
Improving Resource Utilization by Timely
Fine-Grained Scheduling

Tatiana Jin
The Chinese University of Hong Kong

tjin@cse.cuhk.edu.hk

Zhenkun Cai
The Chinese University of Hong Kong

zkcai@cse.cuhk.edu.hk

Boyang Li
The Chinese University of Hong Kong

byli@cse.cuhk.edu.hk

Chenguang Zheng
The Chinese University of Hong Kong

cgzheng@cse.cuhk.edu.hk

Guanxian Jiang
The Chinese University of Hong Kong

gxjiang@cse.cuhk.edu.hk

James Cheng
The Chinese University of Hong Kong

jcheng@cse.cuhk.edu.hk

Abstract
Monotask is a unit of work that uses only a single type
of resource (e.g., CPU, network, disk I/O). While monotask
was primarily introduced as a means to reason about job
performance, in this paper we show that this fine-grained,
resource-oriented abstraction can be leveraged by job sched-
ulers to maximize cluster resource utilization. Although re-
cent cluster schedulers have significantly improved resource
allocation, the utilization of the allocated resources is often
not high due to inaccurate resource requests. In particular,
we show that existing scheduling mechanisms are ineffec-
tive for handling jobs with dynamic resource usage, which
exists in common workloads, and propose a resource nego-
tiation mechanism between job schedulers and executors
that makes use of monotasks. We design a new framework,
called Ursa, which enables the scheduler to capture accurate
resource demands dynamically from the execution runtime
and to provide timely, fine-grained resource allocation based
on monotasks. Ursa also enables high utilization of the al-
located resources by the execution runtime. We show by
experiments that Ursa is able to improve cluster resource uti-
lization, which effectively translates to improved makespan
and average JCT.

Keywords: Distributed computing; resource utilization

1 Introduction
Cluster resource utilization is an extensively studied topic [3,
9, 10, 13, 16, 21, 26, 34, 35, 37, 42, 43], but resource utiliza-
tion can still be low for workloads with dynamic utilization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’20, April 27–30, 2020, Heraklion, Greece
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6882-7/20/04. . . $15.00
https://doi.org/10.1145/3342195.3387551

patterns. In this paper, we make use of the notion of mono-
task [33] to design a new system, called Ursa, to improve
resource utilization in the following two aspects: (1) sched-
uling efficiency (SE), which measures how well a scheduler
allocates resources to run jobs submitted to the cluster, and
(2) utilization efficiency (UE), which measures how fully the
allocated resources are utilized by the running jobs.

Monotask is a unit of work that uses only a single type of
resource (apart from memory), i.e., CPU, network, or disk.
While monotask was originally introduced for job perfor-
mance reasoning in MonoSpark [33], we show that it can
be leveraged by job schedulers to maximize cluster resource
utilization. In the following discussion, we first show the
problems of existing systems in resource utilization, which
motivate the adoption of monotasks in Ursa and Ursa’s de-
sign. Then we highlight the challenges in achieving both
high SE and UE.
Existing scheduler designs can be categorized as central-

ized [16, 21, 37, 42, 43] and distributed [3, 13, 34, 35], as well
as a hybrid of them [9, 10, 26]. In centralized designs, a cen-
tralized scheduler maintains the resource utilization status of
each server and allocates resources to jobs to achieve certain
objectives (e.g., makespan [17, 18, 31, 51], fairness [6, 14, 24]).
A job then launches containers (with allocated resources)
on server nodes to run its tasks. In contrast to centralized
coordination for resource allocation, distributed schedulers
allow individual jobs to make independent scheduling deci-
sions based on the cluster utilization status. Each server node
maintains a task queue and tasks are placed in these queues
according to the server load and resource requirements. The
actual resource allocation and task execution are managed
at each server locally. We discuss how different scheduler
designs seek to improve cluster resource utilization below.

Low SE. The main causes to low SE include (a) resource
fragmentation in bin-packing the resource demands of jobs
according to servers’ resource availability and (b) sched-
uling latency when making resource allocation decisions.
To reduce resource fragmentation, effective algorithms [17–
19, 31] that pack multi-dimensional resource demands (i.e.,
CPU cores, memory, network, disk) have been proposed for

1

https://doi.org/10.1145/3342195.3387551

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tatiana Jin, Zhenkun Cai, Boyang Li, Chenguang Zheng, Guanxian Jiang, and James Cheng

centralized schedulers. However, since centralized sched-
ulers allocate resources by communicating with servers via
heartbeats, scheduling latency becomes a concern especially
when short tasks dominate the workloads [3, 10, 26, 35, 49],
which affects SE and hence cluster utilization. The “executor”
model [28, 30, 32, 36, 44, 50] reuses containers that are allo-
cated by a centralized scheduler to run other tasks, and so
the scheduling cost is amortized across the tasks. However,
the containers need to be large enough to accommodate the
resource demands of all these tasks, which results in coarser-
grained resource allocation and impairs UE when some tasks
do not need to use all the resources in the containers. Com-
pared with centralized scheduling, distributed schedulers
hide the scheduling latency by allowing resources to be al-
located by local servers without synchronization with each
other. However, distributed scheduling lacks of global coor-
dination in allocating resources to jobs, which may result in
sub-optimal scheduling decisions.

Low UE. Even though recent schedulers have significantly
improved SE, cluster utilization could still be low due to
low UE, which is mainly caused by resource under-utilization
within a container due to two factors: (a) inaccurate container
sizing and (b) highly dynamic resource utilization. The prob-
lem of (a) is common as users tend to be conservative when
estimating the peak resource demands, so that the allocated
resources can be more than actually needed and consistently
under-utilized during a container’s lifespan. This problem
can be alleviated by monitoring the actual utilization at run-
time and launching preemptable opportunistic tasks to use
the under-utilized resources [21, 26, 38, 48]. However, there is
a non-trivial trade-off between (1) aggressively launching op-
portunistic tasks, which may result in a high preemption rate
and hence wastes resources, and (2) a conservative strategy,
which requires a longer period of resource under-utilization
to be observed before launching an opportunistic task. There
are also methods that predict resource usage by learning
from historical workloads [8, 31], but it is costly to tune the
model for heterogeneous workloads.
The problem of (b) commonly exists in in-memory ma-

chine learning, graph analytics, and OLAP workloads, in
which a task first utilizes one type of resource (e.g., network
to read remote data) and then shifts to use another type of
resource (e.g., CPU to perform computation). The “executor”
frameworks [28, 36, 50] can pipeline I/O and computation
within tasks to overlap different types of resource usage.
However, this creates many short periods in which resources
are under-utilized as reported in [33]. In §2, we show that this
type of resource under-utilization happens at high frequency
with short duration (see Figure 1), which is not addressed
by existing schedulers and can provide significant room for
improving resource utilization.

Our solution. In order to achieve high UE, we propose a
new mechanism between job schedulers and executors (§3),

which makes use of the fine-grained, resource-oriented ab-
straction of monotask (in contrast to the coarser-grained
resource allocation in existing schedulers) to communicate
resource demands and allocate resources dynamically during
job execution. On top of this mechanism for high UE, we
achieve high SE by (1) addressing resource fragmentation
by resource usage estimation based on monotasks (§4.2.1)
and load-balanced task placement (§4.2.2), and (2) reducing
scheduling latency by extending the scalable architecture of
existing resource schedulers (§4.2.3).

We implement our design in Ursa, a framework for sched-
uling and executing multiple, heterogeneous jobs 1. For bet-
ter programmability, Ursa provides high-level APIs such as
Spark-like dataset transformations and SQL on top of its
primitives for monotask specification (§4.1.2). To achieve
high performance, Ursa provides low-latency, fine-grained
resource allocation for executing monotasks (§4.2.3), as well
as schedules jobs to overlap resource utilization so that each
type of resource can be used as fully as possible (§4.2.2).
Our experiments validate that Ursa’s designs are effective in
achieving high SE and UE, and consequently, significantly
improved makespan and average JCT (§5).

