Deep Neural Network Hardware Deployment Optimization via
Advanced Active Learning

Qi Sun, Chen Bai,

Hao Geng,

Bei Yu

Department of Computer Science and Engineering, The Chinese University of Hong Kong
{gsun, cbai, hgeng, byu}@cse.cuhk.edu.hk

Abstract—Recent years have witnessed the great successes of deep
neural network (DNN) models while deploying DNN models on hardware
platforms is still challenging and widely discussed. Some works proposed
dedicatedly designed accelerators for some specific DNN models, while
some others proposed general-purpose deployment frameworks that can
optimize the hardware configurations on various hardware platforms
automatically. However, the extremely large design space and the very
time-consuming on-chip tests bring great challenges to the hardware
configuration optimization process. In this paper, to optimize the hard-
ware deployment, we propose an advanced active learning framework
which is composed of batch transductive experiment design (BTED)
and Bootstrap-guided adaptive optimization (BAO). The BTED method
generates a diverse initial configuration set filled with representative
configurations. Based on the Bootstrap method and adaptive sampling,
the BAO method guides the selection of hardware configurations during
the searching process. To the best of our knowledge, these two methods
are both introduced into general DNN deployment frameworks for the
first time. We embed our advanced framework into AutoTVM, and the
experimental results show that our methods reduce the model inference
latency by up to 28.08% and decrease the variance of inference latency
by up to 92.74%.

I. INTRODUCTION

Deep neural networks (DNNs) have achieved unprecedented suc-
cesses on a wide range of applications, such as objective detection,
image classification, natural language processing, and even design
for manufacturing [1]-[4]. In DNN models, there are some common
layers such as convolutional layers and fully-connected layers. In
these layers, we conduct multiplication and addition operations on
input features and weights to generate output features as results.
These features and weights usually have large scales and therefore
the number of operations and memory consumptions are very large.

To deploy DNN models on hardwares efficiently, great efforts
have been made recently and various platforms are considered, e.g.,
ASIC [5], FPGA [6], memristor [7], mobile devices [8], and general-
purposed GPU [9]. Some researchers propose to build complicated
formulations or analysis models [10]-[12] to characterize the hard-
ware usage and on-chip model scheduling, i.e., deployment config-
urations. In these works, hardware architecture and model structure
are analyzed in detail, and then a slew of candidate deployment
configurations are enumerated. Typically, all of the configurations
are estimated by the formulations or models to find the best one.
These works are highly dependent on the accuracy of the analytical
models. They may suffer from inflexibility and are difficult to be
extended because hardware and analysis models are highly coupled.
To some extent, they are regarded as hardware-and-model-specific
solutions.

To alleviate the inflexibility issues, developing general frameworks
has been a new trend for hardware deployments. Halide [13]
and TVM [14] decouple algorithms from schedules and treat the
hardware architectures as black boxes in their optimization flow.
The design flow of the general framework is shown in Fig. 1. In the
general frameworks, a DNN model is represented as a computational
graph, and operators (layers) in it are represented as nodes. Some

High-level Compuataion
Graph Optimization

L. Tt TrTm e T !
: .'O_»O_». | Final Model 7 :
') Deployment 1
1

Fig. 1 The general framework of DNN hardware deployment opti-
mization. For each node, we can conduct the node-wise optimization
to find the best deployment configuration. Our advanced active learn-
ing framework is proposed as the node-wise optimization algorithm.

