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Abstract

Pursuing accurate and robust recognizers has been a long-
lasting goal for scene text recognition (STR) researchers. Re-
cently, attention-based methods have demonstrated their ef-
fectiveness and achieved impressive results on public bench-
marks. The attention mechanism enables models to recognize
scene text with severe visual distortions by leveraging con-
textual information. However, recent studies revealed that the
implicit over-reliance of context leads to catastrophic out-of-
vocabulary performance. On the contrary to the superior ac-
curacy of the seen text, models are prone to misrecognize un-
seen text even with good image quality. We propose a novel
framework, Context-based contrastive learning (ConCLR), to
alleviate this issue. Our proposed method first generates char-
acters with different contexts via simple image concatena-
tion operations and then optimizes contrastive loss on their
embeddings. By pulling together clusters of identical char-
acters within various contexts and pushing apart clusters of
different characters in embedding space, ConCLR suppresses
the side-effect of overfitting to specific contexts and learns a
more robust representation. Experiments show that ConCLR
significantly improves out-of-vocabulary generalization and
achieves state-of-the-art performance on public benchmarks
together with attention-based recognizers.

Introduction

Reading text in the wild has been one of the most studied
topics in the computer vision community. The rich informa-
tion in scene text images plays a vital role in a series of arti-
ficial intelligence applications, such as Visual Question An-
swering (Biten et al. 2019), Autonomous Driving (Yu et al.
2021) and Image Retrieval (Gomez et al. 2018). Previous
methods (Jaderberg et al. 2016; Wang, Babenko, and Be-
longie 2011) attempted to solve this problem from a sym-
bol classification perspective. However, significant varia-
tions and even distortions in scene text images, such as blur
and occlusion, hinder satisfactory performance. To bridge
this gap, many attention-based methods (Fang et al. 2021;
Yu et al. 2020; Yue et al. 2020; Li et al. 2019; Lyu et al.
2019; Qiao et al. 2020) have emerged and made remarkable
progress in public benchmarks (Karatzas et al. 2015; Mishra,
Alahari, and Jawahar 2012; Wang, Babenko, and Belongie
2011; Phan et al. 2013; Risnumawan et al. 2014; Karatzas
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Figure 1: Text recognition samples for in- and out-of-
vocabulary text. For images containing in-vocabulary text
(left), even confronted with occlusion, models can still pre-
dict correctly by inferring from the context, while models
are more prone to make wrong predictions for images con-
taining out-of-vocabulary text (right), even though the text
is clear and free of distortions.
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et al. 2013). By leveraging the attention mechanism (Bah-
danau, Cho, and Bengio 2015; Vaswani et al. 2017), mod-
els can attend to neighboring characters instead of looking
at each one, leading to significant improvement in under-
standing irregular and hard-to-recognize text (Karatzas et al.
2015; Phan et al. 2013; Risnumawan et al. 2014).

The key to the success of attention-based methods is
to encode context information into character embeddings,
whether in an auto-encoding or auto-regressive way. This
feature allows models to reason target characters not only
from the pixels at the corresponding position but also from
the linguistic information coming from surrounding sym-
bols. As shown in Figure 1 (left), even with severe occlu-
sion that makes text non-identifiable, models can still infer
the missing character based on the other ones. However, re-
cent work (Wan et al. 2020) has revealed one crucial issue:
Attention-based methods are more prone to vocabulary re-
liance. For images containing text seen in the training stage,
state-of-the-art attention-based recognizers achieve promis-
ing accuracy while their performance drops drastically when
predicting images with out-of-vocabulary text, even though
they are relatively visually high-quality and free of distor-
tions, as shown in Figure 1 (right). We conjecture that the
leading cause is the over-reliance on context information.
During training, the implicit context encoding dominates the
discrimination process. Therefore, models overfit specific
contexts instead of learning the discriminative features of
each character. This problem significantly harms the robust-
ness and generalization of scene text recognizers and heavily
limits their application scenarios.

To mitigate this issue, our intuition is to learn a repre-
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Figure 2: Context-based data augmentation. & denotes the
concatenation operation. For characters in the input batch,
their contexts are changed differently in two augmented
views, for example, the context for ‘I’ in the first image of
the original input is ‘-S’, while in concatenated view 1 its
context becomes ‘-S-8” and ‘4- -S’ in view 2.

sentation that better balances the intrinsic character feature
and context information to eliminate the over-reliance of the
latter. Since the encoding process of the context is usually
implicit, it is infeasible to manipulate the features directly.
To this end, we propose context-based contrastive learning
(ConCLR), a framework extending contrastive learning to
the semantic space for scene text recognition (STR). In Con-
CLR, we contrast embeddings in different contexts to learn a
representation more robust to context variations. To generate
embeddings in various contexts, we propose context-based
data augmentation (ConAug), a simple yet effective data
augmentation technique to change on-image text’s context.
For most computer vision tasks, e.g., image classification,
the context and foreground object are usually heterogeneous
and tightly integrated, making it infeasible to manipulate the
context without disturbing the foreground object. However,
for STR, the context and foreground target to predict are
both characters. Therefore, we can effortlessly modify the
context for scene text images via simple image concatena-
tion operations. As shown in Figure 2, given an input image,
ConAug concatenates two different images to it to get two
different views, respectively. Therefore, the character con-
texts in the original batch are differently changed in these
two views. Then we feed these two views into the attention-
based recognizers to get embeddings with augmented con-
texts. After being projected to another space, embeddings of
identical characters are clustered while embeddings of dif-
ferent characters are pushed apart via optimizing the con-
trastive loss (Khosla et al. 2020). Through this, models are
guided to learn character representations consistent in vari-
ous semantic environments, which improves the generaliza-
tion to unseen text.