2 Dynamic Resource Utilization Patterns
In this paper, we focus on the following types of workloads
and analyze why it is challenging to achieve high UE for
them: OLAP,machine learning, and graph analytics. The com-
putation is in memory as fast response and high throughput
are required. We ran TPC-H queries (with a scale factor of
200), logistic regression (LR), and connected components
(CC) on 20 machines each with 32 cores and 128GB RAM
connected by 10Gbps Ethernet. We executed the jobs us-
ing general dataflow systems, Spark [50] and Tez [36], with
YARN [42] as the resource scheduler, and also using two
domain-specific systems, Petuum [45] for machine learn-
ing and Gemini [52] for graph analytics. More details of the
workloads and system configurations can be found in §5.
Figure 1 reports their resource utilization patterns on one
of the machines (all machines have similar patterns). Many
other machine learning (e.g., k-means, ALS, SVM), graph
analytics (e.g., PageRank, SSSP), and OLAP (e.g., TPC-DS)
workloads also have similar patterns.

Dynamic patterns. First, Figures 1a-1d report one set of
patterns: regular and frequent alternation of very high and
low CPU utilization. Such patterns are due to the iterative
nature of machine learning and graph algorithms, as in each
iteration workers compute on data (mainly using CPU) and
then communicate updates with each other (mainly using
network). For such workloads, even if the container size could
be ideally tuned at exact peak resource demands (as we did in

1Ursa supports popular data analytics workloads such as OLAP, machine
learning and graph analytics.

2

Improving Resource Utilization by Timely Fine-Grained Scheduling EuroSys ’20, April 27–30, 2020, Heraklion, Greece

0 5 10 15 20 25 30 35 40
Time(s)

0

10

20

30

40

50

60

70

80

90

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(a) LR on Petuum

0 50 100 150 200 250 300
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(b) LR on Spark

0 50 100 150 200 250 300 350
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(c) CC on Gemini

0 50 100 150 200 250
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(d) CC on Spark

0 1 2 3 4 5 6 7 8
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(e) TPC-H Q14 on Spark

0 5 10 15 20
Time(s)

0
10
20
30
40
50
60
70
80
90

100
Ut

iliz
at

io
n

%
[CPU]Totl%
[MEM]Used%
[NET]Receive%

(f) TPC-H Q14 on Tez

0 5 10 15 20 25 30 35
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(g) TPC-H Q8 on Spark

0 10 20 30 40 50
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(h) TPC-H Q8 on Tez

Figure 1. Resource utilization of different workloads (best viewed in color)

this experiment), resources are still seriously under-utilized in
alternate short time slices as shown in Figures 1a-1d.

Figures 1e-1h report another set of patterns: irregular fluc-
tuations in resource utilization. Such patterns could be ex-
plained by the distribution of intermediate results at runtime,
since a job may have tasks working on data with different
skewness and thus have different resource demands (e.g., Q8
has many joins and group-by). For such workloads, tuning
container sizes for appropriate resource provision is difficult,
thus leading to low UE.

Low utilization. We also report the highest UE of CPU
that can be achieved by Spark and Tez on YARN, by tuning
the container sizes to the exact peak resource demands of
various jobs. The CPU UE is calculated as follows:

Total CPU time used by the job

Number o f allocated CPU cores × JCT
.

Table 1 reports the results. The low UE suggests much room
to improve resource utilization. Maximizing CPU utilization
is vital as CPU is the bottleneck for most common workloads,
while both network bandwidth and memory in modern clus-
ters are relatively more sufficient. However, when allocated
CPU resources are unused in short time slices (sub-seconds
to seconds) as shown in Figures 1a-1h, it is difficult to re-
allocate the under-utilized CPU to other jobs. On the other
hand, naively overselling resources could result in serious
load imbalance and resource contention (§5.1.2), which not
only limits performance improvement, but also makes rea-
soning of job performance difficult.
To conclude, frequent fluctuations in resource utilization

pose significant challenges to existing container-based sched-
uling designs. To address this, resource allocation must be fine-
grained and react to immediate resource demands at runtime.

LR CC TPC-H Q14 TPC-H Q8

Spark 13.97% 45.81% 62.16% 48.34%
Tez N/A N/A 30.93% 41.70%

Table 1. CPU utilization efficiency

Network contention. Network contention has been re-
ported to be common in production clusters [3, 29]. Con-
tention in network usage among tasks can block CPU utiliza-
tion (§5.2) 2, as data shuffling and computation are always
inter-dependent. Even if a cluster has sufficient network
bandwidth (i.e., network resource is not a bottleneck for
processing a workload), network contention can still hap-
pen locally at a worker when multiple jobs/tasks use the
network stack simultaneously. Thus, coordination of data
transfers among tasks both within and among jobs is re-
quired. The scheduler should learn the network resource
demands of tasks from the execution framework at runtime,
and consider the interplay between network utilization and
CPU utilization to avoid CPU computation being blocked by
network contention.

3 Design Objectives
Application scenario. Ursa is developed for the following
application scenario. A company has many business units
and each business unit has many projects. Each project is
assigned quotas to use resources in a cluster. A project may
have multiple quota groups, and applications in the same

2We remark that this is observed in processing workloads using commodity
networking hardware such as 10GbE, but the casemay changewhenmodern
hardware such as 40/100/200GbE is used. We discuss more details about the
implication of modern hardware in §4.3.

3

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tatiana Jin, Zhenkun Cai, Boyang Li, Chenguang Zheng, Guanxian Jiang, and James Cheng

group share resource quota. A virtual cluster is created for
each group for security and resource sharing, which is al-
located resources according to a quota (e.g., the computing
power similar to a small cluster of tens of servers for some
period) specified by a group. Within a group, the most im-
portant objective is to minimize makespan (i.e., maximize job
throughput) in order to save the overall project costs. Job com-
pletion time (JCT) is also important to users. But fairness is not
the main concern of users in the same group as they share the
same resource quota. Fairness among different groups, how-
ever, is important and guaranteed by a cluster scheduler (e.g.,
YARN) that allocates resources to all groups according to their
quotas. For example, the project groups described in [22]
match the above scenario and their workloads are alsomostly
SQL OLAP workloads and some machine learning and graph
analytics as the workloads in §2. We also found similar ap-
plication scenarios and workloads in anti-money laundering
projects with a financial services group and investment anal-
ysis projects with a multinational bank.

Design objectives. To address the issues identified in §2,
we propose a fine-grained, dynamic resource negotiation
mechanism using monotasks with the following objectives.

1. Obj-1. Accurate resource request.The execution frame-
work should calculate each type of resource need (e.g.,
CPU, network, memory) based on monotasks at runtime,
so as to request resources from the scheduler as accurately
as needed.

2. Obj-2. Timely provision and release of resource. The
execution framework should only request and obtain each
type of resource when there are ready-to-run monotasks
that use the resource, and each resource should be re-
turned immediately when it is not used.

3. Obj-3. Load-balanced task assignment. The schedul-
ing framework should schedule jobs and tasks in a way
such that server nodes in the cluster have balanced load on
each type of resource, while observing locality constraints
acquired from the execution framework.

