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ABSTRACT
Optical proximity correction (OPC) for advanced technology node

now has become extremely expensive and challenging. Conven-

tional model-based OPC encounters performance degradation and

large process variation, while aggressive approach such as inverse

lithography technology (ILT) suffers from large computational over-

head for both mask optimization and mask writing processes. In

this paper, we developed Neural-ILT, an end-to-end learning-based

OPC framework, which literally conducts mask prediction and ILT

correction for a given layout in a single neural network, with the

objectives of (1) mask printability enhancement, (2) mask com-

plexity optimization and (3) flow acceleration. Quantitative results

show that, comparing to the state-of-the-art (SOTA) learning-based

OPC solution and conventional ILT flow, Neural-ILT can achieve

30× ∼ 70× turn around time (TAT) speedup with lower mask com-

plexity and comparable mask printability. We believe this work

could arouse the interests of bridging well-developed deep learning

toolkits to GPU-based high-performance lithographic computa-

tions to achieve groundbreaking performance boosting on various

computational lithography-related tasks.

1 INTRODUCTION
Computational lithography models are designed to learn the print-

ing effects of real lithography patterns. Building on top of these

delicate lithographic models, advance resolution enhancement tech-

niques (RETs) such as sub-resolution assist feature (SRAF) insertion

and optical proximity correction (OPC) help the designers to obtain

optimized masks that result in high fidelity printed patterns [1].

As one of the most prevailing RETs, OPC modifies on-mask ge-

ometries under the guidance of a computational lithography simula-

tor, which helps to counteract the effects of diffraction-related blur-

ring and under-exposure issues for the given masks. Conventional

OPC approaches can be roughly categorized into (1) model-based

OPC [2, 3] and (2) inverse lithography technology-based (ILT) OPC
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(a) Conventional ILT [5] synthesized mask (high complexity) and correspond-
ing mask fracturing result with 2045 shots.

(b) Neural-ILT synthesized mask (low complexity) and corresponding mask
fracturing result with only 653 shots.

Figure 1: Visualizations of mask fracturing results on the
synthesized masks with different complexities.

[4–7]. Model-based OPC usually relies on compact model simula-

tion to drive the movements of polygon edges, which are typically

divided into segments for the reasons of mask manufacturability

and computational efficiency, however, at the expense of limited

solution space and performance bottlenecks. On the other hand,

inverse lithography technology uses numerical approach, which

treats OPC as an inverse imaging problem, to perform pixel-wise

mask optimization. Nowadays, ILT is widely adopted to find flexi-

ble 193i and even EUV mask pattern solutions to improve overall

process window [6, 8]. However, with continuous shrinkage of the

technology nodes, the drastically rising of lithography computa-

tional overhead has brought great challenges for ILT to balance

quality of results (QoR), speed and affordability.

In the past decade, both academia and industry have been actively

working on facilitating the conventional lithography-related pro-

cesses as well as maintaining competitive QoR. Significant efforts

https://doi.org/10.1145/3400302.3415704


ICCAD ’20, November 2–5, 2020, Virtual Event, USA Bentian Jiang, Lixin Liu, Yuzhe Ma, Hang Zhang, Bei Yu, and Evangeline F.Y. Young

have been made, including but not limited to (1) migrating high-

performance computational lithography to GPU acceleration [9]; (2)

introducing fast modeling approaches for rigorous/compact litho-

simulations [10]; (3) considering multiple patterning [11, 12] and

(4) applying the SOTAmachine learning techniques on lithography-

related applications such as lithography system modeling [13, 14],

hotspot detection [15–17] and OPC [13, 18–20]. Among them, Yang

et al. [19] (GAN-OPC) for the first time applied conditional genera-

tive adversarial networks (CGAN) to mimic the process of typical

ILT OPC. The predicted mask by GAN is treated as a better ini-

tial solution for a conventional CPU-based ILT tool [5] for further

refinement, which helps to achieve faster convergence and better

mask printability. Ye et al. [13] (LithoGAN) developed a CGAN-

based lithography modeling framework that can directly map mask

patterns to resist patterns, while achieving orders of magnitude

speedup with acceptable accuracy loss.

Quantitative results of the above seminal works are encouraging,

but they also reveal a crucial fact that, in most lithography-related

application scenarios, machine learning is treated as a compromis-

ing solution to trade off between result quality and turn around time.

For supervised learning, the prediction quality is highly related to

the quality of the training datasets, and inevitable prediction loss

may further degrade its actual performance. From the perspective

of realistic deployment, the prediction error in machine learning so-

lutions usually requires additional rounds of rigorous refinements

to ensure correctness, which weakens its practical value.