graph level tuning strategies are adopted to optimize the graph.
For example, operator fusion combines multiple operators into a
single kernel (i.e., node). Subsequently, node-wise optimization is
applied to find the best configuration for each node. The final
model deployment solution is the combination of solutions to all
the nodes. For each node, all of the deployment configurations
are enumerated and encoded as design points to construct a large
design space. For simplicity, in this paper, we do not distinguish
between layer and node. Traditionally, the active learning algorithm
which consists of an initialization stage and an iterative optimization
stage is utilized here as the solution searching strategy. Firstly,
some initial points are sampled from the original solution space to
initialize an evaluation function. Then the optimization process is
performed iteratively until satisfying the stopping criteria. In each
optimization iteration, a configuration point is selected according
to the evaluation function and then deployed on hardware to get
real performance to update the evaluation function. Some machine
learning or deep learning algorithms can be applied in the active
learning flow. For example, XGBoost regression [15] can be used
as the evaluation function. Simulated annealing (SA) [16] can be
used as the iterative optimization algorithm. Transfer learning [17]
can accelerate the iterative optimization process by utilizing history
deployment information. AutoTVM [18], which integrates the above
three methods, is an automatic optimization framework in TVM
[14] and achieves state-of-the-art performance. CHAMELEON [19]
leverages reinforcement learning to improve AutoTVM. However,
it is too difficult to implement and train the reinforcement learning
models. Therefore limited numbers of experiments are conducted in
[19] and results are not outstanding.

With the help of these general frameworks and active learning
algorithms, researchers can concentrate on the optimizations of back-

end code translations so that more hardware characteristics are
considered to generate elaborately designed codes. For example,
based on TVM, HeteroCL [20] produces highly efficient FPGA
spatial architectures by incorporating systolic arrays and stencils
with dataflow architectures. FlexTensor [21] which is also based on
TVM promotes the DNN deployments on heterogeneous systems
composed of CPU, GPU, and FPGA.

However, the extremely large design space and expensive time
costs of on-chip deployments bring great challenges to these frame-
works and make them powerless. For example, in TVM, the first op-
timization node in VGG-16 [22] has approximately 0.2 billion con-
figuration points. Besides, it is difficult to reproduce advanced deep
learning algorithms which are highly dependent on large amounts
of training data and computation powers. It is also unfriendly to
fast commercial developments that have strict requirements on the
development cycles and algorithm stability. Overall, in the traditional
algorithms, there are three unsolved problems:

1) Initialization in lack of rich data information.
2) Un-scalability of the optimization process.
3) Inaccuracy of evaluation functions.

To solve these problems, we propose a general advanced active
learning framework. Our contributions are summarized as follows:

o An advanced active learning framework is proposed, which is
composed of batch transductive experimental design (BTED)
and Bootstrap-guided adaptive optimization (BAO) methods.

o The BTED method generates a diverse initial configuration
set filled with representative configurations in a batch fashion.
BTED can solve the initialization and scalability problems.

« Based on Bootstrap method and adaptive sampling, the BAO
method guides the selection of better deployment configurations
more accurately in the iterative optimization process. BAO
solves the scalability and accuracy problems.

o Our framework is embedded into TVM and the results show
the uplifting improvements for DNN model deployments on
general hardware.

The rest of this paper is organized as follows. Section II intro-
duces the problem to be addressed and some preliminaries. Sec-
tion III explains our proposed batch transductive experimental design
(BTED) and Bootstrap-guided adaptive optimization (BAO) in detail.
Section IV summarizes our advanced active learning framework.
Section V demonstrates the experiments and results. Finally, we
conclude this paper in Section VI.

II. PRELIMINARIES
A. DNN Hardware Deployment

To deploy DNN models on hardware, typically, features and
weights in each layer are partitioned into some tensors, and con-
sequently, the computation task of this layer is split into some
smaller tasks. Hardware resources are carefully allocated to conduct
computations of these small tasks. Upon the partitions of data and
the allocations of hardware resources, elegant scheduling strategies
are necessary to organize these small tasks to maximize data
reuse, reduce communication costs, increase system parallelism, and
achieve optimal deployment performance. During this process, it is
challenging to find a compatible scheduling solution which takes a
good balance between resource allocations and data partitions.

Different DNN accelerator platforms have various structures while
the design ideas are similar. CUDA GPU programming architecture
[23] in Fig. 2 is taken as an example to illustrate this. The device
is divided into some grids. Each grid possesses several blocks and a

GPU [Grid \Y Grid

e (o]
I \cmory Bl Thread |<—>| Register
v - =[]

Fig. 2 The Nvidia CUDA programming Architecture.

shared global memory. Each block consists of some threads, shared
memory, and some local registers. Each thread can be regarded as
a basic computation unit which can perform a certain amount of
calculations. The inter-thread communication relies on the shared
memory and each local register is exclusively occupied by a thread.
The grids can compute the tensors in parallel and they can be further
decomposed and assigned to the blocks and threads. To deploy a
model on CUDA GPU efficiently, there are some crucial settings
to be determined, e.g., thread binding, thread cooperation, memory
locality, tensorization, efc..