Although out-of-vocabulary generalization (Wan et al.
2020) is essential for STR, it has been overlooked for years.
The main reason is the commonly adopted training and eval-
uation settings. Conventionally, STR models are trained on
two large synthetic datasets and evaluated on six real-world
benchmarks. The vocabulary of the training set almost cov-
ers that of the evaluation set, as shown in Table 1. Therefore,

Table 1: In- and Out-of-vocabulary number of images for
evaluation benchmarks. Training set MJ and ST comprises
of 135272 words in its vocabulary. Please refer to the Exper-
iment section for details of these datasets.

In-vocabulary Out-of-vocabulary

Benchmark number of images number of images

IC13 1811 0
SVT 647 0

T 2593 407

IC15 1487 324
CUTE 241 47
SVTP 645 0

OutText 0 1000

the performance is incapable of reflecting the generalization
to unseen text. In light of this, we generate a new bench-
mark, OutText, consisting of 1000 images with pure random
out-of-vocabulary text. We conduct experiments on both the
commonly used benchmarks and OutText following conven-
tional settings. Results demonstrate that, on the one hand,
our method can significantly improve the generalization on
unseen text; on the other hand, the performance on the seen
text is also improved, suggesting the universal superiority of
the learned representations. Further, we extend our method
to combine with a language model (Fang et al. 2021) and
achieves state-of-the-art performance on the public bench-
marks.

To summarize, the major contributions of this paper are:
First, we provide a new contrastive learning paradigm for
STR, in which embeddings from different semantic contexts
instead of visual augmentation are used for contrast. Second,
based on this paradigm, we propose a framework, ConCLR,
built on existing attention-based scene text recognizers to
improve their generalization on unseen text. Third, we syn-
thesize an out-of-vocabulary benchmark, OutText, to better
reveal models’ generalization to unseen text. Fourth, the ex-
tensive experiment results demonstrate the effectiveness of
our proposed method. ConCLR significantly boosts the ac-
curacy on unseen text and also achieves state-of-the-art per-
formance on the public benchmarks, in which most text is
seen in the training stage.

Related Work

Attention-based scene text recognition

Reading text in the wild is a challenging task due to the ir-
regular layout and uncontrollable image quality. To this end,
many attention-based methods (Shi et al. 2016; Yang et al.
2017; Cheng et al. 2017; Liu, Chen, and Wong 2018; Li
et al. 2019; Qin et al. 2019; Baek et al. 2019; Wang et al.
2019; Yue et al. 2020; Wang et al. 2020; Yu et al. 2020;
Fang et al. 2021) have been proposed and showed their su-
periority over previous CTC-based (Shi et al. 2016; Shi, Bai,
and Yao 2017; Graves, Fernandez, and Gomez 2006) and
segmentation-based methods (Liao et al. 2020). As a fea-
ture alignment process, the attention mechanism can attend
to relevant information for each character during the decod-
ing stage, including the context. Previous models are mostly
built on sequence-to-sequence architecture originated from
NLP tasks, e.g., machine translation. (Shi et al. 2016) in-
troduced a recurrent neural network (Bahdanau, Cho, and
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Figure 3: The main framework of ConCLR. Each input image is first fed into ConAug to get two context-based augmented
views. Then these two views of an image are passed to the backbone and attention-based decoder to get aligned character
features. We then pass these features to the projection head, and contrastive loss is optimized to pull together the positive
samples and push apart the negative samples. Note that the forward process of the original batch is omitted for simplicity.

Bengio 2015) to align local pixels to an output sequence.
Later, (Cheng et al. 2017) tailored a focus module to cali-
brate the attention location. Further, (Li et al. 2019) intro-
duced a 2D attention mechanism for recognizing irregular
text. (Yue et al. 2020) investigated the attention misalign-
ment problem and designed a position enhancement mod-
ule to fix it. However, because of the time-dependency of
RNN-like structures, the inefficiency becomes a bottleneck
for these auto-regressive methods. Thanks to the emergence
of transformer (Vaswani et al. 2017), recent work (Fang et al.
2021; Yu et al. 2020) proposed parallel attention-based de-
coders, in which all characters are decoded simultaneously.
Our framework is also built on this kind of recognizers.

Robust scene text recognition

The robustness of STR models, specifically in vocabulary,
is a critical issue for applications. (Wan et al. 2020) firstly
investigated vocabulary reliance and pointed out attention-
based models suffer most from it. To remedy this, a mutual
learning strategy (Wan et al. 2020) is proposed. They train
a segmentation-based and attention-based model in paral-
lel and align the features from the two models. By doing
s0, the segmentation-based model, generally with better out-
of-vocabulary generalization, is used to calibrate the repre-
sentation of the attention-based model. However, character-
level annotations are required, which is an expensive cost
for applications. In contrast, our method does not require
any extra modules or character-level annotations to improve
models’ generalization on unseen text and performance on
seen text.