In addition, for OPC, the optimized masks need to be fractured

as a combination of rectangular variable shaped-beam (VSB) shots

for mask writing (e.g., Figure 1). The ideal curvilinear shapes (Fig-

ure 1(a)) generated by conventional ILT [5] require huge amounts

of shots to accurately replicate the shapes, which leads to extremely

poor manufacturability in high-volumes due to the unmanageable

mask writing times [8, 21]. Observing the fact that reducing the

mask complexity can significantly reduce the shot count (2045 in

Figure 1(a) vs. 653 in Figure 1(b)), it is imperative to consider mask

complexity as an optimization objective during the ILT correction.

Motivated by these issues, a new challenge naturally arises: can

we completely replace the conventional ILT-based OPC flow by

purely machine learning-based solutions, so as to simultaneously

achieve breakthrough in runtime boosting and the SOTA result

quality, while considering mask manufacturability? In this work,

we develop Neural-ILT, an end-to-end high-performance ILT-based

OPC framework in a single neural network. This work attempts to

completely replace the conventional end-to-end ILT process (based

on a partial coherent imaging system) with purely learning-based

techniques. Unlike previous learning-based OPC solutions [19, 20],

Neural-ILT is able to directly generate the masks after OPC for the

unseen test layouts without additional rigorous refinement on the

network output. Our key contributions are summarized as follows.

• We developed Neural-ILT, an end-to-end ILT correction

framework based on a single neural network. A CUDA-based
lithography simulation tool is developed and deeply em-

bedded into Neural-ILT to enable on-neural-network litho-

graphic computations.

• A special training recipe with domain knowledge of a partial

coherent lithography imaging system is applied to pre-train

the backbone network of Neural-ILT in a supervised manner.

• The functionalities of conventional ILT correction and mask

complexity refinement are cast as customized neural network

layers and integrated into Neural-ILT. Consequently, the on-

neural-network ILT correction is essentially the training

procedure of Neural-ILT in an unsupervised manner.

• Experimental results show that Neural-ILT achieves break-

through turn around time speedup with lower mask com-

plexity and high mask printability comparable to the SOTA.

The rest of the paper is organized as follows. Section 2 lists some

preliminaries. Section 3 discusses the details of the framework and

algorithms. Section 4 presents experimental results, followed by a

conclusion in Section 5.

2 PRELIMINARIES
In this section, we will go through the background and problem

formulation. Throughout the rest of the paper, we denote Zt as
the target layout,M as the mask, I as the intensity (aerial) image,

Z, Zin, Zout as the wafer images under nominal process condition

Pnom (nominal dose and nominal focus H), min process condition

Pmin (min dose and defocus H
def

), and max process condition Pmax

(max dose and nominal focus H), respectively. Operators “⊗” and

“⊙” are used to represent convolution and element-wise product,

and ϕ(·; ·) stands for the forward function of the neural network.

2.1 Lithography Simulation Model
The lithography simulation models are designed to mimic the print-

ing effects without performing actual lithography. In practice, the

Hopkins diffraction model of the partially coherence imaging sys-

tem [22] is widely adopted to approximate the printing behavior.

The lithography model produces an aerial image I, which is a dis-

tribution of light intensity at the wafer plane. Theoretically, the

aerial image can be obtained by convolving the mask M with a set

of optical kernels H which represent the singular value decomposi-

tion of the optical system (193nm wavelength system with annular

illumination in this paper):

I(x ,y) =
N 2∑
k=1

ωk |M(x ,y) ⊗ hk (x ,y)|
2, (1)

where hk is the kth kernel of the model andωk is the corresponding

weight. The system can be further simplified by an N th
h order

approximation [5], where Nh = 24 in our implementation. A resist

model which reflects exposure level on the photo resist is then

applied to the intensity image to control the final binary wafer

image through the following step function:

Z(x ,y) =
{

1, if I(x ,y) ≥ Ith ,

0, if I(x ,y) < Ith ,
(2)

where Ith = 0.225 is a constant in our implementation.
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2.2 Mask Manufacturability and Mask
Printability

Since ILT naturally generates purely curvilinear features, conven-

tional fracturing method requires a large number of small rectan-

gles to approximate the shape (as shown in Figure 1), which makes

mask writing extremely expensive [8]. Despite the fact that more

advanced mask data preparation techniques like multi-beam frac-

turing and model-based mask data preparation (MB-MDP) have

been deployed [8], in this paper, we will use the shot count of
conventional fracturing (can accurately replicate the shapes) to

measure mask complexity and manufacturability. Without loss of

generality, reduction of mask complexity should generally benefit

various mask fracturing approaches.

Definition 1 (Mask Fracturing Shot Count). Given a mask M, the

mask fracturing shot count denotes the number of rectangular shots

for accurately replicating the mask shapes.

Mask printability can be measured by squared L2 error and pro-

cess variation band, which are defined as follows:

Definition 2 (Squared L2 Error). Given the target layout image

Zt and the wafer image Z of a mask M where Z = f (M; Pnom), the
squared L2 error of Z is given by | |Z − Zt | |2

2
.