4. Obj-4. Low-latency resource scheduling. The latency,
from resource release to allocation, should be low.

Obj-1 and Obj-2 together guarantee high UE. With high
UE, we also need to have high SE in order to achieve overall
high resource utilization. To achieve high SE, Obj-3 aims to
keep all servers busy as long as there are unfinished tasks,
while Obj-4 requires resources to be scheduled quickly when
they are requested so that resources can be efficiently shared
among jobs in a fine-grained manner.
Can existing methods achieve these objectives? Exist-
ing schedulers either pack resource requests of tasks us-
ing their peak demands (i.e., task-based) [3, 17–19], or pack
containers where each container is an executor in an ex-
ecution framework that runs multiple tasks (i.e., executor-
based) [28, 31, 36, 44, 50]. Neither approaches can achieve

Scheduler Workers

Resource
Monitoring

Job
Admission

&
Task

Placement

Resource Status Report

Monotask
Queues

CPU, Network, Disk

Monotask
Queues

CPU, Network, Disk

Job Manager

Resource
Demand

Estimator

DAG Manager

Job Process

Network ServiceUDFs

Data Store

Task Resource
Usage

Metadata
Store

Monotask
Resource
Request

Monotask
assignment

Job Process

Network ServiceUDFs

Data Store

Figure 2. System architecture

Obj-1&2 when there is dynamic resource utilization within
a container or a task. For example, when the CPU is used in
alternate short intervals (e.g., patterns like Figures 1a-1d),
the CPU resource is not (timely) released during the periods
when CPU is idle, and the request for CPU is inaccurate
because the request is made according to the peak demand
of a task or tasks in a container. MonoSpark [33] enables
timely per-resource scheduling through local per-resource
queues, but this only optimizes the execution of tasks within
a job, and MonoSpark still requests resources from a cluster
scheduler as an executor-based solution.
For Obj-3, inaccurate resource requests naturally lead to

imbalanced loads among worker nodes. Executor-based ap-
proaches [33, 44] may use runtime resource utilization in-
formation, but they do not have information of the future
resource availability (e.g., resources to be released by other
jobs) and can make sub-optimal task assignment decisions.
In addition, task assignments among different jobs are not
coordinated due to isolation.

4 System Design
Figure 2 shows the architecture of Ursa. Ursa integrates
scheduling and execution runtime. Its scheduling layer con-
sists of a centralized scheduler and distributed queues. The
centralized scheduler handles job admission and task place-
ment to workers. Each worker manages a queue for each
type of monotasks and handles actual resource allocation.
The execution layer consists of job managers (JMs) and job
processes (JPs). Each job has one JM and multiple JPs, where
the JM coordinates the execution flow of the job and commu-
nicates its resource requests to the scheduler and workers,
and the JPs handle the execution of the job and update its
execution status.

4.1 The Execution Layer
Ursa provides a simple set of primitives for specifying a
dataflow. For better programmability, high-level APIs (e.g.,
Spark-like dataset transformations, SQL) are then built using

4

Improving Resource Utilization by Timely Fine-Grained Scheduling EuroSys ’20, April 27–30, 2020, Heraklion, Greece

these primitives. Based on the primitives, a JM generates a
physical execution DAG for a submitted job and coordinates
the execution among it JPs.

4.1.1 Primitives. Each job is implemented as an operation
graphOpGraph, which is formed of dataDataset , operations
Ops, and dependencies amongOps. OpGraph.CreateData()
creates a Dataset , which abstracts a distributed dataset with
partitions. Using OpGraph.CreateOp(type), an Op that uses
a single type of resource is created in OpGraph, where type
is CPU, network, or disk. The parallelism of an Op is config-
urable based on the input data size, as in existing dataflow
frameworks [36, 50]. An Op can create , read , and update a
Dataset . A CPUOp contains a UDF to express data transfor-
mation (e.g., map, filter, join, groupBy). We use Op1.To(Op2)
to create a dependency edge fromOp1 toOp2 (e.g.,Op2 con-
sumes the output of Op1). We may specify the type of the
dependency as either sync or async . The sync dependency
imposes a synchronization barrier, such thatOp2 can be exe-
cuted only after Op1 finishes on all partitions of its Dataset .
For async , Op2 can be executed asynchronously on any par-
tition of Dataset as soon as Op1 finishes on that partition.

4.1.2 High-Level APIs. Ursa supports SQLwith a plug-in
to Hive [39]. Ursa also provides Spark-like dataset transfor-
mations including map, flatMap, mapPartitions, groupByKey,
reduceByKey, broadcast, as well as a Pregel-like vertex-centric
interface, so that users can specify common dataflows with-
out dealing with the low-level primitives. We show an ex-
ample implementation (in C++) of reduceByKey using our
primitives as follows, while applications, e.g., the workloads
tested in our experiments in §5, are implemented using our
high-level APIs in a similar way as in existing dataflow sys-
tems such as Spark and Tez.

template <typename ValueType >

class Dataset { // ...

auto ReduceByKey(Combiner combiner , int

partitions) {

auto msg = dag.CreateData(this ->partitions);

auto shuffled = dag.CreateData(partitions);

auto result = dag.CreateData(partitions);

auto ser = dag.CreateOp(CPU) // create CPU Op

.Read(this).Create(msg)

.SetUDF(/*apply combiner locally

and serialize */);

auto shuffle = dag.CreateOp(Network)

.Read(msg).Create(shuffled);

auto deser = dag.CreateOp(CPU)

.Read(shuffled).Create(result)

.SetUDF(/* deserialize and apply

combiner */)

this ->creator.To(ser , ASYNC);

ser.To(shuffle , SYNC);

shuffle.To(deser , ASYNC);

return result;

}

Sync
Dependency

Async
Dependency

Stage

Task

CPU Monotask

Network Monotask

Figure 3. An example DAG

// ...

OpGraph dag;

Op creator;

int partitions;

};

4.1.3 DAG Management by JM. When a job is submit-
ted, the scheduler creates a JM for the job by launching a
process at a worker selected in a round-robin manner. The
JM keeps the job’s OpGraph, from which a DAG of mono-
tasks is generated and maintained by the JM during task
execution as follows.
Monotask generation. EachOp inOpGraph is transformed
into a set of parallel monotasks that perform the same opera-
tion on different partitions of the same dataset(s). Depending
on the type of Op, we have different types of monotasks:
CPU monotasks, network monotasks, and disk monotasks as
in [33]. As depicted in Figure 3, a sync dependency results
in a many-to-many dependency between the monotasks of
two Ops, which forms a fully connected bipartite graph. An
async dependency forms a one-to-one dependency. For scal-
ability in scheduling monotasks, the JM simplifies its DAG
by collapsing a connected subgraph consisting of only CPU
Ops (connected with async dependency) into one CPU Op
before monotask generation.
Monotasks, tasks and stages. Given a DAG of monotasks,
if we remove the in-edges of all network monotasks from
the DAG, we obtain a set of connected components (CCs).
As an illustration, if we remove the dashed edges in Figure 3,
we obtain six CCs. As network transfer in Ursa is pull-based,
the monotasks in each CC should be collocated and executed
at the same worker since they work on the data partitions that
are to be pulled to the same worker. Each CC is called a task,
which is similar to a task in Spark and Tez. The set of tasks
from the same Ops forms a stage.
Task execution flow. The JM maintains a list of ready
tasks, i.e., tasks with no parent tasks or whose parents have
been completed. For each ready task, the JM sends its esti-
mated resource usage to the scheduler, and the scheduler
assigns the task to a worker. The JM then sends the ready
monotasks inside the task to the worker, and the worker
puts the monotasks in the respective queues until resources
become available for their execution. When a monotask is
completed, the JM checks if the corresponding task is also

5

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tatiana Jin, Zhenkun Cai, Boyang Li, Chenguang Zheng, Guanxian Jiang, and James Cheng

completed. If yes, the JM resolves task dependencies to up-
date the list of ready tasks and continues the execution flow.
Otherwise, the JM sends new ready monotasks inside the
task to the same worker.
Metadata. The JM maintains a metadata store that records
the size and locality of each dataset partition. When a mono-
task is completed, the information of the partitions it has
created or updated is then updated in the metadata store.