Contrastive learning

Recent work (Chen et al. 2020; He et al. 2020; Grill et al.
2020) has significantly pushed the boundaries of representa-
tion learning by introducing contrastive learning. Generating
positive samples via visual distortions and regarding other
images as negative examples, (Chen et al. 2020; He et al.
2020) pull together embeddings of positive pairs and push
apart that of negative pairs. Further, (Grill et al. 2020) proves
merely using positive samples can also learn a promising
embedding for downstream tasks. (Khosla et al. 2020) takes

advantage of class labels as the criterion to separate positive
and negative samples. For STR, (Aberdam et al. 2021) in-
troduces a sub-word level contrastive learning framework, in
which patches from different visually augmented images are
considered as positive samples. Unlike all the methods men-
tioned above, instead of using visual augmentations to gen-
erate positive pairs, we propose to contrast characters within
different semantic contexts in embedding space.

Method

The main framework of ConCLR is shown in Figure 3. Input
images are first fed into ConAug to get context-based aug-
mented views, then we pass these views into the network and
get character embeddings. During training, on the one hand,
these embeddings are used to transcript the text through the
Prediction layer; on the other hand, we project them to a fea-
ture space where we conduct the contrastive loss. Now we
detail the architecture and loss function in our framework.

Architecture

Context-based Data Augmentation. Our key insight is that
by pulling together embeddings of the same character in
different contexts and pushing apart embeddings of differ-
ent characters, we can guide models to learn a representa-
tion better balances the intrinsic and context information.
To create various contexts for given characters, we propose
Context-based data augmentation (ConAug) in this section.
Note that most in-the-wild text is horizontal; even for curved
text, the reading order is still approximately from left to
right. Drawing on this feature, ConAug leverages simple
image concatenation operation to change text context. As
shown in Figure 2, given a batch of images, ConAug first
randomly permutes them twice, then concatenates the two
permuted batches to the original one, respectively. We also
discuss different ways of concatenation in the Experiment
section. For each image, we get two different views after
concatenation, in which the context is changed for charac-
ters therein.

Note that this operation requires no extra computation to
manipulate the context, as a free lunch for STR. Besides,



the context modification bought by ConAug is additive. For
each image, we add different characters to diversify the con-
text while still preserving the original one. This feature still
enables models to take advantage of the original context in-
formation.

Backbone. We adopt ResNet (He et al. 2016; Shi, Bai,
and Yao 2017; Wang et al. 2020) as our backbone network.
The output feature map size is 1/4 of the input image size.
To capture long-range spatial dependencies, we also adopt
the transformer unit (Vaswani et al. 2017).

Attention-based Decoder. Attention-based decoders
align and aggregate relevant information and features for
each character. The aligned embeddings are denoted as
glimpses g. During this process, the decoders are capable
of involving context information to help infer target charac-
ters. According to the decoding pattern, we categorize the
attention-based decoders into sequential decoders and paral-
lel decoders, as shown in Figure 4.

Sequential decoders mostly adopt RNN-like structures
and predict in an auto-regressive way, following the typical
sequence-to-sequence framework. For time step ¢, the out-
put is computed via the feature map F' encoded by the back-
bone, the hidden state at the current time step s;, and the
output ¥,_; from previous time step, which can be denoted
as:

9. :fseq(Fvsta'gt—l)vo<t§ly (1)
where [ is the sequence length. The prediction for each char-
acter depends on the previous one, and the decoding process
continues until the output becomes the ’EOS’ symbol. De-
spite the great success it has achieved, the time-dependent
decoding strategy severely restricts its efficiency and makes
the training process more tricky (Vaswani et al. 2017). Con-
sidering the fact that ConAug increases the length of the
training data via image concatenation, the training efficiency
problem will be significantly exaggerated if we use this type
of decoders.

Inspired by Transformer (Vaswani et al. 2017), recent
works (Yu et al. 2020; Fang et al. 2021) propose parallel
attention-based decoders for STR. A fixed number of queries
vectors, g, are learned during training, each corresponding
to the position encoding of a character order. Therefore, us-
ing the feature map F’ as the key, the glimpse vectors can be
decoded in a parallel way, which can be denoted as:

(glnga e 7gl) = fpaT‘(F)~ (2)

This parallel design remarkably improves decoders’ effi-
ciency in both training and evaluation stage. Besides, this
architecture empowers models with more flexibility in at-
tending to different spatial location, and shows its superior-
ity especially on irregular benchmarks. In light of the ad-
vantages mentioned above, we use the parallel decoder pro-
posed in (Fang et al. 2021) in our framework.

Projection Head. As mentioned in (Chen et al. 2020),
directly contrasting the embeddings used to predict harms
models’ performance since we need to filter out irrelevant
information in the features. Therefore, we use an auxiliary
module denoted as proj(-) to map the representations to a
space where contrastive loss is optimized. We conduct ex-
periments on different architectures, e.g., identity mapping,

Attention

Parallel attention-based decoder

Sequential attention-based decoder

Figure 4: Attention-based decoders. The attention-based de-
coders can be mainly categorized into the sequential one
(left) and the parallel one (right).

non-linear projection and linear projection, as shown in the
Experiment section. Results show that linear projection is
the best option.