Definition 3 (Process Variation Band). Process variation band

(PVBand) denotes the contour area variations under ±2% dose error,

which is measured by the summation of bitwise-XOR between

Zin = f (M; Pmin) and Zout = f (M; Pmax).

Problem 1 (Learning-based Optical Proximity Correction). Given

a target layout Zt and a lithography simulation model f (·; Pnom),
use learning-based approaches to generate a mask solutionMopt,

while simultaneously minimizes (1) squared L2 error, (2) PVBand,

(3) mask fracturing shot count, and (4) turn around time.

3 THE NEURAL-ILT ALGORITHMS
The objective of a typical end-to-end ILT OPC process is to find

a mask solution Mopt = f −1(Zt; Pnom) for the given layout Zt,
where f (·; Pnom) is the forward lithography simulation under nom-

inal condition. Since different mask solutions may yield the same

wafer image, there is no explicit closed-form formula for solving

the inverse lithography process f −1(·; Pnom). Alternatively, the ILT
problem can be solved with numerical algorithms like gradient

descent, where the gradient derived from the loss function is ap-

plied to update the on-mask pixels iteratively until the specific

criterion for convergence is met. Regarding the entire ILT process

as a black-box, learning a mapping between the input layout and

the output mask can be naturally formulated as an image-to-image

translation task. More precisely, for the purpose of mimicking the

end-to-end ILT correction process, a specially designed neural net-

work architecture called auto-encoder can be applied to pixel-wise

mask prediction.

The overall flow of Neural-ILT is illustrated in Figure 2. Neural-

ILT consists of three components: (1) a pre-trained backbone UNet,

(2) an ILT correction layer, and (3) a mask complexity refinement

layer. Given an input layout Zt to Neural-ILT, the forward prop-

agation of the backbone network (a pre-trained UNet) will first

generate a coarsened mask which is then fed into the customized

Algorithm 1 CUDA-based Lithography Simulation

Input: Input mask M, lithography kernels H, weights ω, Dose

andMode.

1: function CUDA_LITHO(M, H,ω, Dose,Mode)

2: Load kernels H, weightsω and mask M into gpu memory;

3: M
cplx
← Initialize each pixelM

cplx
(x ,y) as complex value;

4: M
cplx
.real← M ∗ Dose, M

cplx
.img← 0;

5: M
fft
← CUDA_FFT(M

cplx
);

6: I
fft
← Initialize each pixel I

fft
(x ,y) as a complex vector;

7: for k=1,..,24 do
8: Pad H

k
with 0 to the size ofM

fft
;

9: I
k_fft
.real← M

fft
.real ⊙ H

k
.real −M

fft
.img ⊙ H

k
.img;

10: I
k_fft
.img← M

fft
.img ⊙H

k
.real +M

fft
.real ⊙H

k
.img;

11: I
ifft
← CUDA_IFFT(I

fft
);

12: if Mode == Convolve then ▷ Litho-convolution

13: for each pixel I
ifft
(x ,y) do

14: Isqr t (x ,y) ←
∑

24

k=1
ω

1
2
k ∗ Ik_ifft(x ,y);

15: return Square rooted intensity map Isqr t ;
16: if Mode == Simulation then ▷ Litho-simulation

17: for each pixel I
ifft
(x ,y) do

18: I(x ,y) ←
∑

24

k=1
ωk ∗ I2

k_ifft
(x ,y);

19: Z← Apply resist model in Equation (2) on I;
20: return Intensity map I, wafer image Z;

refinement layers. The refinement layers then return corresponding

gradients to update the weights of the backbone network through

backward propagation. At convergence, Neural-ILT is able to di-

rectly generate a fine-grained mask through the forward inference.

In this section, we will detail our proposed framework in a

bottom-up manner. A high-performance CUDA-based lithographic

simulation tool will be first introduced, followed by the customized

ILT functionality layers which serve as the core engine for achiev-

ing on-neural-network ILT correction. Finally, we will build the

complete Neural-ILT model.

3.1 CUDA-based High-performance
Lithography Simulation

As mentioned in Section 3, there is no explicit closed-form solutions

for the ILT problem. Solving ILT is essentially to minimize the dif-

ference between the lithography simulation output and the target

layout by modifying the mask. Therefore, from the perspective

of neural network learning, being able to integrate the lithogra-

phy model into a neural network framework is the first challenge

for building up Neural-ILT. The major challenge comes from the

computing overhead of the lithography simulation process. Con-

ventional litho-simulation suffers from severe computational over-

head in advanced technology nodes, and multiple rounds of litho-

simulation (per clip) are usually indispensable for guiding the mask

correction. Thus, it is imperative to derive a fast litho-simulation

tool without loss of accuracy.