4.1.4 Monotask Execution by JP. When a worker is first
assigned to run the tasks of a job, it launches a JP for the
job. The worker instructs the JP to execute the monotasks
of the job when the requested resources become available.
The JP reports to the JM and releases the resource to the
worker when it completes a monotask. The JP maintains
UDFs, network service, and a data store.When the JP receives
a CPU monotask description, it launches a thread to run
the UDF(s) on the input data partitions. When a network
monotask is received, the JP sends a data transfer request
to each sender JP that holds the remote data through the
network service. Upon receiving the request, the network
service of a sender JP starts to transfer the data. The JP
invokes a disk I/O system call to execute a disk monotask.

4.2 The Scheduling Layer
The centralized scheduler (§4.2.2), JMs (§4.2.1), and work-
ers (§4.2.3) all participate in the scheduling process.

4.2.1 Resource Request and Usage Estimation by JM.
The JM of each job has two duties: (1) provide resource re-
quests to the scheduler and workers for resource alloca-
tion (Obj-1&2), and (2) provide resource usage estimation to
the scheduler for task placement (Obj-3).
Resource requests. Predicting the exact resource usage of
a task (for making an accurate request) is difficult due to
the highly dynamic resource utilization patterns of our tar-
get workloads as reported in §2. However, we can identify
periods that have stable resource utilization during the exe-
cution of a task, and hence make a separate resource request
for each period. JM acquires CPU, network and disk resources
for a task on a per-monotask basis, because resource utiliza-
tion within a monotask is more stable and predictable (e.g.,
no interleaving and I/O blocking). In particular, each CPU
monotask uses exactly one core and has full utilization until
it completes, i.e., the resource request is exact. JM sends the
resource request for a monotask to its assigned worker only
when the monotask is ready to run, so that the requested
resource is immediately used once allocated. For memory
requests, it is done on a per-task basis and simply uses the
estimated memory usage (to be discussed below), since mem-
ory usage is relatively stable during the lifespan of a task as
shown in Figures 1a-1h.
Resource usage estimation. The network and disk I/O
usage of a monotask is estimated as the size of its input

data. The CPU usage is calculated as the total amount of
computation done by the monotask. As a monotask’s CPU
usage usually depends on the size of the input data, we simply
estimate the CPU usage as the input data size as well 3. The
usage of a task is calculated as the sum of the estimated
usage of all its monotasks. The input dataset partitions to
be processed by CPU, or transferred through network (pull-
based), or read from disk are known (and their sizes are
recorded in the metadata store) at the time when the task
becomes ready to run. Specifically, the sizes of the job inputs
can be obtained from the filesystem (e.g., HDFS), and we use
metadata in headers to calculate the uncompressed sizes in
case the data are stored in compressed formats (e.g., ORC).
Note that according to monotask generation in §4.1.3, there
is at most one CPU monotask in each task and the input of
the CPU monotask is simply read from network/disk by its
parent monotask. For disk write, it is mostly for outputting
the final result as we focus on in-memory workloads. For
OLAP, machine learning and graph analytics workloads, the
average output size of a job is much smaller than the input
size (e.g., at least 29 times smaller for about 95% out of 7M
jobs per day for such workloads in [22]). As disk is not a
bottleneck, we simply estimate disk write usage as the total
input size of the task. Currently, Ursa also does not consider
cache for disk reads, which we leave for future improvement.
Existing schedulers [21, 26, 42, 43] usually rely on users

to specify an estimated memory usageM(j) for a job j . How-
ever,M(j) is usually set much larger than the actual memory
usage to avoid OOM or disk spilling. We introduce a config-
urable memory-to-input ratiom2i to mitigate memory usage
overestimation. Let I (t) be the input size of a task t . The mem-
ory usage is then estimated asmin{r ×M(j),m2i(t) × I (t)},
where r is the ratio of the input size of t to the total input
size of all the ready tasks of the job. The setting ofm2i is
a trade-off between the memory utilization efficiency and
the overhead incurred by disk spilling. Ursa provides an esti-
mation ofm2i for recurring tasks based on their historical
usage, in addition to a default setting ofm2i for some opera-
tions supported in Ursa’s high-level APIs, e.g.,m2i = 2 for
filter andm2i = 1 + s for join where s is the join selectivity
obtained from the SQL query optimizer.

4.2.2 TheCentralized Scheduler. The scheduler handles
job admission and task placement.
Job admission. When a job is submitted, the scheduler
creates its JM. The JM informs the scheduler of the estimated
memory usage of the job. The scheduler admits the job if the
cluster has sufficient memory, or otherwise puts the job in a
queue. This is to prevent memory deadlock, as multiple jobs
can be holding somememorywhile requestingmorememory
for task execution, but the remaining memory is insufficient
3Although different CPU tasks may have different complexity, we only use
the input data size in JM and rely on processing rate monitoring by the
scheduler to adjust for the difference (§4.2.2).

6

Improving Resource Utilization by Timely Fine-Grained Scheduling EuroSys ’20, April 27–30, 2020, Heraklion, Greece

for any job to continue. Note that memory is not actually
allocated fromworkers at job admission, but reserved cluster-
wise to ensure that there is sufficient memory for a job to
finish. When a job is admitted, its JM sends the estimated
resource usage of its ready tasks to the scheduler for their
placement to workers.
Task placement. The scheduler assigns tasks of jobs to
workers. In order to achieve Obj-3, Ursa’s task placement
strategy differs from existing task scheduling algorithms [3,
17, 34, 35] in the following ways. First, we design a unified
measure for multi-dimensional resource consumption and
place tasks to maintain per-resource load balancing among
workers. Second, to handle workloads with dynamic resource
utilization, we use the total resource consumption in making
placement decisions, in contrast to the peak demands of tasks
used in existing work [3, 17]. Third, due to synchronization
barriers in data shuffles between stages, even one straggler in
a stage may block the execution of all tasks in the dependent
stage(s). Stragglers arise when some tasks in a stage are not
assigned toworkers, thus their execution falling behind other
tasks that are already placed to workers. Thus, we propose
stage-aware task placement to avoid creating such stragglers.
The details of task placement in Ursa are given as follows.

To measure the per-resource load of a workerw , we intro-
duce APTr (w), i.e., the approximate processing time to com-
plete all type-r monotasks currently assigned tow , where r
is CPU, network or disk. We calculate APTr (w) as the total
amount of work of the monotasks divided by the processing
rate ofw using resource r . The amount of work of a monotask
is simply its input data size (§4.2.1). The worker periodically
updates its type-r processing rate as X/T , where T is the ac-
cumulated execution time of type-r monotasks that were
completed within the observed period andX is the total input
sizes of the monotasks. If r is CPU, we multiply X/T by the
number of CPU cores to indicate the overall CPU processing
rate of the worker. In addition, if CPU inw is immediately
available (i.e., idle cores), we simply set APTcpu (w) = 0.

We also introduce expected processing time, EPT , which is
used to quantify how overloaded or underloaded a worker
is. The scheduler processes task placement in batches (for
better placement and higher scheduling throughput) at a
configurable scheduling interval. Thus, ideally EPT should
be the same as the scheduling latency (i.e., the scheduling in-
terval plus the delay in communication among the scheduler,
JMs, and workers), such that within each interval of EPT ,
workers finish processing all assigned tasks and immediately
start processing a new batch of tasks for the next interval.
Thus, we set EPT slightly larger than the scheduling interval
to account for the communication delay.