Prediction Layer. We use a fully-connected (FC) layer
to transcript the glimpse vectors to the probability of each
character. Following the setting in previous work (Fang et al.
2021; Yu et al. 2020; Yue et al. 2020), our FC layer has 37
classes, including numbers 0-9, case-insensitive characters
a-z, and one ’EOS’ symbol. We denote the transcription pro-
cess as:

(@1)@2;"' 7:'91) = fpred(gl’g%"' 7gl)7 3

where g is the predicted probability distribution for each
character.

Loss function

There are two loss objectives in our framework, i.e., the
recognition loss and the contrastive loss. The former, sim-
ilar to (Fang et al. 2021), is used to train scene text rec-
ognizers while the latter is used to learn robust representa-
tions in semantic space. Before delving into them, we first
clarify the notations. We define a batch of input data as
{(X,Y,),0 < i < N}, where X, is an input image, Y;
is the word-level label, and NV is the batch size. Note that
each Y'; can be further divided into character-level labels,
denoted as Y'; = (Y, 1,Y;0," "+ » Yy, ), Where [; is the cor-
responding word length. After ConAug, the two augmented
batches of data are denoted as {(X)*,Y)"),0 < i < N}
and {(X}?,Y}?),0 <i < N}, respectively.

For recognition loss, we compute it on the original input
batch and the two augmented batches, which can be denoted
as:

1 l; l:/ !
Lrec :N (Z ﬁce(yi7ovgi70) +wzﬁce(y:—3@,f/}f})

i=1 o=1 p=1

12
tw ) Lecyls 1),
g=1

“)
where L..(-) is cross-entropy loss, and w is a hyper-
parameter to tune the weight of the augmented samples for
text recognition.

Contrastive loss is calculated on the two augmented
batches. First, we pair up the two batches as: 1Y =
(X", X> Y Y/?),0 < i < N} Given one
pair of augmented data T = (X", X"2, Y"1, Y"2),
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Figure 5: Context-based contrastive loss. For two augmented image views, we first extract the corresponding embeddings for
each character via the backbone, attention-based decoder and the projection head. For each anchor, e.g., ‘I’ in red, we consider
different ‘I" among these embeddings as positive samples and other characters as negative samples.

the union of the aligned features of X i and X Vz, can
be denoted as Z = proj(g¥1,~- 7glv‘}l,g}/(",-” ,glV\Z),
and the union of the character labels can be denoted as
yaug = (lea ayl‘{}17y¥2a"' 7yl‘/‘32)' Let m € M =
{1,--, v +ZV2} be the index of any sample in Z or ))%"9,
A(m) = M\{m} be the other indices except m itself, and
P(m) = {p € A(m) : y;"9 = y;,*9} be the indices of
other aligned visual features having the same label as z,,.
Contrastive loss for one pair of data is defined as:

exp(Zm - 2p/T)
L@ = 3 iy 3 log -

meM peEP(m) acA(m)
)
where the - symbol denotes the dot product, 7 € RT is a
temperature hyper-parameter. Therefore, for a given batch,
total contrastive loss can be calculated by:

clr = Z £pazr (6)

TeIaug
The total loss takes the following form:
ﬁtotal = Erec + )\Eclr- (7)

Here, ), as the weight for contrastive loss, is a hyper-
parameter. The calculation of the contrastive loss is shown
in Figure 5. In our experiments, we set w to 0.5, 7 to 2, and
Ato 0.2.

Experiments

In this section, we conduct extensive experiments to demon-
strate the effectiveness of our proposed method. First, we
detail the datasets used for training and evaluation. Then, the
implementation details of our model are illustrated. Next, we
show our results and compare them with the baseline paral-
lel attention-based recognizers ABINet (Fang et al. 2021) on
in-vocabulary and out-of-vocabulary text, respectively. For
simplicity, we denote the parallel attention used in ABINet
as ABINet-Vision. Then, we extend our framework with a
language model used in (Fang et al. 2021), and achieve state-
of-the-art performance. Finally, we conduct ablation studies
to further investigate the functionality of each module.

exp(zm - 2a/T)’

CUTE IC13 IC15 T SVT SVTP  OutText
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Figure 6: Image samples of the seven benchmarks. For pub-
lic benchmarks, IC13, IIIT, SVT are regular text bench-
mark, IC15, CUTE, and SVTP are irregular benchmarks.
OutText is the synthesized benchmark of visually clear, out-
of-vocabulary text.

Datasets and implementation details

To fairly compare our method with other state-of-the-art
methods (Fang et al. 2021; Yu et al. 2020; Yue et al. 2020),
we follow their settings for training and evaluation. The
training set consists of two synthetic datasets, MJ (Jader-
berg et al. 2016, 2014) and ST (Gupta, Vedaldi, and Zis-
serman 2016), and evaluation is conducted on six public
benchmarks, including ICDAR 2013 (IC13) (Karatzas et al.
2013), ICDAR 2015 (IC15) (Karatzas et al. 2015), IIIT 5K-
Words (IIIT) (Mishra, Alahari, and Jawahar 2012), Street
View Text (SVT) (Wang, Babenko, and Belongie 2011),
Street View Text-Perspective (SVTP) (Phan et al. 2013), and
CUTESO (CUTE) (Risnumawan et al. 2014), and our syn-
thesized benchmark OutText.

OutText contains 1000 images. We paste random charac-
ters to the white background. Note that visual distortions,
such as blur and occlusion, are excluded to guarantee the im-
age quality. Considering that using ConAug lengthens the
average word length of the training set, to exclude the im-
pact of the word length, we synthesize OutText strictly fol-
lowing the word length distribution of MJ and ST. As shown
in Figure 8, the word length concentrates between 3 to 8.