For the purpose of maximizing the algorithmic parallelism and

hardware resource utilization, we develop a GPU-based high perfor-

mance lithography simulation tool with CUDA based on the ICCAD
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Figure 2: Overview ofNeural-ILT. The on-neural-networks ILT correction is equivalent to the training procedure ofNeural-ILT.
At convergence, the fined-grained Neural-ILT is able to directly generate optimized mask with reasonably good printability
and low complexity.
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Figure 3: Runtime comparisons for lithography simulation
and PVBand calculation.

2013 contest lithography evaluation tool [23]. Algorithm 1 depicts

the details of the implementation. The procedure can be described

as follows: (1) compute the Fourier coefficients of the mask, (2) com-

pute the convolutions (in frequency domain) and inverse Fourier

transform to obtain light intensity on each pixel, and (3) apply the

resist model to the intensity image to get the binary wafer image.

As shown in Figure 3, equipped with the CUDA-based lithog-

raphy simulation tool, we can achieve more than 96% reduction

in litho-simulation time and 97% reduction in PVBand calculation

time, which significantly enhances the capability of performing

lithography simulation inside neural networks on deep learning

platform like PyTorch or TensorFlow. In the following subsec-

tions, we will show how the proposed CUDA-based litho-simulation

tool helps to drive the key optimization process of Neural-ILT.

3.2 Pre-trained Backbone Neural Network
Finding a mapping between an input layout and a output mask is

usually cast as an image-to-image translation task. In our case, a

general type of neural network called auto-encoder can be applied

to make pixel-wise binary classification on whether a pixel belongs

to the optimized mask. A standard auto-encoder architecture is

composed of two sub-networks: (1) an encoder which learns how to

compress the input image into an encoded representation, and (2) a

decoder which learns how to reconstruct an output image from an

encoded representation so as to minimize the reconstruction error.

Just like other learning-based solutions [13, 19], inside Neural-

ILT, a pre-trained backbone model based on the auto-encoder struc-

ture is required to provide the basic layout-to-mask translation

Figure 4: (a) Target layouts. Wafer images generated by (b)
layouts, (c) UNet direct outputs, (d) ILT synthesized masks.

functionality. Note that the primary objective of this work is to

demonstrate the feasibility and effectiveness of on-neural-network

ILT correction, we want to propose a general paradigm to achieve

robust and competitive results on most auto-encoder-like networks,

rather than dependent on the use of fancy network architectures.

Based on such consideration, we selected to use UNet [24], a well-

known but relatively simple model which is similar to auto-encoder,

to serve as the basic module of Neural-ILT. As depicted in Figure 2,

the UNet architecture consists of a down-sampling path to capture

context and a symmetric up-sampling path that enables pixel-wise

mask correction (please refer to [24] for details). Given a set of

input target layouts Zt = {Zt,1,Zt,2, . . . ,Zt,n} and a correspond-

ing optimized mask set M∗ = {M∗1,M∗2, . . . ,M∗n}, the training
procedure of the UNet is to minimize the following objective:

ŵ = argmin

w
λ | |ϕ(Zt;w) −M∗ | |22 , (3)

where ϕ(·;w) is the network forward output for the given model

weightsw, and λ is a configurable hyper-parameter. Figure 4 shows

the image fidelity comparison between the wafer images generated

by layouts, pre-trained UNet outputs, and ILT synthesized masks.

We can see that, the pre-trained UNet does improve the mask print-

ability (corresponds to better wafer image fidelity) to some extent
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Algorithm 2 ILT Correction Layer Forward and Backward

Input: MasksM, M̄, target layout Zt, kernels H, H∗, weightsω.

1: function Forward(M, H,ω)

2: I, Z← CUDA_LITHO(M, H,ω, 1.0, Simulation);

3: L
ilt
← ||Z − Zt | |

γ
γ ; ▷ γ = 4 in forward

4: return Lithography loss L
ilt
;

5: function Backward(M, M̄, H, H∗,ω) ▷ θM = 4, θZ = 50

6: I, Z← CUDA_LITHO(M, H,ω, 1.0, Simulation);

7: Z← 1

1+exp(−θZ×(I−Ith ))
, M← 1

1+exp(−θM×M̄)
;

8: Define common term as TC , gradient left term as GL , gra-

dient right term as GR ;

9: TC ← (Z − Zt)γ−1 ⊙ Z ⊙ (1 − Z);
10: GL ← TC ⊙ CUDA_LITHO(M, H∗,ω, 1.0, Convolve);

11: GR ← TC ⊙ CUDA_LITHO(M, H,ω, 1.0, Convolve);

12:

∂L
ilt

∂M̄ ← γθMθZ × [CUDA_LITHO(GL , Hflip
, ω, 1.0, Con-

volve) + CUDA_LITHO(GR , (Hflip)∗, ω, 1.0, Convolve)]

⊙ M ⊙ (1 −M); ▷ Compute Equation (5) using Algorithm 1

13: return Gradient
∂L

ilt

∂M̄ ;

comparing with the wafer images yielded by the original layouts.

