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Lithography  Technologies
§ DPL (double patterning lithography)

§ One layout is decomposed into two masks
§ Litho-etch process is repeated twice
§ Resolution can be improved
§ Like 2-coloring

§ EBL (e-beam lithography)
§ Directly creates features by electron beams w/o mask
§ Excellent resolution
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Fabrication of  1D Layout
§ Line-end cuts

§ Simultaneous DPL and cut redistribution

§ Native conflict: Even redistribution plus  DPL decomposition 
cannot solve the conflict. Requires EBL.
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Resolving  Conflicts  between  Cuts

§ Three ways to resolve a conflict
§ DPL (coloring)

§ Redistribute (move the location)
cost of  wire extension 

§ Manufacture one cut by EBL
cost of  EBL
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Problem  Definition

§ Given a layout of  n wires and 2n cuts, decide the 
fabrication method (using EBL or not), the mask and 
the location of  each cut, such that 
§ All design rules are satisfied.
§ wire_extension ≤ limit for each wire

§ min. ∑wire_extension�
� + 𝜕 ) EBL_cut#
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Design  Rules
§ Wires can be extended but not shortened.

§ No conflict between two cuts if  they are merged.
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ILP

§ Existing ILP [DAC’14] solves problem for EBL plus 
redistribution but no DPL considerations.

§ Our contributions:
§ Analyze the potential problems in [DAC’14]. 
§ Show how to fix the problems.
§ Consider DPL besides EBL and redistribution.
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[DAC’14]  Ding  et  al.  “Throughput  optimization  for  SADP  and  e-beam  based  manufacturing  of  1D  
layout”,  In  Proc.  DAC,  2014
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Flow
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What is  a  “Move”?
§ A move  𝑐𝑖	  	  	  , ±𝑑𝑖

§ Cut 𝑐𝑖
§ Right/Left: ±
§ Discrete moving distance 𝑑𝑖
§ Cost = Wire extension resulted
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Move  Selection
§ Select moves to change locations of  cuts such that 

no odd cycle is created in conflict graph
§No odd cycle ≡ 2-colorable

§ Select moves based on an integrated graph model
§Obtained by integrating G1, G2 and G3

13

odd cycle, not 2-colorable

a
b

c
de



Graph  Model  1
§ G1: constraint graph for move operations:

§ Two moves are incompatible (have an edge) if
§ Exceed limit on wire extension, or
§ Both shift a cut in different directions, or
§ Applying both cannot resolve the targeted conflicts
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Graph  Model  2
§ G2 is a bipartite graph between conflicts and moves:

e.g. Moving a to the left 1 step (m1) can resolve the 
conflict between (a,c) and m1. Thus there is an edge 
between (a,c) and m1.
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Graph  Model  3
§ G3: bipartite graph between conflicts and odd cycles

§ The edge between cl0 and (a,c) means that resolving 
conflict (a,c) can break odd cycle cl0.

§ All odd cycles should be broken.
§ Number of  odd cycles can be exponential.

§ Only consider odd cycles in a cycle basis - a set of  cycles that 
can be combined to form every cycle in a graph.
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Integrated  Graph  Model
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§ Constraints between moves (dash lines) are copied.

§ cl0—(a,c) in G3 and (a,c)—m1 in G2 gives cl0—m1 in the 
final graph meaning that move m1 can break cycle cl0.
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Move  Selection  by  Constrained  Set  Cover

§ Select moves to break all the identified odd cycles

§ Constrained set cover problem:

§ Select a set of  min-cost moves to break all cycles 
under some constraints.
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Solving  Constrained  Set  Cover
§ Use ILP to solve the constrained set cover problem:

§ Constant aij indicates if  an edge exists btw. cycle i and move mj

§ Variable bj indicates if  move mj is selected 

§ Much smaller and simpler than the ILP solving the original 
problem directly.
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EBL  Cut  Selection

§ When a cut is an EBL cut, its corresponding node is deleted 
from the conflict graph.