B. Active Learning

The active learning algorithm, also termed optimal experimental
design, is an iterative optimization mechanism [24]. Typically, it
contains two stages: initialization, and iterative optimization. Firstly,
it samples some data points from the whole dataset to initialize an
evaluation function. Secondly, to find data points with better perfor-
mance from the dataset, it iteratively interacts with the environment.
In each iteration, it selects a new point from the whole dataset
according to the evaluation function and the searching strategy,
and then updates the evaluation functions accordingly. Usually, the
searching strategy relies on the machine learning model to evaluate
the qualities of new points. This process continues until the stopping
criteria are reached.

C. Bootstrap Method

Bootstrap method is to approximate a population distribution by
a sample distribution [25]. Assume that original data set is D,
and its real distribution is ¢(D). Limited by sampling techniques
or influenced by random noises, the sampled data set X € D
is inefficient to characterize (D) by (X). Machine learning
models built on these data are therefore inaccurate and unstable.
The Bootstrap method is proposed to help solve these problems
[25], [26]. Generally, the Bootstrap method takes X as input. A
batch of data sets with cardinalities equal to X is re-sampled from
X uniformly. Assume that there are I' sets sampled from the X,
denoted as X;, and their corresponding distributions are cp(th),
with ¢ € {1,...,T'}. The original distribution ¢(D) can be better
approximated by {p(X1),o(X2),---,(Xr)}. The probability of
an item in X is picked at least once is 1 — (1 — 1/T")*, which for
large T’ becomes 1 — e~' = 0.632. Hence, the number of unique
data points in a Bootstrap set is 0.632 X I' on average.

Bootstrap, also named bagging method, is an ensembling learning
method. Bagging method can reduce model variance and increase
robustness, which is especially useful when the solution space is
very large, e.g., the DNN hardware deployment problem. Another
famous ensembling method is boosting, which aggregates several

weak models to form a better one. In comparison, the boosting
method follows a voting mechanism, which can reduce the bias
among several weak models.

D. Problem Formulation

Definition 1 (Deployment Configuration). All of the deployment set-
tings (e.g., thread binding, thread cooperation, etc.) to be determined
are encoded as the attributes of a feature vector which is termed
as deployment configuration. The feature vector of a deployment
configuration is denoted as x.

Definition 2 (GFLOPS). Giga floating operations per second
(GFLOPS) measures the number of floating-point operations con-
ducted by the hardware per second.

Definition 3 (Latency). Latency computes end-to-end model infer-
ence time and intuitively reflects the performance of model deploy-
ment.

With the above definitions, our problem can be formulated.

Problem 1 (DNN Hardware Deployment Optimization). For each
layer in a DNN model, given a search space D where each
deployment configuration is regarded as a point, the objective of
the hardware deployment optimization is to find the best deployment
configuration . € D which maximizes GFLOPS. The deployment
for the whole model is the combination of configurations for all of
the layers, which is measured by latency.

III. ADVANCED ACTIVE LEARNING FRAMEWORK

In this section, the proposed advanced active learning framework
is explained in detail.

A. Batch Transductive Experimental Design

In the initialization stage of active learning, as mentioned above,
two important problems are unsolved, i.e., initialization in lack of
rich information and un-scalability.