However, when dealing with complex layouts, the printability of

UNet outputs can hardly be maintained satisfactorily, especially

in comparison with ILT synthesized results. In order to compen-

sate for the quality loss introduced by the model prediction error,

as well as to maintain the runtime superiority of learning-based

solutions, the neural network should be endowed with an ability

for self-correction to minimize lithography error. Such demands

indicate necessity and rationality of our on-neural-network ILT

correction paradigm.

3.3 ILT Correction and Mask Complexity
Refinement Layers

As highlighted in Section 1, Neural-ILT possesses the ability to

conduct on-neural-network ILT correction and mask complexity

refinement. To enable these features, the functionalities of conven-

tional ILT correction and mask complexity refinement processes

are cast as customized neural network layers, which can be directly

integrated into an off-the-shelf neural network architecture.

3.3.1 ILT Correction Layer. The objective of conventional ILT cor-

rection is essentially minimizing the difference between two images:

L
ilt
=

N∑
x=1

N∑
y=1

(Z(x ,y) − Zt(x ,y))γ , (4)

where Zt is the target layout; Z = f (M; Pnom) is the correspond-
ing wafer image of M; N denotes the image dimension, and γ is

a configurable parameter. In order to obtain the gradient
∂L

ilt

∂M for

updating the mask, Z andM should be regarded as matrices with

continuous values so as to make L
ilt

differentiable. The binary

constraints is commonly relaxed by sigmoid function so that the

variables become unconstrained, and here we introduce new inter-

mediate variable M̄ to bridge the backbone network output and ILT

correction layer (via the chain rule). The original binary maskM
and wafer image Z are replaced with their sigmoid approximations

Figure 5: Mask complexity comparison: (a) ILT synthesized
mask with high complexity and (b) mask purified by com-
plexity refinement.

M = sig(M̄) = 1

1+exp(−θM×M̄)
and Z = sig(I) = 1

1+exp(−θZ×(I−Ith ))
,

where θM and θZ define the steepness of the sigmoid functions

used forM and Z, respectively. Following the derivations in [25],

the gradient of the above lithography loss is given by

∂L
ilt

∂M̄
=γ × (Z − Zt)γ−1 ⊙

∂Z
∂M
⊙
∂M
∂M̄

=γθMθZ × {Hflip ⊗ [(Z − Zt)γ−1 ⊙ Z ⊙ (1 − Z) ⊙ (M ⊗ H∗)]

+ (Hflip)∗ ⊗ [(Z − Zt)γ−1 ⊙ Z ⊙ (1 − Z) ⊙ (M ⊗ H)]}

⊙M ⊙ (1 −M),
(5)

where H∗ is the conjugate of H; Hflip
is the 180° rotation of H.

Considering that the loss and gradient computations of conven-

tional ILT correction share similar mechanisms of neural network

forward and backward propagation, conventional ILT function-

ality can be implemented in customized ILT correction layer on

neural network. Regarding L
ilt

as the forward propagation loss,

and
∂L

ilt

∂M̄ as the backward propagation gradient, the weights of

the predecessor neural networks wnet can be updated through

the chain rule
∂L

ilt

∂M
∂M
∂M̄

∂M̄
∂ϕ(Zt;wnet)

∂ϕ(Zt;wnet)

∂wnet

. Moreover, thanks to

the CUDA implementation of the litho-simulation function (Algo-

rithm 1), the entire forward and backward procedures can be per-

fectly integrated into the unified CUDA-compatible deep learning

toolkit like PyTorch or TensorFlow to fully leverage its com-

putational efficiency. Algorithm 2 depicts how to implement the

forward and backward computations of the ILT correction layer

with Algorithm 1.

3.3.2 Mask Complexity Refinement Layer. Masks synthesized by

ILT usually consist of non-rectangular complex shapes which are

not manufacturing-friendly. For conventional ILT which directly

updates the mask with gradient descent method, the initial solution

can affect the final synthesized mask significantly. As illustrated

in Figure 5(a), the ILT process may generate complex features like

isolated curvilinear stains, edge glitches and redundant contours

grown along the existing mask shapes. Therefore, in this work,

the optimization of mask complexity is defined as eliminating the

non-manufacturing-friendly complex features while maintaining

competitive mask printability.