Then, we calculate the difference betweenEPT andAPTr (w),
normalized by EPT , as Dr (w) = max(0, EPT−APTr (w)EPT). Intu-
itively, a greater Dr (w) means that an incoming type-r mono-
task needs to wait for less time to be executed at workerw and

Algorithm 1: TaskPlacement
1 foreach stage S whose tasks are to be placed do
2 (scores , plans) ← StageScore (S,D)
3 Pick stage S with largest scores , and place tasks in plans
4 function StageScore(S, D):
5 Initialize plan as an empty set of task-worker pair
6 Initialize score ← 0
7 Initialize staдe_bonus to a large number
8 foreach task t in S do
9 Pick workerwmax ← arдmaxw {F (t,w)}

10 if wmax does not exist then
11 staдe_bonus ← 0
12 else
13 Add {t,wmax } to plan and update Dr (w)
14 score ← score + F (t,w)

15 return (score/|plan | + staдe_bonus, plan)

a small Dr (w) indicates that resource r in w is being heav-
ily used. We also calculate Dmem(w) as the size of available
memory inw divided by the memory capacity ofw .
Algorithm 1 describes how we use D = {Dcpu ,Dnetwork,

Ddisk,Dmem} to assign tasks to workers. We compute a place-
ment plan and a score for a stage of tasks each time, using the
StageScore function. For each task t in the stage, let Incr (t,w)
be the increase in the load of worker w in using resource
r if t is placed in w . For CPU, network and disk, Incr (t,w)
is given by the increase in APTr (w), which is calculated as
t ’s estimated usage of resource r divided byw’s type-r pro-
cessing rate, normalized by EPT . Incmem(t,w) is simply the
estimated memory usage of t .
The scheduler decides whether a task t should be placed

in a workerw by measuring how similar Inc and D are. Ifw
has sufficient memory to run t , a score F (t,w) is calculated:

F (t,w) =
∑

r ∈{cpu,network,disk,mem}

Dr (w) × Incr (t,w). (1)

We match t with the workerw that gives the highest F (t,w).
According to Eq. (1), a larger Incr (t,w) (i.e., a heavier load
of resource r) and a larger Dr (w) (i.e., a lighter load of r at
w) contribute more to F (t,w). However, it is possible that
w is overloaded with one resource but not with the other.
For example, Dcpu (w) = 0 but Dr (w) is large for the other
resources, which may still give a large F (t,w). In this case,
assigning t tow would result in its execution being blocked
by waiting for CPU. To avoid this, we do not assign t tow
if Dr (w) = 0 and Incr (t,w) > 0 for any r . It is also possible
that Incr (t,w) > Dr (w), in which case we still consider w
but reset Incr (t,w) = Dr (w) to indicate that the resource
availability is bounded by Dr (w), which also bounds the
contribution of Dr (w) × Incr (t,w) to F (t,w).
To enforce stage-awareness, Algorithm 1 gives a large

bonus to plans if the plan assigns all tasks in stage S , so that
such plans are always considered before other plans.

7

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tatiana Jin, Zhenkun Cai, Boyang Li, Chenguang Zheng, Guanxian Jiang, and James Cheng

Job ordering. The design of Algorithm 1 is more for maxi-
mizing resource utilization and hence job throughput, but
does not consider average JCT. To reduce average JCT, Ursa sup-
ports two scheduling policies to order jobs: Earliest Job First
(EJF) and Smallest Remaining Job First (SRJF).

The scheduler performs job admission by first considering
jobs that are submitted earlier. Starvation of jobs that have
large memory requirement is handled similarly as in existing
schedulers [35, 42]. In task placement, Ursa prioritizes earlier
jobs by the elapsed timeT since the submission of a job, and
addsWT to the placement score of each stage of the job,
whereW is a weight that indicates how much EJF should be
enforced.
For recurrent workloads where historical resource usage

information is available, JCT can also be reduced by priori-
tizing jobs with smallest remaining work, based on a similar
concept in [35]. However, instead of estimating the total time
needed to complete the remaining tasks of a job, Ursa uses
the total remaining per-resource work of a job, R, and the per-
resource cluster load, L, to rank the jobs. R and L are vectors,
where R[r] and L[r] are for resource type r . R is initialized
based on historical information and is updated by the JM
whenever a monotask of the job is completed. L is calculated
as the total remaining work of all admitted jobs. The priority
score of a job for applying SRJF is then calculated as the
inverse of the dot product of (2L −R) and R normalized by L.
The intuition is that when a resource r is heavily demanded,
more weight is given to r to pick the job with the smallest
remaining work. The enforcement of SRJF in job admission
and task placement is similar as in EJF.

4.2.3 DistributedQueueManagement. Distributed queues
are used to minimize the latency of allocating a resource to a
monotask when the demanded resource becomes available at
a worker. Each worker maintains a queue of monotasks for
each resource (i.e., CPU, network, and disk) and decides the
order and concurrency of resource allocation to monotasks.
Monotask ordering. Instead of FIFO, monotasks in each
queue are ordered based on the scheduling policy and task
dependency. Among jobs, monotasks are ordered accord-
ing to their job priorities (EJF or SRJF). Within a job, CPU
monotasks in the same stage are ordered in descending order
of their input sizes so that larger tasks can start earlier to
reduce the completion time of the stage, while network and
disk monotasks in the same stage are ordered in ascending
order of their input sizes to make their dependent monotasks
ready earlier.
Concurrency control. While the number of CPU mono-
tasks (possibly of different jobs) being executed concurrently
is simply set as the number of CPU cores, the concurrency of
network and disk monotasks running at a worker is a trade-
off between maximizing resource utilization and avoiding
contention. The concurrency limit for disk monotasks is set
as one monotask per disk, which can already fully use the

I/O bandwidth when transferring a considerable amount of
data (sequentially). In cases when there are many small disk
monotasks, we run them together and reply on the OS to
optimize the seek time (by I/O request re-ordering).
The concurrency control for network monotasks is chal-

lenging as the bandwidth usage of a network monotask
depends on the amount of data flowing through both the
sender and receiver machines. It is too costly to model the
all-pair data flows and calculate the concurrency that maxi-
mizes network utilization, especially at the fine granularity
of monotasks. We use a simple method that considers only
the network bandwidth at the receiver side. Each network
monotask pulls data from all its senders at the same time,
so that the receiving bandwidth can be more fully utilized
even if congestion may occur at some senders. Although data
transfers from different senders may contend at the receiver
downlink, this does not add additional delay. To avoid con-
tention among network monotasks, a small concurrency of
1 to 4 is set for each worker. In addition, Ursa allows latency-
sensitive small monotasks (typically smaller than 16KB) to
be executed without being queued.

4.3 Discussion
Working inmulti-tenant clusters. While Ursa is designed
to enable fine-grained resource sharing for jobs in a vir-
tual cluster, it does not require static partitioning in a large
cluster. Ursa can work with YARN as an execution frame-
work through YARN’s APIs for ApplicationMaster (AM). The
scheduler of Ursa runs on the AM container and communi-
cates with the AM for resource negotiation with YARN, while
Ursa launches workers and jobs in the allocated containers.
The workers are informed by the scheduler of the allocated
containers on the local nodes. We remark, however, as YARN
does not have native management for network resources,
Ursa does not consider network usage of concurrent applica-
tions on YARN but relies on processing rate monitoring by
its scheduler to adjust network workloads among workers
(i.e., through APT).
Implications ofmodern I/Ohardware onUrsa’s design.
As Ursa’s designs are mainly motivated by the dynamic re-
source utilization patterns discussed in §2, it is critical to
consider the possible influence of modern I/O hardware on
the resource utilization patterns and how it may influence
Ursa’s designs. We consider this problem from three perspec-
tives: load balancing of resource usage, use of monotasks,
and types of resources.
First, Ursa’s scheduling layer is designed with the use of

monotasks to avoid blocking the utilization of other types of
resources when task execution is (temporarily) bottlenecked
on one type of resource, e.g., the problem found in §2 is
mainly to avoid blocking the CPU utilization by local net-
work contention or stragglers in a stage. One key challenge
is to maintain load balancing of different types of resources