To reflect models’ generalization to the unseen text, we
count the word frequencies on training and evaluation set
separately. As shown in Table 1, the training set MJ and ST
consists of 135272 words as the vocabulary. For the eval-
uation sets, IC15, IIIT and CUTE consist of some out-of-
vocabulary images while the words in IC13, SVT and SVTP
are all covered in the training vocabulary. All the images in
OutText contain text unseen in the training stage.

To ensure a fair comparison, we use the same experimen-
tal configuration as in ABINet (Fang et al. 2021). We use
three transformer layers for the parallel attention module,



Table 2: Evaluation of the effectiveness of each module in
ConCLR. For IC13-CUTE, the upper value represents the
in-vocabulary accuracy while the lower one represents the
out-of-vocabulary accuracy. In AVG, we calculate the over-
all average accuracy of the six public datasets. NA means
there are no out-of-vocabulary images in the benchmark.

ConAug | ConLoss | IC13 | SVT | HIT | ICI5 | SVTP | CUTE | AVG | OutText

947 | 901 | 965 | 859 | 829 | 884

‘ - ‘ NA ‘ NA ‘852 ‘ 639 | NA ‘ 76.6 ‘ 898 ‘ 632
954 | 899 | 968 | 876 | 837 | 913

/ ‘ - ‘ NA ‘ NA | 89.1 | 633 ‘ NA ‘ 87.2 ‘ 08 ‘ 648
959 | 921 | 966 | 887 | 857 | 90.0

4 ‘ / ‘ NA ‘ NA ‘89.7 ‘ 648 ‘ NA ‘ 85.1 ‘ 14 ‘ 67.7
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Figure 7: Embedding visualization of ConCLR and baseline
parallel attention-based decoder. We randomly choose five
characters from OutText, e.g., ‘g’, ‘h’, ‘y’, ‘p’ and ‘f’, and
visualize all their corresponding embeddings using tSNE.

with eight heads for each of them. Images are resized to 32
x 128 with common data augmentation, such as random ro-
tation, affine transformation, color jittering, and etc. We use
ADAM as the optimizer, with a learning rate initialized to
le~* and decayed to 1e® at the 6-th epoch. All the exper-
iments are conducted on four NVIDIA 2080Ti GPUs with
batch size 384.

Analysis on seen and unseen data
We apply ConCLR on ABINet-Vision, and calculate the ac-
curacy for seen and unseen data, respectively. The results are
shown in the Table 2. For out-of-vocabulary data, ConCLR
(using ConAug and contrastive loss both) significantly im-
proves the performance. As we can see, compared with the
vanilla parallel attention-based decoder, the accuracy on un-
seen data gains improvement of 4.5%, 8.5%, and 4.5% on
IIT, CUTE, and OutText, respectively. This indicates that
ConCLR can guide to learn a representation that better bal-
ances the intrinsic information and the context information
and is less dominated by the context. For IC15, the 0.9% im-
provement is relatively smaller, because of the poorer image
quality as shown in Figure 6. When confronted with severely
occluded or distorted images, it is infeasible for models to
discriminate based on corresponding pixels for each charac-
ter. In this case, the context information should be adopted to
infer the target character. For in-vocabulary data, we can still
observe notable performance improvement. ConCLR gains
1.2%, 2%, 0.1%, 2.8%, 2.8%, and 1.6% improvement on
IC13, SVT, IIIT, IC15, SVTP and CUTE, respectively. This
suggests the benefits brought by ConCLR are universal and
not only restricted to the out-of-vocabulary data.

To further study the feature learned by ConCLR, we con-
duct embedding visualization, as shown in Figure 7. We
sample embeddings of five characters in OutText and use

Figure 8: Left: Word length distribution of MJ and ST. The
number of images with word length greater than 15 is very
small, hence we do not show it in this figure. Right: The ac-
curacy on words of different length. When word length is
greater than eight, the advantage of ConCLR keeps increas-
ing (omitted here). Please refer to the Appendix for the full
data.
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tSNE (Van der Maaten and Hinton 2008) to reduce their di-
mensions to two. As we can observe, the features learned
from ConCLR are better clustered compared with features
learned from baseline attention-based recognizers, demon-
strating the superiority of the learned representation.

Analysis on word length

Since ConAug increases the average length of the train-
ing data, we also calculate the accuracy for different word
lengths on OutText, as shown in Figure 8. For words with
length greater than eight, ConCLR leads to overwhelming
advantages benefiting from a wider word length distribution
during training. For words with smaller lengths, ConCLR
also has superiority on the average accuracy, suggesting that
ConCLR guides models to learn a more representative em-
bedding for words with different lengths, instead of overfit-
ting to longer words.

Comparison with state-of-the-arts

To compare with previous arts, we also adopt a language
model (LM) same as (Fang et al. 2021). Following the same
experimental setting, we first use ConCLR to pretrain a vi-
sion model (ABINet-Vision), and then finetune with an LM.
For a fair comparison, we reimplement ABINet and the re-
sults are shown in Table 3. As we can see, our method
achieves state-of-the-art performance with a 0.8%, 0.4%,
0.5%, 0.8% and 3.8% improvement on IIIT, SVT, IC15,
SVTP and CUTE, respectively. Especially for benchmarks
containing out-of-vocabulary text, e.g., IIIT and CUTE,
ConCLR shows its prominent superiority. For benchmarks
containing no unseen text, ConCLR also achieves consider-
able improvement, demonstrating the benefit of the learned
feature is universal.