It is observed that most of these complex features are distributed

around/on the original layout patterns (Figure 5(a)). They usually

will not be printed on wafer image under the min process condition
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Pmin, but are likely to be printed at the nominal process condition
Pnom and the max process condition Pmax. This causes the area

variations between Zin = f (M; Pmin) and Zout = f (M; Pmax) with

respect to the locations of these features. Therefore, we can for-

mulate the mask complexity refinement task into minimizing the

following loss function L
cplx

:

L
cplx
= | |Zin − Zout | |22 . (6)

Similarly, the gradient of loss L
cplx

can be derived as

∂L
cplx

∂M̄
= 2 × (Zin − Zout) ⊙ (Zin ′ − Zout ′). (7)

Here Zin ′ is given by

Zin ′ = θMθZ × {H
flip

def
⊗ [Zin ⊙ (1 − Zin) ⊙ (M ⊗ H∗

def
)]+

(Hflip

def
)∗ ⊗ [Zin ⊙ (1 − Zin) ⊙ (M ⊗ H

def
)]} ⊙M ⊙ (1 −M),

where H
def

is the defocus kernels, and Zout ′ can be obtained by a

similar derivation. Just like the ILT correction layer, we can cast

the above optimization process as a customized mask complexity

refinement layer. The detailed implementations of the layer forward

and backward computations (similar to Algorithm 2) are omitted

here due to the limited space. The effectiveness of the mask com-

plexity refinement layer are demonstrated in Figure 5. Note that,

from the perspective of deployment, we should always connect the

complexity refinement layer with an ILT correction layer to form a

multi-objective loss function (Equation (8)). Otherwise, optimiza-

tion with only mask complexity refinement layer will eliminate all

mask shapes which literally yield "0" loss for Equation (6).

3.4 Neural-ILT for Mask Printability and
Complexity Co-optimization

As presented in Figure 2, the Neural-ILT network model is com-

posed of 3 modules: (1) a pre-trained backbone UNet for performing

layout-to-mask transformation, (2) an ILT correction layer for mini-

mizing lithography loss, and (3) a mask complexity refinement layer

for removing redundant complex features. Consequently, the on-

neural-network ILT correction is equivalent to an unsupervised
training procedure of Neural-ILT with following objective,

ŵ = argmin

w
α

L
ilt︷                             ︸︸                             ︷

| | f (ϕ(Zt;w);Pnom) − Zt | |
γ
γ +

β | | f (ϕ(Zt;w);Pmin) − f (ϕ(Zt;w);Pmax)| |
2

2︸                                                  ︷︷                                                  ︸
L

cplx

,
(8)

where α , β and γ are configurable hyper-parameters.

The backbone network ϕ(·;w) of the Neural-ILT can be replaced

by any other network architectures that can yield image output with

the required dimensions (2048 × 2048 in Neural-ILT). Conceptually,

we can update the weights w of ϕ(·;w) by backward propagation

through the chain rule:

∂L
refine

∂w
=
∂L

refine

∂M
∂M
∂M̄

∂M̄
∂ϕ(Zt;w)

∂ϕ(Zt;w)
∂w

, (9)

where L
refine

= α · L
ilt
+ β · L

cplx
denotes the refine loss, Zt denotes

the layout input.

3.5 Retrain Backbone with Domain Knowledge
of Partial Coherent Imaging System

The original training dataset is composed of 4300 pairs of target

layout and reference mask, and the reference masks are synthesized

by a conventional ILT tool [5]. However, as shown in Figure 5(a), ILT

synthesized masks usually consist of numerous complex features.

In order to improve the training data quality, a Neural-ILT model,

which contains a UNet trained by the original dataset, is used to

perform mask complexity refinement for all the original training

instances. These output masks (e.g. Figure 5(b)) together with all the

original target layouts (thus a total of 8600) form a newly refined

dataset. We can use this refined dataset to re-train the UNet with

the following cycle loss L
cycle

:

L
cycle

= | |ϕ(Zt;w) −M∗ | |22 + η | | f (ϕ(Zt;w);Pnom) − Zt | |
2

2
, (10)

where Zt and M∗ refer to the input target layouts and reference

ILT mask labels in the refined dataset; η is a configurable hyper-

parameter. The calculations of the first and second terms in L
cycle

form a close-loop. The first term of Equation (10) minimizes the

image difference between network predictions and labels. The sec-

ond term is essentially the ILT loss in Equation (8), in which the

domain knowledge of the partial coherent imaging model is intro-

duced into the network training procedure by the litho-simulation

function f (· ; Pnom). As a result, the second term in Equation (10)

serves as a regularization term, which guides the re-trained network

ϕ(· ; w) gradually converged along a domain-specified direction.

The explicit introduction of the partially coherent lithography sys-

tem in network training is also a key contribution that sets us apart

from the previous learning-based OPC works.

Benefit from above refinements, our Neural-ILT with the re-

trained UNet is able to achieve faster convergence with better mask

printability and lower complexity.