8

Improving Resource Utilization by Timely Fine-Grained Scheduling EuroSys ’20, April 27–30, 2020, Heraklion, Greece

across workers while observing data dependency of mono-
tasks. Thus, we expect that the resource usage estimation
and load-balanced task placement of Ursa using monotasks’
resource-oriented work abstraction and runtime information
of (intermediate) data will remain applicable even whenmod-
ern I/O hardware is used, although the detailed methodology
of resource usage estimation may require some adaption to
possibly new resource utilization patterns.
Second, while monotask assumes the usage of only one

type of resource, this assumption may require more consid-
eration with the use of modern I/O hardware. For example,
while RDMA enables bypassing CPU in sending messages,
a network monotask may incur high CPU utilization when
pulling messages over a 40/100/200 GbE link without RDMA.
However, we emphasize that Ursa’s design does not rely
on the assumption of full utilization of a single type of re-
source by monotasks, but that a “monotask”, or simply a task,
should have stable resource utilization during its execution
as discussed in 4.2.1. Therefore, the notion of monotask can
be extended in case of new I/O hardware to a unit of work
that utilizes one or multiple types of resources stably during
a period of execution. Similarly, the Op in Ursa’s primitives
can be extended to support different types of “monotasks”
with respect to the hardware to be used.

Third, while an operation involves many parts of the op-
erating system, the abstraction of resource usage is often
simplified by recognizing the bottleneck resource in the sys-
tem stack. Particularly, sending a message through the net-
work not only involves using network bandwidth, but also
using CPU and memory bandwidth to copy data through
the kernel networking stack. As network bandwidth has
been the bottleneck of sending messages for many existing
hardware, it is often used by resource managers to quantify
the resource usage on the networking stack. However, with
modern 40/100/200 GbE network, memory bandwidth might
become the bottleneck instead. Therefore, the types of re-
sources considered in scheduling should also be extended to
account for new bottlenecks in processing workloads using
modern hardware.
Fault tolerance. Ursa adopts a simple mechanism using
heartbeats for detection and checkpoint for job recovery as
in existing systems [42, 50]. Other techniques such as hot
standby and lineage-based recovery may also be used.

5 Performance Analysis
The experiments were run on a cluster with 20 machines con-
nected via 10 Gbps Ethernet. Each machine has two 2.1GHz
Intel(R) Xeon(R) Silver 4110 CPU with hyper-threading en-
abled (32 virtual cores), 128GB RAM, and a 1.2TB SAS disk
(6Gb/s, 10k rpm, 128MB cache), running on 64-bit Debian
release 9.8. Note that Ursa is not a cluster scheduler that
manages thousands of machines, but usually runs on a small
(virtual) cluster requested by a quota group (§3).

Performance metrics. We mainly report makespan and
JCT. We also measure average scheduling efficiency (SE) and
average utilization efficiency (UE) for CPU and memory. Let
X be the allocated core/memory time, Y be the total core/mem-
ory time (i.e., total cores/memory multiplied by makespan),
and Z be the actual resource utilization time. SE is defined as
X/Y and UE is Z/X . The average resource utilization rate of
the cluster is equivalent to (SE × UE).
Workloads. The TPC-H workload consists of 200 jobs and
3 datasets of size 200GB, 500GB and 1TB. The 200 jobs are
200 queries chosen uniformly at random from the set of TPC-
H queries [40], and each job is run on the 200GB, 500GB
and 1TB datasets with a probability of 60%, 30% and 10%,
respectively. The depth of the DAGs of these jobs ranges
from 2 to 10. When executed individually, the JCT of these
jobs ranges from 3 sec to 297 sec (mean: 37.78 sec) and that of
their tasks ranges from a few msec to 130 sec (mean & 80th
percentile: 5 sec). The TPC-DSworkload consists of 200 jobs
and 3 datasets of size 200GB, 500GB and 1TB, and is created
similarly as TPC-H. The depth of the DAGs ranges from 5 to
43 (mean: 9). When executed individually, the JCT of these
jobs ranges from 9 sec to 212 sec (mean: 48.23 sec). These
numbers are quite representative of our target production
workloads, i.e., many heterogeneous and short tasks.

We also created a mixed workload,Mixed, which consists
of 2 graph analytics (PR on WebUK [1] and CC on Friend-
ster [47]), 4 machine learning (k-means on mnist8m [2] and
LR on webspam [5]), and 32 randomly chosen TPC-H queries.
The jobs are chosen such that TPC-H, ML and graph jobs
account for 70%, 20% and 10% of the total CPU usage, which
simulates our target production workloads.

We used a smaller TPC-H workload, TPC-H2, which con-
sists 25 jobs with relatively deeper DAGs (average depth:
7.2) and more heterogeneous tasks with irregular utilization
patterns. It is more challenging to achieve high resource
utilization for these jobs and we used them to assess the
effectiveness of various techniques used in Ursa.

5.1 Resource Utilization Analysis
Since Ursa is an integration of scheduling and execution
frameworks, we comparedwith (YARN+Spark) and (YARN+
Tez), denoted by Y+S and Y+T, where YARN is used as the
resource scheduler and Spark/Tez as the execution frame-
work. We also simulated MonoSpark [33] in §5.1.2. We do
not compare with Spark and Tez alone because they are not
designed to schedule multiple jobs for high resource utiliza-
tion in a cluster. Our goal is to demonstrate the limitations of
using coarse-grained containers as resource scheduling units
and examine the effectiveness of Ursa’s design choices.

5.1.1 Performance on TPC-H and TPC-DS. We first
used the TPC-H workload, by submitting a new job at ev-
ery 5 seconds to simulate a heavy online workload in our
application scenario. We used YARN 2.8.5 with Spark 2.4.0

9

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tatiana Jin, Zhenkun Cai, Boyang Li, Chenguang Zheng, Guanxian Jiang, and James Cheng

1000 1100 1200 1300 1400 1500 1600
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(a) Ursa-EJF

1000 1100 1200 1300 1400 1500 1600
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(b) Ursa-SRJF

1000 1100 1200 1300 1400 1500 1600
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(c) Y+S

1000 1100 1200 1300 1400 1500 1600
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(d) Y+T

Figure 4. Resource utilization for TPC-H

0 200 400 600 800 1000 1200 1400 1600
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(a) Ursa-EJF

0 200 400 600 800 1000 1200 1400 1600
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(b) Ursa-SRJF

0 200 400 600 800 1000 1200 1400 1600
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(c) Y+S

Figure 5. Resource utilization for TPC-DS

and Tez 0.9.1. We enabled the FIFO job scheduling policy in
YARN, and set the heartbeat interval to 1 second. We tested
both EJF and SRJF in Ursa. Note that FIFO in YARN and EJF
in Ursa are essentially the same policy as both of them pri-
oritize earliest jobs, except that EJF in Ursa is enforced in
a more fine-grained manner. In contrast, SRJF is a different
policy and we used it to demonstrate howUrsa’s fine-grained
scheduling can be adapted to serve a different policy to im-
prove average JCT. The number of CPU cores per container
was carefully tuned for Spark and Tez. For the container
memory size, we ensured that memory is sufficient for all
jobs. For Spark, we configured the container size to be 4 cores
and 8 GB memory, and enabled dynamic allocation with idle
timeout of 2 seconds. For Tez, we configured each container
to have 2 cores and 6 GB memory, and enabled container
reusing across tasks. Many other configurations were also
tested and the above one gave the best overall performance
for both Spark and Tez. For example, while using smaller
containers for Spark leads to better resource utilization, it
impairs job performance and results in longer makespan. We
also tested Ursa and Y+S on the TPC-DS workload using a
similar setting, except that the dynamic allocation idle time-
out for Spark was set to 5 seconds for better performance.
Results on TPC-H. Table 2 reports the results for Ursa us-
ing EJF and SRJF, Y+S and Y+T on the TPC-H workload.
While both Ursa and YARN achieve high CPU SE (memory
SE is not high as memory is rather sufficient), Ursa achieves
significantly higher UE (for both CPU and memory) than
both Y+S and Y+T. We believe the higher CPU utilization is

makespan avgJCT UEcpu SEcpu UEmem SEmem

EJF 2803 600.00 99.64 92.47 78.83 39.80
SRJF 2859 489.96 99.65 89.73 78.02 48.85
Y+S 3849 1407.40 69.35 93.32 34.69 44.13
Y+T 9228 4287.00 58.97 98.19 28.81 70.71