Ablation study

Effectiveness of each module. The analysis of each mod-
ule’s effectiveness is shown in Table 2. By merely incorpo-
rating ConAug as a data augmentation technique, we can
observe notable improvement on unseen data. Besides, this
also outperforms the baseline on seen data. This suggests
that we can reduce the overfitting to specific contexts and
ameliorate the out-of-vocabulary generalization by simply
diversifying the contexts. Further, the contrastive learning
paradigm guides the model to learn a representation better
balancing different features based on these various contexts,



Table 3: Results on IIIT5K, IC13, SVT, IC15, SVTP and CUTE datasets.

T is our reimplementation.

Methods \ Training Data \ Annos \ 1T \ IC13 \ SVT \ IC15 \ SVTP \ CUTE
ESIR (Zhan and Lu 2019) MJ+ST word | 93.3 | 91.3 | 90.2 | 76.9 | 79.6 83.3
ASTER (Shi, Bai, and Yao 2017) MIJ+ST word | 93.4 | 91.8 | 89.5 | 76.1 78.5 79.5
RobustScanner (Yue et al. 2020) MJ+ST word | 953 | 94.8 | 88.1 | 77.1 79.5 90.3
SAR (Li et al. 2019) MIJ+ST word | 91.5 | 91.0 | 845 | 69.2 | 764 83.3
DAN (Wang et al. 2020) MIJ+ST word | 943 | 93.9 | 89.2 | 745 80.0 84.4
SRN (Yu et al. 2020) MIJ+ST word | 948 | 955 | 91.5 | 82.7 | 85.1 87.8
SEED (Qiao et al. 2020) MJ+ST word | 93.8 | 92.8 | 89.6 | 80.0 | 814 83.6
ABINet (Fang et al. 2021) MI+ST word | 96.2 | 97.4 | 93.5 | 86.0 | 89.3 89.2
ABINet-Visionf MIJ+ST word | 95.0 | 94.7 | 90.1 | 81.9 82.9 86.5
ABINet-Vision-ConCLR MIJ+ST word | 95.7 | 959 | 92.1 | 844 | 857 89.2
ABINet} MIJ+ST word | 95.7 | 97.7 | 93.9 | 849 | 88.5 87.5
ABINet-ConCLR MIJ+ST word | 96.5 | 97.7 | 943 | 854 | 89.3 91.3

Table 4: Ablation study on ConAug. For IC13-CUTE, the
upper value represents the in-vocabulary accuracy while
the lower one represents the out-of-vocabulary accuracy. In
AVG, we calculate the overall average accuracy of the six
public datasets. NA means there are no out-of-vocabulary
images in the benchmark.

Concat ‘ 113 ‘ SVT ‘ mT ‘ 115 ‘ SVTP ‘ CUTE ‘ AVG ‘ OutText
: 954 [ 906 | 968 | 87.6 | 833 | 913

SingleCat | "\ ‘ NA ‘88.4‘ 6422 ‘ NA ‘ 87.2 ‘ 909 ‘ 66.3
: 952 (913 | 970 | 882 | 845 | 917

FixCat ‘ NA ‘ NA ‘89.9‘ 623 ‘ NA ‘ 85.1 ‘ 912 ‘ 67.2
959 [ 92.1 | 966 | 88.7 | 857 | 90.0

RandCat ‘ NA ‘ NA ‘89‘7 ‘ 64.8 ‘ NA ‘ 85.1 ‘ oL4 ‘ 67.7

which brings about larger
unseen text.

Effectiveness of ConAug. Data augmentation plays an
essential role in the contrastive learning framework. To ex-
plore its effectiveness, we design three concatenation pat-
terns: SingleCat, for each input batch we only permute once
and concatenate this permuted batch to the original batch on
one random side, then the contrastive loss is computed on
the concatenated batch and the original one; FixCat, for each
input we permute twice and concatenate these two permuted
batches to the original on one fixed side; RandCat, for each
input batch we permute twice and concatenate these two
batches to the original on one random side. The results are
shown in Table 4. We can draw two conclusions: 1. Compar-
ing SingleCat with RandomCat, we can observe 1.3%, 0.6%
and 1.4% improvement of the unseen data on IIIT, IC15
and OutText, respectively. Concatenating with more images
generates more diversified contexts and negative samples to
contrast, which is beneficial for contrastive learning frame-
work; 2. Comparing FixCat with RandCat, we can observe
slight improvement on seen and unseen text. This indicates
that position information is also context information, and we
should not only change the concatenated characters but also
their positions.

Effectiveness of the projection head. We also conduct
ablation study on the architecture of the projection head. We
consider three settings: 1. Identity mapping; 2. Non-linear
projection head, we use a 512 x 256 FC layer, a 256 x 512
FC layer and a Relu activation in between; 3. Linear projec-
tion head, we use one fully-connected (FC) layer with di-

improvement on both seen and

Table 5: Ablation study on the projection head. For IC13-
CUTE, the upper value represents the in-vocabulary accu-
racy while the lower one represents the out-of-vocabulary
accuracy. In AVG, we calculate the overall average accuracy
of the six public datasets. NA means there are no out-of-
vocabulary images in the benchmark.