4 EXPERIMENTAL RESULTS
The Neural-ILT framework is developed with PyTorch and CUDA,
and tested on a Linux machine with 2.2GHz Intel Xeon CPU and

a single Nvidia Titan V GPU. The original training dataset is ob-

tained from the authors of GAN-OPC [19], which synthesizes over

4300 training instances based on the design specifications from

existing 32nm M1 layout topologies. The UNet is pre-trained for 20

epochs which takes around 19 hours on a single Titan V GPU. As

for the evaluation, the lithography recipe is provided by ICCAD

2013 contest evaluation package [23] for 32nm M1 layout designs,

and the mask fracturing tool is implemented based on an efficient

contour decomposition algorithm in work [26]. Note that, to the

best of our knowledge, the lithography engine and benchmarks

provided in ICCAD 2013 contest is the only open-sourced indus-

trial package (with 32nm or below technology node) available for

public research. Considering such limitation, we can only evaluate

Neural-ILT leveraging the ICCAD13 contest evaluation suite [23].

4.1 The Effectiveness of Neural-ILT
To verify the effectiveness of the proposed Neural-ILT, we optimize

ten industrial 32nm M1 layout masks (blind for model training, size

of mask is 2048 × 2048) in ICCAD 2013 contest benchmark suite
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Table 1: Mask Printability, Complexity and Runtime Performance Comparison with SOTA Methods

Benchmarks ILT [5] PGAN-OPC [19] Neural-ILT
†

ID Area (nm2
) TAT (s) L2 (nm

2) PVB (nm2) # shots TAT (s) L2 (nm
2) PVB (nm2) # shots TAT (s) L2 (nm

2) PVB (nm2) # shots

case1 215344 1280 49893 65534 2478 358 52570 56267 931 13.57 50795 63695 743

case2 169280 381 50369 48230 704 368 42253 50822 692 14.37 36969 60232 571

case3 213504 1123 81007 108608 2319 368 83663 94498 1048 9.72 94447 85358 791

case4 82560 1271 20044 28285 1165 377 19965 28957 386 10.40 17420 32287 209

case5 281958 1120 44656 58835 1836 369 44733 59328 950 10.04 42337 65536 631

case6 286234 391 57375 48739 993 364 46062 52845 836 11.11 39601 59247 745

case7 229149 406 37221 43490 577 377 26438 47981 515 9.67 25424 50109 354

case8 128544 388 19782 22846 504 383 17690 23564 286 11.81 15588 25826 467

case9 317581 1138 55399 66331 2045 383 56125 65417 1087 9.68 52304 68650 653

case10 102400 387 24381 18097 380 366 9990 19893 338 11.46 10153 22443 423

Average - 788.5 44012.7 50899.5 1300.10 371.3 39948.9 49957.2 706.90 11.18 38504 53338 558.7
Ratio - 1.000 1.000 1.000 1.000 0.471 0.911 0.993 0.544 0.014 0.875 1.048 0.430
† We observed ±1% variation on Neural-ILT results (statistics of 50 rounds). The interpolate function in PyTorch involves atomicAdd which may be a source of non-determinism.

[23] and compare the results with the conventional ILT [5] (de-

noted as ILT), and the SOTA learning-based OPC solution (denoted

as PGAN-OPC [19]). Quantitative results are listed in Table 1. In

Table 1, column “TAT” lists the turn around time for the entire
end-to-end ILT optimization on a given input mask. Columns “L2”,

“PVB”, and “# shots” denote the squared L2 error, the process vari-

ation band, and the mask fracturing shot count, respectively. Our

Neural-ILT uses a consistent configuration for every test input,

where the initial learning rate = 0.002, ILT iterations = 40, α = 1

and β = 0.3. It can be observed that our Neural-ILT outperforms

other approaches in terms of “TAT”, “L2” and “# shots” metrics.

More specifically, comparing with ILT [5] and PGAN-OPC [19],

Neural-ILT achieves 70×, 33× TAT speedup, 12.3%, 3.4% squared L2

error reduction, and 67%, 21% mask fracturing shot count reduction,

respectively. Figure 6 compares the complexity of masks synthe-

sized by ILT, PGAN-OPC and Neural-ILT. As expected, Neural-ILT

is able to generate masks with lower complexity comparing with

ILT and PGAN-OPC. The above results have demonstrated the ef-

fectiveness and superiority of our Neural-ILT framework, which is

able to achieve very significant TAT speedup with better mask man-

ufacturability and comparable SOTA mask printability. It is worth

mentioning that the significant speedup of Neural-ILT is mainly

contributed from 3 aspects (in descending order of importance): (1)

the acceleration by the CUDA-based litho-simulator; (2) the better

initial solution predicted by the pre-trained UNet; and (3) higher

searching efficiency of PyTorch built-in optimizer.