Limited by the computational resources and experimental costs,
Researchers tend to sample as few initial configurations as possible
while building an evaluation function. Meanwhile, to guarantee the
performance of evaluation functions, the sampled configurations
should contain rich data information. From the perspective of
data distribution, containing rich information means that the initial
configurations should have high diversities and scatter across the
input design space [27]. In other words, the sampled configurations
should be as far as possible from each other in the input design
space. A naive solution is to randomly sample some configurations
from the design space. Further, some researchers have proposed
to use SVM or similar methods in which all the configurations
are taken into computations to learn the scattered data [28]—[30].
Inspired by [27], in this paper, we propose to use transductive
experimental design (TED) method , as shown in Algorithm 1. Given
the input un-sampled set V, we will sample a subset X from V which
maximizes the intra-set diversity. Kvyy € RIVIXIYI is the distance
matrix of configurations in V. k(vi,v2) € Kyy is computed as
Euclidean distance, with v1,v2 € V. According to Algorithm 1,
the configurations that are the most contributive to initialization are
sampled. In summary, it is an easy-to-implement method which has
low computation workloads.

The huge amounts of configurations in DNN deployment problems
make it difficult to find representative initial configurations. To tackle
this efficiently, we further propose batch transductive experimental
design (BTED) by using batch mechanism and randomness, as

Algorithm 1 Transductive Experimental Design — TED(V, 1, m)

Require: (V, p, m), where V is the un-sampled configuration
set, p is the normalization coefficient, m is the number of
configurations we will sample.

Ensure: Newly sampled configuration set X.

I: K + Kyy, X + 0;
2: fori=1—mdo

3: T = arg maxycvy %; > K, and k(v,v) are v’s
corresponding column and diagonal entry in K.

4: X=XUuw; .

50 K=K - qitgt

6: end for

7: return Newly sampled configuration set X;

shown in Algorithm 2. We will randomly sample a batch of sets
from the original set and then conduct Algorithm 1 on these sampled
sets. The final output X of Algorithm 2 is the initialization set in
our advanced active learning framework. By introducing randomness
into TED, i.e., line 2 in Algorithm 2, we can reduce the computation
complexity and thus improve the scalability. Besides, our batch
method can stimulate the parallelism in our framework, and enlarge
the random space which is used to generate the initial set. By using
the batch method with a fixed number of initial configurations,
our framework can compute on as many configurations as possible
without delaying the system.

Algorithm 2 Batch Transductive
BTED(V, uu, M, m, B)

Require: (V, p, M, m, B), where V is the un-sampled configuration
set, u is the normalization coefficient, B is the batch size, M is
the number of randomly sampled points and m is the number
of points to be sampled as the initial set.

Ensure: Newly sampled configuration set X.

:forb=1— B do
Randomly sample a set V, from V, with |V,| = M;

Xy TED (Vs 1, m); > Algorithm 1
end for

: Temporal union set 5CU = 5C1 U 5C2 U---uy 5CB;

. X « TED(Xv, o, m);

: return Newly sampled configuration set X;

Experimental Design —

> Algorithm 1

Y

B. Bootstrap-guided Adaptive Optimization

Except for the problems in the initialization stage, there still
exist some crucial problems like inaccuracy and un-scalability in
the iterative optimization stage. Firstly, the complexities of hardware
characteristics and DNN models make the evaluation function hard
to simulate the real environment accurately. The evaluation function
would be misled by the already-sampled configurations and make
wrong decisions when selecting new configurations. Besides, as
mentioned before, the configuration space is usually extremely large,
which means that in each optimization step, the searching range of
the next sampled point is too large to be analyzed.

Bootstrap re-sampling has been proven to be an effective tech-
nique to correct and quantify optimization of model performance
[26]. To improve the model accuracy, for the first time, we introduce
the Bootstrap re-sampling technique into the DNN hardware deploy-
ment community. Firstly, we randomly re-sample a batch of sets from
the already-sampled configuration set. Then, we build new evaluation

functions for each of these re-sampled sets. The final evaluation
function is built as the summation of the evaluation functions of these
re-sampled sets. Assume that there are I' re-sampled sets .'J~CAY from X,
with v € {1,...,T'}. Accordingly, I' evaluation functions are built,
denoted as f,v € {1,...,T'}. The next optimization configuration
point x* is the configuration that maximizes the summation of these
T" evaluation functions. =* will be deployed on hardware to get
real performance y* for further usage. The pseudo-code is shown in
Algorithm 3.