Table 2. Performance on TPC-H (Col 2-3: sec; Col 4-7: %)

makespan avgJCT UEcpu SEcpu UEmem SEmem

EJF 1613 453.20 99.57 88.31 81.64 25.01
SRJF 1630 242.27 99.75 86.99 85.83 32.93
Y+S 2927 894.36 48.56 90.48 19.39 37.65

Table 3. Performance on TPC-DS (Col 2-3: sec; Col 4-7: %)

themain reason that leads to the shorter makespan compared
with Y+S, because the total CPU time consumed by Spark
and Ursa are actually comparable. Note that if the total CPU
consumption (core ∗ time) of processing a workload is fixed,
then makespan and CPU utilization are reversely correlated,
i.e., to achieve a shorter makespan, a higher (UEcpu ∗ SEcpu)
is necessary.

Figures 4a-4d further reports the resource utilization rates4
of the systems for processing TPC-H. The results show that
Ursa achieves rather consistent high CPU utilization (the
utilization on network and memory is not high because they
are both sufficient). In contrast, the CPU utilization of the

4We only plot a 10-min interval for better visual presentation, and similar
patterns are also observed for other time intervals.

10

Improving Resource Utilization by Timely Fine-Grained Scheduling EuroSys ’20, April 27–30, 2020, Heraklion, Greece

executor-based solutions, Y+S and Y+T, fluctuates signifi-
cantly and frequently.

The problem with the executor-based solutions compared
to Ursa is that the resources allocated to a container are not
immediately released when unused, but only released when
there is no task to run in the container. Thus, containers
are under-utilized when the running tasks cannot use up
the allocated capacity and the unused resources cannot be
immediately reallocated to other jobs. We tried to mitigate
the problem by reducing the container size in Spark or dis-
abling container reuse in Tez (i.e., resorting to task-based
resource requests). This improved the UE, but resulted in
even worse makespan and average JCT due to less process-
level optimization (e.g., process-level cache for broadcast
join) [7]. Ursa avoids the above problems by accurate re-
source requests (§4.2.1), timely provision and release (§4.2.3,
§4.1.4) of different types of resources for each process in the
granularity of monotasks.
Results on TPC-DS. Figure 5 and Table 3 reports the re-
sults for Ursa (using EJF and SRJF) and Y+S on TPC-DS. The
resource utilization of Ursa on TPC-DS is similar to that
on TPC-H, while the CPU utilization of Y+S on TPC-DS is
considerably lower than that on TPC-H. The makespan and
average JCT of Y+S are significantly larger than those of
Ursa . The difference in performance is due to partitioned
tables and much deeper DAGs in the TPC-DS workloads.
When partitioned tables are involved, Spark jobs in TPC-
DS incur extra costs in listing the leaf files and directories,
which impairs JCT. Also, for small datasets (e.g., 200GB),
some partitioned tables have many small partitions, which
lead to greater overheads because of scheduling and execut-
ing many small tasks on Y+S. For deep DAGs, Spark jobs
have many stages with alternating high and low parallelism
(e.g., in one job it goes from 3,367 tasks to 1,090 tasks, and
then to 2,791 tasks). Even though we enabled dynamic alloca-
tion in Spark, the idle containers may not be released in the
stages with small parallelism as these stages are shorter than
the timeout, which leads to bad UE. Meanwhile, in the case
when the idle containers are released in the small stages, the
Spark job needs to request containers when it progresses to
a large stage, which not only leads to scheduling delay but
also makes Spark to schedule tasks to existing containers
with inferior locality and thus incur I/O overhead.

5.1.2 Performance on the Mixed Workload. We want
to examine (1) whether the use of monotasks, or the execution
framework, is the main contributor to Ursa’s performance,
(2) whether an existing scheduling algorithm can achieve better
results, (3) whether over-subscription of CPU can achieve high
resource utilization. We used the more challenging Mixed
workload that contain ML, graph and SQL jobs for this set
of experiments.
Is monotask sufficient?We ranUrsa on YARN (Y+U) fol-
lowing the executor-based solution to validate that Ursa’s

makespan avg JCT UEcpu SEcpu

Ursa-EJF 464.00 208.21 99.57 86.60
Ursa-SRJF 473.50 170.64 98.89 86.08
Y+U 842.92 443.80 44.15 89.97
Y+S 1072.66 435.00 67.92 83.84

Capacity 511.00 226.16 99.77 78.66
Tetris 562.33 254.52 98.62 70.02
Tetris2 506.00 240.83 99.71 79.75

Table 4. Performance on Mixed (Col 2-3: sec; Col 4-5: %)

performance advantage mainly comes from better resource
sharing among jobs instead of the use of monotasks alone or
the execution layer implementation. We implemented an ap-
plication master for Ursa similar to that of Spark, so that each
job requests resources fromYARN instead of fromUrsa’s own
scheduler. We launched one instance of Y+U for each job us-
ing the same container sizes as the corresponding Spark job.
This single-job instance of Ursa simulates MonoSpark [33]
as we enabled local per-resource queues except that we added
monotask ordering.
Table 4 shows that although Ursa and Y+U share the

same execution layer that uses monotasks, Y+U has poor
UE as it suffers the same problems of executor-based solu-
tions (§5.1.1). This shows that fine-grained resource sharing
among tasks within a single job is not sufficient, but fine-
grained resource sharing among jobs is also needed in order
to achieve high resource utilization. Y+U and Y+S have com-
parable makespan and average JCT, but both are significantly
worse than Ursa. Thus, the better performance over Y+S is
not because Ursa has a better execution layer than Spark, but
because Ursa enables timely fine-grained resource allocation,
which leads to high UE.
Alternative scheduling algorithms. We replaced Algo-
rithm 1 in Ursa with Tetris [17], a state-of-the-art scheduling
algorithm that aims to minimize resource fragmentation by
packing multi-dimensional resource requests, and YARN’s
Capacity scheduling algorithm [20], which greedily assigns
tasks to workers that have more available resources. For
Tetris, we collected the peak demands of tasks in previous
runs as discussed in [17] and used them for resource requests.
We also tested Tetris by ignoring the network demand, de-
noted by Tetris2.