4.2 The Extensibility of Neural-ILT Paradigm
Our proposed ILT layers endow neural networks with the ability of

self ILT correction. One should notice that the backbone network

of Neural-ILT is not necessary an UNet. In order to demonstrate

the extensibility/flexibility of the Neural-ILT paradigm, we further

extend Neural-ILT to Neural-ILT-GAN, in which the pre-trained

UNet is replaced by the generator of a pre-trained GAN (based

on [27], one of the recent advances in GAN researches). Figure 7

depicts how do the L2 loss curves of Neural-ILT and Neural-ILT-

GAN changewith respect to their on-neural-network ILT correction

processes. Both Neural-ILT and Neural-ILT-GAN are tested using

the same configuration, where the initial learning rate = 0.0005, ILT

Figure 6:Mask complexity visualizations of (a) conventional
ILT [5], (b) PGAN-OPC [19] and (c) Neural-ILT.

iterations = 80, α = 1 and β = 0.3. Note that in Figure 7, Neural-ILT

is able to obtain better initial solutions and better convergence

comparing to Neural-ILT-GAN. Such phenomena may mainly due

to our special training strategy of the pre-trained UNet (Section 3.5),

which introduced domain knowledge as regularization. On the other

hand, the pre-trained GAN is obtained following its original training

recipe [27]. Nevertheless, the L2 loss curves of both Neural-ILT and

Neural-ILT-GAN still share the same decreasing trends with respect

to the growth of the ILT iterations, which verified the feasibility

of extending Neural-ILT paradigm to other network architectures.

We believe such a flexibility can help designers introduce more

domain-specific knowledge for achieving certain design objectives.

4.3 The Necessity of On-Neural-Network ILT
Here we want to have a short discussion on what really distin-

guishes Neural-ILT from general ILT. We designed an experiment

for both conventional ILT and Neural-ILT on five additional bench-

marks from the test dataset (blind for model training). In order to

ensure a fair comparison, we develop GPU-ILT, a GPU version of the

conventional ILT tool [5] using our CUDA-based litho-simulation
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Figure 7: L2 loss curves of Neural-ILT correction and Neural-ILT-GAN correction on ICCAD 2013 contest benchmarks.

Table 2: Mask Printability, Complexity and Runtime Perfor-
mance Comparison between GPU-ILT and Neural-ILT

Bench GPU-ILT Neural-ILT

ID TAT (s) Score
∗

# shots TAT (s) Score
∗

# shots

A 18.81 128005 1636 11.93 113357 591

B 18.78 90922 1025 11.12 85568 610

C 18.77 101815 1158 11.01 93874 652

D 18.89 118648 1193 14.72 108631 620

E 18.78 120501 1279 11.16 105202 577

Average 18.81 111978.2 1258.2 11.99 101326.4 610

Ratio 1.00 1.00 1.00 0.64 0.91 0.49
* Score = L2 (nm2) + PV Band (nm2), which reflects the printability of a mask.

A B C D E

(a) Direct fracturing results of GPU-ILT synthesized masks on A-E.

A B C D E

(b) Direct fracturing results of Neural-ILT synthesized masks on A-E.

Figure 8: Visualizations of mask fracturing results of (a)
GPU-ILT, (b) Neural-ILT. Deeper color (equivalent to denser
shots outlines) indicates more rectangular shots are re-
quired to accurately replicate the curvilinear ILT patterns.

tool. Thus, we can have a clearer insight on the intrinsic differences

between on-neural-network ILT optimization (Neural-ILT) and

on-mask-image ILT optimization (GPU-ILT). For each benchmark,

Neural-ILT performs 40 iterations of corrections with learning rate

= 0.001, while GPU-ILT performs 100 iterations of corrections with

learning rate = 1. Quantitative results and corresponding visual-

izations are depicted in Table 1 and Figure 8. It’s obvious that

comparing to on-mask ILT (GPU-ILT), Neural-ILT consumes less
ILT iterations (i.e., 100 vs. 40) with much smaller learning rate
(i.e., 1.0 vs. 0.001), while achieving better overall quality (i.e, 9%

better printability, 51% less mask shots counts). Recall that gen-

eral ILT treats the mask optimization as an inverse problem of

the lithography system (function f (·; ·)), which essentially tries

to find f −1
. Considering it is ill-posed, conventional ILT cannot

directly model f −1
and hence need to modify the mask itera-

tively based on gradient descent. However, Neural-ILT is built on

top of a neural network, which allows smooth and fine-grained

refinement (i.e., much smaller learning rate) on the weights and

neurons’ activities with considerably larger searching space. With

the powerful capability of neural network in function approxima-

tion, the feed-forward computation for mask generation ϕ(Zt; ŵ)
in Neural-ILT essentially serves as such an approximated inverse

lithography function f −1(Zt; Pnom) and result in efficient compu-

tation. As the results, a converged Neural-ILT model, is cacheable,

reusable and fine-tuneable, such features indicate that Neural-ILT

has great potential of transferability among layouts with different

data distributions, which can be further exploited in the future.

5 CONCLUSION
In this paper, we propose Neural-ILT, an end-to-end learning-based

OPC framework that literally conducts on-neural-network ILT for

the given layouts. We believe that the proposed paradigm can be

extended on industrial applications once equipped with industrial

ILT solver and lithography data. Future works would include further

studies on the necessity and applications of on-neural-network ILT.
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