Algorithm 3 Bootstrap-guided Sampling — BS(X,Y, €, T")

Require: (X,Y,C,T"), where X is the already sampled configuration
set and Y is its performance set, C is the current searching space,
I" is the number of re-sampled sets.
Ensure: New configuration x*.
fory=1—1T do
Randomly sample X, from X, with |X,| = |X[:
Get JC s performance set yw from Y;
Build evaluauon function f, according to 567 and 97;
end for
6: ¥ + maxgzee 25:1 f~(@);
7: return x*;

AN e

To make the searching algorithm scalable, in each optimization
step, instead of traversing the whole configuration space, we adjust
the searching space adaptively. In the model deployment problem, an
acceptable assumption is that if a configuration has good deployment
performance, it is very likely that we can find better configurations
in its neighborhood. The basic idea behind this assumption is that
the value space is local smooth, or at least approximately smooth
in a certain range. Therefore, to find a suitable searching space to
reduce the searching costs and compensate for the loss when the
results are not satisfying, we improve Algorithm 3 by using adaptive
neighborhood adjustment strategy. If the relative improvement of the
performance values between the previous two consecutive optimiza-
tion steps is satisfying, i.e., greater than a threshold 7, we will keep
the radius of the neighborhood as a constant R. Otherwise, we will
enlarge the searching space, i.e., adopting a larger radius 7R where
T > 1 is a hyperparameter. The relative improvement is computed

via Equation (1).
Py = P’tﬂ *— thz—‘) (1)
Yi-1
where y;_; and y;_, are the optimal performance values found
in step (¢t — 1) and (¢t — 2), respectively. After determining the
optimization configuration &7, we will deploy it to get performance
y+ and add them into the already-sampled set. The pseudo-code of
the Bootstrap-guided adaptive optimization is shown in Algorithm 4.
Our sampling algorithm is general enough to handle various types
of evaluation function f., and therefore can be easily extended.

IV. FRAMEWORK SUMMARY

As shown in Fig. 1, a given DNN model to be deployed on hard-
ware is usually represented as a computational graph in which each
node represents a layer. Our advanced active learning framework
is adopted to conduct node-wise optimization in the computational
graph, to find the best deployment configurations.

The overall flow of our advanced active learning framework is
visualized in Fig. 3. For each node, the input to our framework is its
configuration space D. BTED (Algorithm 1 & Algorithm 2) is used
to generate initial set, which is aiming at tackle the scalability and

Algorithm 4 Bootstrap-guided Adaptive
BAO(T,X,Y,n,I)

Require: (7,X,Y,n,I'), where T is number of optimization itera-
tions, X is the already sampled initialization configuration set
and Y is its performance set, 77 is a threshold, and T" is the
number of re-sampled sets.

Ensure: Updated X and Y.

1: Select g from X with the best performance value;
2. fort=1—1Tdo

Optimization —

3 C; + neighborhood of x;_; with radius R;

4 if ¢ > 2 then

5: Compute 7; > Equation (1)
6: if r; < n then

7: C: <+ neighborhood of @;_; with radius (7 - R);

8 end if

9: end if

10: x; < BS(X,Y,C, T); > Algorithm 3
11: Deploy «; on hardware to get GFLOPS y;;

12: X=XUxf and Y =Y Uy;;

13: end for

14: return Updated X and Y;

Best
Conf.

Initialization

Conf.
BETD (Alg. 1 & 2)

Space D

Iterative Optimization
BAO (Alg. 3 & 4)

)

Sampled Adaptlvely Adjust Searchmg
Advanced SEt Scope
Active
Record
e

Learning
Fig. 3 Our advanced active learning framework.

informativeness problems mentioned in Section I. BAO (Algorithm 3
& Algorithm 4), consisting of Bootstrap-guided re-sampling and
adaptive sampling, is used to guide the iterative optimization process
and solves the accuracy and scalability problems. In one iteration of
Algorithm 4, Algorithm 3 is invoked and the searching scope is
adjusted adaptively. The framework interacts with the real hardware
to get real GFLOPS values. The output «* is the best deployment
configuration with the highest GFLOPS value for this layer.