Projection ‘ IC13 ‘ SVT ‘ T ‘ IC15 ‘ SVTP ‘ CUTE ‘ AVG ‘ OutText
e | 58 | %0 o3| 53| 5 | 7 [o0s | 0
Non-linear projection 91\?A7 ‘ 91\?: ‘ g;g ‘ ﬁgl ‘ 845 ‘ 22: ‘ 912 ‘ 67.4
Linear projection ‘ g;\?: ‘ 91\?A1 ‘ ggg ‘ 22; ‘ 85.7 ‘ 3(5)(1) ‘ 91.4 ‘ 67.7

mension 512 x 512. As shown in Table 5, when using iden-
tity mapping as projection head, the contrastive loss slightly
deteriorate the performance compared with the setting that
we only use ConAug in Table 2, suggesting that directly
contrast the embeddings from the backbone does not lead to
beneficial representation. Besides, using non-linear or lin-
ear projection achieves remarkable improvement compared
with identity mapping, which indicates that we should map
the embedding to another space for contrasting. Further, by
comparing the result of non-linear projection and that of the
linear projection, we can observe that linear projection has
some advantages, and we conjecture that non-linear projec-
tion may overly modify the original embeddings and weak-
ens the effect of contrastive learning.

Conclusion

In this paper, we propose a context-based contrastive learn-
ing framework for STR to improve attention-based scene
text recognizers’ generalization on unseen text. We use the
ConAug module to create various contexts via simple im-
age concatenation and then adopt contrastive loss on these
character embeddings within different contexts. We pull to-
gether clusters of identical character embeddings in various
contexts and push apart clusters of embeddings of different
characters. Through this, models can learn a more discrimi-
native representation that better balances the context and in-
trinsic information. Experiments show that our method can
significantly improve out-of-vocabulary accuracy. Besides,
our method also leads to remarkable improvement on the
seen text and achieves state-of-the-art performance on six
public benchmarks together with a language model.



References

Aberdam, A.; Litman, R.; Tsiper, S.; Anschel, O.; Sloss-
berg, R.; Mazor, S.; Manmatha, R.; and Perona, P. 2021.
Sequence-to-sequence contrastive learning for text recogni-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Baek, J.; Kim, G.; Lee, J.; Park, S.; Han, D.; Yun, S.; Oh,
S. J.; and Lee, H. 2019. What Is Wrong With Scene Text
Recognition Model Comparisons? Dataset and Model Anal-

ysis. In IEEE International Conference on Computer Vision
(ICCV).

Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural
machine translation by jointly learning to align and trans-
late. International Conference on Learning Representations
(ICLR).

Biten, A. F.; Tito, R.; Mafla, A.; Gomez, L.; Rusinol, M.;
Valveny, E.; Jawahar, C.; and Karatzas, D. 2019. Scene text
visual question answering. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A Simple Framework for Contrastive Learning of Visual
Representations. In International Conference on Machine
Learning (ICML).

Cheng, Z.; Bai, F.; Xu, Y.; Zheng, G.; Pu, S.; and Zhou, S.
2017. Focusing Attention: Towards Accurate Text Recogni-
tion in Natural Images. In IEEE International Conference
on Computer Vision (ICCV).

Fang, S.; Xie, H.; Wang, Y.; Mao, Z.; and Zhang, Y. 2021.
Read Like Humans: Autonomous, Bidirectional and Itera-
tive Language Modeling for Scene Text Recognition. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Gomez, L.; Mafla, A.; Rusinol, M.; and Karatzas, D. 2018.
Single shot scene text retrieval. In European Conference on
Computer Vision (ECCV).

Graves, A.; Fernandez, S.; and Gomez, F. 2006. Connection-
ist temporal classification: Labelling unsegmented sequence
data with recurrent neural networks. In International Con-
ference on Machine Learning (ICML).

Grill, J.-B.; Strub, E.; Altché, E.; Tallec, C.; Richemond,
P.; Buchatskaya, E.; Doersch, C.; Avila Pires, B.; Guo, Z.;
Gheshlaghi Azar, M.; Piot, B.; kavukcuoglu, k.; Munos, R.;
and Valko, M. 2020. Bootstrap Your Own Latent - A New
Approach to Self-Supervised Learning. In Annual Confer-
ence on Neural Information Processing Systems (NeurlPS).
Gupta, A.; Vedaldi, A.; and Zisserman, A. 2016. Synthetic
data for text localisation in natural images. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR).
He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. 2020.
Momentum Contrast for Unsupervised Visual Representa-
tion Learning. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Jaderberg, M.; Simonyan, K.; Vedaldi, A.; and Zisserman,
A. 2014. Synthetic Data and Artificial Neural Networks
for Natural Scene Text Recognition. In Workshop on Deep
Learning, Annual Conference on Neural Information Pro-
cessing Systems (NIPS).

Jaderberg, M.; Simonyan, K.; Vedaldi, A.; and Zisserman,
A. 2016. Reading text in the wild with convolutional neural
networks. International Journal of Computer Vision (IJCV).
Karatzas, D.; Gomez-Bigorda, L.; Nicolaou, A.; Ghosh, S.;
Bagdanov, A.; Iwamura, M.; Matas, J.; Neumann, L.; Chan-
drasekhar, V. R.; Lu, S.; et al. 2015. ICDAR 2015 competi-
tion on robust reading. In 13th International Conference on
Document Analysis and Recognition (ICDAR).