§ Problem: Delete a minimum number of  nodes from the 
conflict graph such that at least one node will be deleted from 
each cycle in a cycle basis.

§ Solution: Use a similar ILP without incompatible constraints
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Flow  (Review)
do

Select  some  moves.
Perform  selected  moves.
Rebuild  conflict  graph.

until all  cuts  2-‐‑colorable  or no moves  are  available.

Select  some  cuts  as  EBL  cuts.



Accelerating  by  Potential  Conflict  Graph
§ Conflict graph G of  cuts:

Conflicts between cuts can change dynamically if  cuts can move.

§ Potential conflict graph Gp.
An edge between two nodes iff there is a potential conflict  
between the two cuts with cut redistribution

§ Gp is stable and can be safely split into sub-layouts to 
reduce problem size 
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Handling  Vertically  Aligned  Cuts
§ #cut=2: a and b never conflict

§ As we can merge them if  color(a)=color(b) 

§ #cut=3: no conflict if color(b) = color(a) or color(c)
§ Conflict edge a—c : unnecessary

§ # vertically aligned cuts = n ≤ H+1:
(H is the largest difference between two conflicting track labels.)

§ Lemma: No conflict iff ∃𝑖 for	  2 ≤ 𝑖 ≤ 𝑛 s.t. c1…ci-1 are 
colored the same and ci…cn are colored the same.

§ Grouping nodes instead of  adding many edges
in conflict graph
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Post-‐‑processing  methods

§ Objective: To minimize wire extensions.

§ Globally: Longest-path algorithm:
§ Compact the cuts at right ends of  wires to the left
§ Compact the cuts at left ends of  wires to the right

§ Locally: Greedily shift cuts towards their original 
locations
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Longest  Path  algorithm
§ For those right end cuts, construct a left compaction 

graph:

§ Edge cost:
§ s to node: Leftmost x of  the movable range of  the cut.
§ Between nodes: Required distance between the 2 nodes.

§ Edge direction:
§ b to a iff xa >xb

§ Distance of  the longest path from s to i:
§ Leftmost x to place i
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Comparison  with  ILP
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§ ILP is too slow.
§ Our EBL# has achieved lower bound for all datasets.
§ Our quality is very close to ILP if ILP has solutions. 

Dataset Optimal  ILP Ours
Track# EBL# Extension Time(s) EBL# Extension Time(s)
50 0 26 18.0 0 26 0.1
100 0 46 180.4 0 46 0.2
150 0 78 6446.9 0 79 0.4
200 -‐‑ -‐‑ >36000 0 104 0.5
250 -‐‑ -‐‑ >36000 0 129 0.6
300 -‐‑ -‐‑ >36000 0 164 0.7
1000 -‐‑ -‐‑ >36000 0 583 2.2
2000 -‐‑ -‐‑ >36000 0 1230 4.5
4000 -‐‑ -‐‑ >36000 1 2500 9.4
8000 -‐‑ -‐‑ >36000 1 5178 18.8

Caused by native conflict



Comparison  with  
Optimal  Coloring  +  Optimal  Redistribution
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§ Our algorithm optimizes coloring and redistribution simultaneously
§ Cost = ∑ wire_extension + ∂· EBL_cut#      ∂=100   

Dataset Opt. color  +  redistribute Ours
Track# Cost Time  (s) Cost Time  (s)
50 4029 0.7 26 0.1
100 9050 1.2 46 0.2
150 14091 2.4 79 0.4
200 17109 2.8 104 0.5
250 19135 3.4 129 0.6
300 23174 4.7 164 0.7
1000 69670 35.6 583 2.2
2000 132380 91.4 1230 4.5
4000 280764 245.3 3500 9.4
8000 573740 2784.9 6178 18.8
Ratio 95.0 84.8 1 1



Conclusion
• Co-optimization of  cut redistribution and mask 

assignment for 1D gridded design.

• Novel graph-theoretic method that makes use of  
integrated graph model + longest path-based refinement

§ 1D design is the future of  10nm technology node and 
beyond and more research can be done.