To the best of our knowledge, both BTED and BAO algorithms
are used in general DNN deployment frameworks for the first time.
Except for solving the problems mentioned in Section I, more
importantly, our framework is independent of the specific forms
of evaluation functions, thus making it compatible with various
algorithms. The superior generality of the proposed framework keeps
pace with the fast development of the community.

V. EXPERIMENTAL RESULTS

In this section, we embed our advanced active learning framework
into the most popular general DNN deployment framework TVM
(state-of-the-art stable released version v0.6.1 [31] before the paper
submission) to validate the performance. The hardware platform is
Nvidia GeForce GTX 1080 Ti. Some public models which can be
found in TVM tutorial are tested, including AlexNet [32], ResNet-
18 [33], VGG-16 [22], MobileNet-vl [34], and SqueezeNet-v1.1
[35]. In total, there are 58 nodes that need to be optimized in

—— AutoTVM —— BTED — BTED + BAO
2,800 1,200 [T =
7]
£ 2,000 y 200 |
Z 1,000 . 00l |
| |
00 512 1o 00 512 Lo

(@ (b)

Fig. 4 Convergence trends of GFLOPs for the first 2 layers of
MobileNet-v1, (a) the first layer, (b) the second layer.

these models. On average, each node has more than 50 million
configuration points. The representative DNN layers widely used
in both industries and academia are all covered in these models,
including conventional convolutional layers, shortcut layers, multi-
branch layers, fully connected layers, depth-wise convolutional lay-
ers, batch-normalization layers, and etc..

A. Experimental Settings

AutoTVM [18], which integrates XGBoost, simulated annealing,
transfer learning, and efc., is the state-of-the-art academic optimiza-
tion framework. In AutoTVM, by default, 64 points are sampled
from the configuration space as the initialization set. Early stopping
is adopted in the searching process as the stopping criterion and the
stopping threshold is set as 400. For each layer in the DNN model,
GFLOPS is used as the optimization objective while the latency of
the whole model is reported as the final deployment performance
metric, as mentioned in Section II-D.

The experiments conducted in this paper are as below:

e AutoTVM: The automatic optimization framework in TVM.

« BTED: Embed BTED initialization algorithm into AutoTVM.

e BTED+BAO: Embed our advanced active learning framework

(BTED and BAO) into AutoTVM.

The input pair in Algorithm 2 is (V = D,u = 0.1,M =
500, m = 64, B = 10), where D is the default configuration space
generated by TVM. Each batch randomly samples 500 points from
D, and then 64 points are selected from each batch via Algorithm 1.
Thus, the union set Xy contains 640 points, and finally 64 points are
sampled from Xy as the initial set. In Algorithm 4, 7 is set as 0.05,
I'is 2, and 7 is set as 1.5. The radius R is set as 3 which means that
the Euclidean distance between points. For fairness, except for the
aforementioned hyper-parameters, we follow the same experimental
settings as AutoTVM. To avoid disturbances caused by hardware
workload uncertainties, in each experiment trial, we run the deployed
model 600 times. Therefore, in experiments, the average latency as
well as the variance of these 600 tests are recorded. Further, to
reduce randomness, each algorithm is performed 10 trials to obtain
the corresponding configuration solutions for each DNN model, and
the final results are the averages of these 10 trials.

B. Results and Discussions

Convergence. We take Fig. 4 as an example to compare the con-
vergence trends of GFLOPS over the number of configurations. Even
if there are millions of configurations, our method can outperform
AutoTVM with a faster converge speed and a higher GFLOPS value.

GFLOPS and Workloads. Our method can achieve much better
GFLOPS performance without sampling more configurations. Lim-
ited by paper length, not all results are plotted. Fig. 5 shows the
number of sampled configurations v.s. GFLOPS values for all 19

layers in MobileNet-v1. Since different layers have diverse GFLOPS
values, for clarity, all of the GFLOPS results are represented as
ratios to the results of AutoTVM. As shown in Fig. 5(a), comparing
to AutoTVM, BTED tends to sample more configurations, while
(BTED + BAO) method samples roughly equal ones. On average,
BTED and (BTED + BAO) improve the GFLOPS values by
up to 36.74% and 47.94% respectively. The results reveal that,
with occasionally sacrificing the cost of optimization workloads,
BTED behaves much better than AutoTVM. With the help of the
BAO, we can reduce the optimization workload without degrading
performance.