Karatzas, D.; Shafait, F.; Uchida, S.; Iwamura, M.; i Big-
orda, L. G.; Mestre, S. R.; Mas, J.; Mota, D. F.; Almazan,
J. A.; and De Las Heras, L. P. 2013. ICDAR 2013 robust
reading competition. In International Conference on Docu-
ment Analysis and Recognition.

Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola,
P.; Maschinot, A.; Liu, C.; and Krishnan, D. 2020. Super-
vised Contrastive Learning. In Annual Conference on Neu-
ral Information Processing Systems (NeurlPS).

Li, H.; Wang, P.; Shen, C.; and Zhang, G. 2019. Show, At-
tend and Read: A Simple and Strong Baseline for Irregular
Text Recognition. In AAAI Conference on Artificial Intelli-
gence.

Liao, M.; Pang, G.; Huang, J.; Hassner, T.; and Bai, X. 2020.
Mask TextSpotter v3: Segmentation Proposal Network for
Robust Scene Text Spotting. In European Conference on
Computer Vision (ECCV), 7106-722.

Liu, W.; Chen, C.; and Wong, K.-Y. K. 2018. Char-net:
A character-aware neural network for distorted scene text
recognition. In AAAI Conference on Artificial Intelligence.
Lyu, P; Yang, Z.; Leng, X.; Wu, X.; Li, R.; and Shen,
X. 2019. 2D Attentional Irregular Scene Text Recognizer.
arXiv:1906.05708.

Mishra, A.; Alahari, K.; and Jawahar, C. 2012. Scene text
recognition using higher order language priors. In British
Machine Vision Conference (BMVC).

Phan, T. Q.; Shivakumara, P.; Tian, S.; and Tan, C. L.
2013. Recognizing text with perspective distortion in nat-
ural scenes. In IEEE International Conference on Computer
Vision (ICCV).

Qiao, Z.; Zhou, Y.; Yang, D.; Zhou, Y.; and Wang, W. 2020.
SEED: Semantics Enhanced Encoder-Decoder Framework
for Scene Text Recognition. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Qin, S.; Bissacco, A.; Raptis, M.; Fujii, Y.; and Xiao, Y.
2019. Towards unconstrained end-to-end text spotting. In
IEEFE International Conference on Computer Vision (ICCV).
Risnumawan, A.; Shivakumara, P.; Chan, C. S.; and Tan,
C. L. 2014. A robust arbitrary text detection system for nat-
ural scene images. Expert Systems with Applications.

Shi, B.; Bai, X.; and Yao, C. 2017. An End-to-End Train-
able Neural Network for Image-Based Sequence Recogni-
tion and Its Application to Scene Text Recognition. IEEE
Trans. Pattern Anal. Mach. Intell.



Shi, B.; Wang, X.; Lyu, P.;; Yao, C.; and Bai, X. 2016. Ro-
bust Scene Text Recognition With Automatic Rectification.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Van der Maaten, L.; and Hinton, G. 2008. Visualizing
data using t-SNE. Journal of Machine Learning Research
(JMLR).

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, 1. 2017.
Attention is All you Need. In Annual Conference on Neural
Information Processing Systems (NeurlPS).

Wan, Z.; Zhang, J.; Zhang, L..; Luo, J.; and Yao, C. 2020. On
Vocabulary Reliance in Scene Text Recognition. In /EEE
Conference on Computer Vision and Pattern Recognition
(CVPR).

Wang, K.; Babenko, B.; and Belongie, S. 2011. End-to-end
scene text recognition. In IEEFE International Conference on
Computer Vision (ICCV).

Wang, P.; Yang, L.; Li, H.; Deng, Y.; Shen, C.; and Zhan, Y.
2019. A Simple and Robust Convolutional-Attention Net-
work for Irregular Text Recognition. arXiv:1904.01375.
Wang, T.; Zhu, Y.; Jin, L.; Luo, C.; Chen, X.; Wu, Y.; Wang,
Q.; and Cai, M. 2020. Decoupled attention network for text
recognition. In AAAI Conference on Artificial Intelligence.

Yang, X.; He, D.; Zhou, Z.; Kifer, D.; and Giles, C. L. 2017.
Learning to Read Irregular Text with Attention Mechanisms.
In International Joint Conference on Artificial Intelligence
(IJCAI).

Yu, D.; Li, X.; Zhang, C.; Liu, T.; Han, J.; Liu, J.; and
Ding, E. 2020. Towards accurate scene text recognition
with semantic reasoning networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 12113—
12122.

Yu, H.; Huang, Y.; Pi, L.; Zhang, C.; Li, X.; and Wang, L.
2021. End-to-end video text detection with online tracking.
Pattern Recognition.

Yue, X.; Kuang, Z.; Lin, C.; Sun, H.; and Zhang, W. 2020.
Robustscanner: Dynamically enhancing positional clues for
robust text recognition. In European Conference on Com-
puter Vision (ECCV).

Zhan, F.; and Lu, S. 2019. ESIR: End-To-End Scene Text
Recognition via Iterative Image Rectification. In IEEE

Conference on Computer Vision and Pattern Recognition
(CVPR).



