts = n ≤ H+1:
(H is the largest difference between two conflicting track labels.)

§ Lemma: No conflict iff ∃𝑖 for	 2 ≤ 𝑖 ≤ 𝑛 s.t. c1…ci-1 are
colored the same and ci…cn are colored the same.

§ Grouping nodes instead of adding many edges
in conflict graph

22

a
b

b
c

a

c
b
a

DPL+EBL
• Background
• Problem Formulation
• ILP
• Graph Model and Algorithm
• Post-processing
• Results and Conclusions

23

Post-‐‑processing methods

§ Objective: To minimize wire extensions.

§ Globally: Longest-path algorithm:
§ Compact the cuts at right ends of wires to the left
§ Compact the cuts at left ends of wires to the right

§ Locally: Greedily shift cuts towards their original
locations

24

b a

Longest Path algorithm
§ For those right end cuts, construct a left compaction

graph:

§ Edge cost:
§ s to node: Leftmost x of the movable range of the cut.
§ Between nodes: Required distance between the 2 nodes.

§ Edge direction:
§ b to a iff xa >xb

§ Distance of the longest path from s to i:
§ Leftmost x to place i

25

b
c d

a b

c d

a
s
1

1 2
2

3
3

Outline
• Background
• Problem Formulation
• ILP
• Graph Model and Algorithm
• Post-processing
• Results and Conclusions

26

Comparison with ILP

27

§ ILP is too slow.
§ Our EBL# has achieved lower bound for all datasets.
§ Our quality is very close to ILP if ILP has solutions.

Dataset Optimal ILP Ours
Track# EBL# Extension Time(s) EBL# Extension Time(s)
50 0 26 18.0 0 26 0.1
100 0 46 180.4 0 46 0.2
150 0 78 6446.9 0 79 0.4
200 -‐‑ -‐‑ >36000 0 104 0.5
250 -‐‑ -‐‑ >36000 0 129 0.6
300 -‐‑ -‐‑ >36000 0 164 0.7
1000 -‐‑ -‐‑ >36000 0 583 2.2
2000 -‐‑ -‐‑ >36000 0 1230 4.5
4000 -‐‑ -‐‑ >36000 1 2500 9.4
8000 -‐‑ -‐‑ >36000 1 5178 18.8

Caused by native conflict

Comparison with
Optimal Coloring + Optimal Redistribution

28

§ Our algorithm optimizes coloring and redistribution simultaneously
§ Cost = ∑ wire_extension + ∂· EBL_cut# ∂=100

Dataset Opt. color + redistribute Ours
Track# Cost Time (s) Cost Time (s)
50 4029 0.7 26 0.1
100 9050 1.2 46 0.2
150 14091 2.4 79 0.4
200 17109 2.8 104 0.5
250 19135 3.4 129 0.6
300 23174 4.7 164 0.7
1000 69670 35.6 583 2.2
2000 132380 91.4 1230 4.5
4000 280764 245.3 3500 9.4
8000 573740 2784.9 6178 18.8
Ratio 95.0 84.8 1 1

Conclusion
• Co-optimization of cut redistribution and mask

assignment for 1D gridded design.

• Novel graph-theoretic method that makes use of
integrated graph model + longest path-based refinement

§ 1D design is the future of 10nm technology node and
beyond and more research can be done.