Latency and Variance. The inference latencies of end-to-end
models and corresponding variances are recorded in TABLE I. For
convenience, the improvement ratios with respect to AutoTVM are
computed. Our method can reduce the latency by up to 28.08% and
decrease the variance by up to 92.74%, on MobileNet-v1. Averagely,
our framework reduces inference latency and variance by 13.83%
and 67.74% respectively on these representative models.

Discussions. The uplifting performance improvements of our
advanced frameworks show that the three unsolved problems can
be handled efficiently. The foreseeable development trend of DNN
model deployment is that more and more hardware platforms will
be developed and used. Therefore, the size of the deployment con-
figuration space will increase continuously. Besides, huge amounts
of newly proposed models would also enlarge the configuration
space. From this perspective, our advanced framework would be
more remarkable. In addition, it is believed that our framework can
be integrated with more optimization methods, e.g., deep learning
algorithms. Our framework is also easy to be implemented, with
high algorithm stability and low development workloads.

VI. CONCLUSION

In this paper, an advanced active learning framework composed
of BTED and BAO has been proposed to improve the general DNN
hardware deployment framework and solve three crucial problems.
The BTED method can generate an initial set with rich information.
The BAO method can help sample configurations, improve model
accuracy, and adjust searching scope adaptively. Both of them have
high scalability. We believe that our pioneering study will guide the
community to solve some fundamental problems and further improve
the DNN model deployments.

ACKNOWLEDGMENT

This work is partially supported by Tencent and SmartMore.

REFERENCES

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. NIPS,
2015.

[2] X. Zhang, Y. Li, C. Hao, K. Rupnow, J. Xiong, W.-m. Hwu, and
D. Chen, “SkyNet: A champion model for DAC-SDC on low power
object detection,” arXiv preprint, 2019.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint, 2018.

[4] H. Geng, H. Yang, Y. Ma, J. Mitra, and B. Yu, “SRAF insertion via
supervised dictionary learning,” in Proc. ASPDAC, 2019.

[5] R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik,
B. Keller, A. Klinefelter, N. R. Pinckney, P. Raina et al., “MAGNet: A
modular accelerator generator for neural networks.” in Proc. ICCAD,
2019.

[6] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Automatic compilation of
diverse cnns onto high-performance fpga accelerators,” IEEE TCAD,
2018.

B AutoTVM [JBTED [_1BTED + BAO

17400 T T T T

1,000

of Conf.

600

TI T2 T3 T4 T5 T6 T7 T8

150 T

(a)

T9 T10 T11 T12 T13 Ti4 T15 Ti6 T17 TI18 T19 AVG

125

100

GFLOPS (%)

T1 T2 T3 T4 TS5

T6 T7 T8 T9 TI0 T11 T12 T13 T14 TI5 T16 T17 T18 T19 AVG
(b)
Fig. 5 The number of sampled configurations and GFLOPS values of MobileNet-v1. AVG represents the average results of the 19 tasks.

TABLE I Comparisons of End-to-end Model Inference Latency and Variance

Model AutoTVM BTED BTED + BAO
Latency (ms) Variance | Latency (ms) A (%) Variance A (%) | Latency (ms) A (%) Variance A (%)
AlexNet 1.3639 0.1738 1.3373 - 195 0.2246 +29.23 1.3304 - 246 0.0711 -59.09
ResNet-18 1.8323 0.4651 1.7935 -2.12 0.4487 -3.53 1.7519 - 4.39 0.3848 -17.27
VGG-16 6.5176 2.3834 5.6808 -12.84 0.6574 -72.42 5.6183 -13.80 0.3617 -84.82
MobileNet-v1 1.0597 0.9290 0.8738 -17.54 0.5398 -41.89 0.7621 -28.08 0.0674 -92.74
SqueezeNet-vl.1 0.8697 1.1208 0.7436 -14.50 0.5533 -50.63 0.6920 -20.43 0.1709 -84.75
Average ‘ 2.3286 1.0144 ‘ 2.0858 -9.79 0.4848 -27.85 ‘ 2.0309 -13.83 0.2112 -67.74

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

X. Ma, G. Yuan, S. Lin, C. Ding, F. Yu, T. Liu, W. Wen, X. Chen,
and Y. Wang, “Tiny but accurate: A pruned, quantized and optimized
memristor crossbar framework for ultra efficient dnn implementation,”
in Proc. ASPDAC, 2020.

H. Li, M. Bhargav, P. N. Whatmough, and H.-S. P. Wong, “On-chip
memory technology design space explorations for mobile deep neural
network accelerators,” in Proc. DAC, 2019.

X. Li, Y. Liang, S. Yan, L. Jia, and Y. Li, “A coordinated tiling and
batching framework for efficient GEMM on GPUs,” in Proc. PPoPP,
2019.

J.Li, G. Yan, W. Lu, S. Jiang, S. Gong, J. Wu, and X. Li, “SmartShuttle:
Optimizing off-chip memory accesses for deep learning accelerators,”
in Proc. DATE, 2018.

Q. Sun, T. Chen, J. Miao, and B. Yu, “Power-driven DNN dataflow
optimization on FPGA,” in Proc. ICCAD, 2019.

H. Ye, X. Zhang, Z. Huang, G. Chen, and D. Chen, “HybridDNN:
A framework for high-performance hybrid dnn accelerator design and
implementation,” arXiv preprint, 2020.

T-M. Li, M. Gharbi, A. Adams, F. Durand, and J. Ragan-Kelley,
“Differentiable programming for image processing and deep learning
in Halide,” ACM SIGGRAPH, 2018.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “TVM: An automated end-to-end
optimizing compiler for deep learning,” in Proc. OSDI, 2018.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. KDD, 2016.

P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in
Simulated annealing: Theory and applications. Springer, 1987, pp.
7-15.

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE TKDE,
2009.

T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin,
and A. Krishnamurthy, “Learning to optimize tensor programs,” in
Proc. NIPS, 2018.

B. H. Ahn, P. Pilligundla, A. Yazdanbakhsh, and H. Esmaeilzadeh,
“Chameleon: Adaptive code optimization for expedited deep neural
network compilation,” in Proc. ICLR, 2020.

Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and

[21]

[22]
[23]
[24]

[25]
[26]

[27]
[28]
[29]
[30]
[31]
[32]
[33]

[34]

[35]

Z. Zhang, “HeteroCL: A multi-paradigm programming infrastructure
for software-defined reconfigurable computing,” in Proc. ICCAD, 2019.
S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “FlexTensor: An
automatic schedule exploration and optimization framework for tensor
computation on heterogeneous system,” in Proc. ASPLOS, 2020.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” Proc. ICLR, 2015.

D. Kirk et al., “NVIDIA CUDA software and GPU parallel computing
architecture,” in ISMM, vol. 7, 2007.

B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2009.

L. Breiman, “Bagging predictors,” Machine learning, 1996.

E. W. Steyerberg, Overfitting and Optimism in Prediction Models.
Springer International Publishing, 2019, pp. 95-112.

K. Yu, J. Bi, and V. Tresp, “Active learning via transductive experi-
mental design,” in Proc. ICML, 2006.

K. Brinker, “Incorporating diversity in active learning with support
vector machines,” in Proc. ICML, 2003.

D. Wu, “Pool-based sequential active learning for regression,” IEEE
TNNLS, 2018.

H. Yang, S. Li, C. Tabery, B. Lin, and B. Yu, “Bridging the gap between
layout pattern sampling and hotspot detection via batch active learning,”
IEEE TCAD, 2020.

“TVM-v0.6.1,” https://github.com/apache/incubator-tvm/.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. NIPS, 2012.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer pa-
rameters and < 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

https://github.com/apache/incubator-tvm/