Table 4 shows that Ursa using Tetris and Capacity achieve
good performance, though not as good as Ursa itself (i.e.,
using Algorithm 1). The performance difference is reflected
in their SEcpu , which means that the task placement algo-
rithm affects resource allocation on workers. One key differ-
ence is that Tetris and Capacity use peak resource demands,
while Algorithm 1 uses the estimated total resource usage.
When a monotask of a task completes, the worker updates
the per-resource load to the scheduler so that Algorithm 1

11

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tatiana Jin, Zhenkun Cai, Boyang Li, Chenguang Zheng, Guanxian Jiang, and James Cheng

subscription makespan avg JCT makespan avg JCT
ratio (Y+U) (Y+U) (Y+S) (Y+S)

1 842.92 443.80 1072.66 435.00
2 637.96 345.99 872.67 341.77
4 596.66 325.32 892.83 365.30

Table 5. Results of CPU over-subscription (sec)

can assign new tasks to use the released resource. However,
Tetris and Capacity do not make use of such information but
let the worker wait until the entire task finishes. Thus, using
peak resource demands is not suitable for measuring the
resource usage of jobs with frequent fluctuations in resource
utilization. This is further verified by the result that Tetris2
actually outperforms Tetris, as we found that task assign-
ment is blocked when a task’s peak network demand exceeds
the available network bandwidth, even though the network
is not being used most of the time. This prevents workers to
allocate available CPU resources to new monotasks, which
results in 9.73% lower SEcpu than Tetris2.
Over-subscription of CPU.We further show that simply
oversubscribing CPU does not solve the problem caused by
dynamic utilization patterns (§2), but only enables resource
overlapping to a limited degree. We ran both Y+U and Y+S
with CPU subscription ratio of 1 (no over-subscription), 2,
and 4. We set the container size to 4 GB memory for SQL
jobs so that we have enough memory to assign up to 4 times
more containers for over-subscription.

Table 5 shows that both makespan and JCT improve most
with an over-subscription ratio of 2, which is a direct con-
sequence of improved resource utilization. But when we
oversubscribe CPU further, the improvement diminishes and
the result (e.g., the avg JCT of Y+S) starts to become worse.

The problem of simple over-subscription is poor load bal-
ancing and resource contention. First, although YARN main-
tains a good balance in container assignment, it does not
guarantee load balancing. When resources in containers are
not fully utilized, it leads to unbalanced loads among the
workers. Specifically, for Y+S (and similarly for Y+U), the dif-
ference in the average CPU utilization rates among workers
is 16%, 20% and 21% for a subscription ratio of 1, 2 and 4. In
contrast, for Ursa the difference is only 2% (i.e., all workers
have balanced, high CPU utilization).
Second, as each job assigns tasks to its allocated con-

tainers individually without knowing the cluster load, over-
subscription leads to resource contention among jobs. Tasks
on overloaded workers become stragglers, which renders
containers on other workers under-utilized. We measured
straggler as follows. We define the straggler threshold, fol-
lowing the general statistical definition of outliers, as the
task completion time that is more than 1.5 times the inter-
quartile range above the third quartile in the same stage. The
straggler time for each stage is calculated as the completion

time of the last task minus the threshold. We sum the strag-
gler time of all stages for each job. The average ratio of the
total straggler time to the JCT of all jobs in Y+U increases
with the subscription ratio from 2.91% to 6.78% and 10.69%.

5.2 The Effects of Individual Designs
In this set of experiments, we analyze the effects of some
individual designs in Ursa on its performance using the TPC-
H2 workload.
The effects of network utilization. In modern clusters,
network resource is quite sufficient for most workloads. In
this case, can we ignore the network demands of tasks in
task assignment? We compared the makespan and average
JCT of Ursa, which are 650 and 383.25 seconds when we
ignore network demands, and improved to 613 and 338.67
seconds when we consider network demands. Without con-
sidering network demands, monotasks with large network
usage can be collocated and contend for network resource,
which blocks their dependent CPU monotasks and hence
impairs CPU utilization.
The above result is contrary to the use of Tetris in Ursa,

which has better performance by ignoring the network de-
mands as reported in §5.1.2 and Table 4. This is because Tetris
uses peak resource demands, which is not a goodmeasure for
balanced task assignment as analyzed in §5.1.2. In contrast,
Ursa assigns tasks based on the overall resource usage of a task
and the per-resource processing rate of a worker (§4.2.2), thus
more effectively balancing the load of utilizing each resource
among workers (the difference in the average network/CPU
utilization among workers is 3.26%/2.93% only).
Is the design for high CPU utilization only? We have
explained that Ursa does not have high utilization for net-
work and memory because they are sufficient in our cluster.
Now we validate this by limiting the network bandwidth be-
tweenmachines to 1Gbps and 4Gbps.With 1Gbps bandwidth,
network becomes the bottleneck resource and as plotted in
Figure 6a, Ursa achieves high network utilization, while CPU
is not highly used as many CPUmonotasks now need to wait
for data from network monotasks that are busy contending
the network bandwidth. When we increase the bandwidth
to 4Gbps, the bottleneck resource starts to switch back to
CPU and Figure 6b shows that CPU now becomes highly
utilized and network utilization drops as a result of sufficient
bandwidth. Comparing the resource utilization patterns of
the 1Gbps, 4Gbps and 10Gbps networks in Figure 6a, 6b
and 4a, we can see that Ursa is not just optimized for CPU
utilization but can generally achieve high utilization for the
bottleneck resource. This also means that Ursa is suitable for
both CPU-intensive and network-intensive workloads.
The effects of stage-awareness.Ursa assigns tasks by stages.
We modified the task assignment algorithm to pick one task
(instead of a whole stage) that has the highest score each time.
The makespan and average JCT increase by 5.66% and 10.84%

12

Improving Resource Utilization by Timely Fine-Grained Scheduling EuroSys ’20, April 27–30, 2020, Heraklion, Greece

0 200 400 600 800 1000 1200
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(a) 1Gbps
0 100 200 300 400 500 600

Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(b) 4Gbps

Figure 6. Resource utilization (EJF) of different networks

0 100 200 300 400 500 600
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(a) Stage-aware

0 100 200 300 400 500 600
Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(b) Non-stage-aware

Figure 7. (Non-)Stage-aware resource utilization (EJF)

makespan makespan avg JCT avg JCT
(EJF) (SRJF) (EJF) (SRJF)

JO 630.33 623 373.08 376.67
MO 615.33 629.33 351.73 346.49
JO + MO 613 635.67 338.67 328.31

Table 6. Results of job/task ordering (sec)

for EJF, and 10.28% and 15.73% for SRJF. The performance
degradation can be explained as follows. When ready-to-run
stages have similar resource demands and thus similar task
scores, the tasks with lower scores in a stage are assigned
after high-score tasks in other stages. Consequently, each
stage has some low-score tasks remaining (i.e., stragglers)
and blocks its dependent stages. When there are insufficient
tasks to run as stages are being blocked, both CPU and net-
work are under-utilized, as observed in the 30-180s period
in Figure 7b. In contrast, for stage-aware task assignment in
Figure 7a, dependent stages are not blocked and CPU remains
highly utilized during the period.
The effects of job and task ordering. To evaluate how
job ordering (JO) and monotask ordering (MO) contribute to
the enforcement of EJF and SRJF in Ursa, we tested three
settings: (1) JO only, (2) MO only, and (3) both JO and MO. Ta-
ble 6 reports the makespan and average JCT for each setting,
which shows that MO is more effective than JO in enforcing
EJF and SRJF, but enabling EJF/SRJF for both JO and MO
gives the best results. MO is more effective than JO because

0 10 20 30 40
Time(s)

0
10
20
30
40
50
60
70
80
90

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(a) Type 1

0 5 10 15 20 25
Time(s)

0
10
20
30
40
50
60
70
80
90

Ut
iliz

at
io

n
%

[CPU]Totl%
[MEM]Used%
[NET]Receive%

(b) Type 2

Figure 8. CPU and network utilization of 1 job

0 5 10 15 20 25 30 35 40
Job Id

0

200

400

600

800

1000

Jo
c

Co
m

pl
et

e
Ti

m
e(

s)

JCT_Actual
JCT_Expect

(a) 40 Type 1 jobs
0 200 400 600 800 1000

Time(s)

0
10
20
30
40
50
60
70
80
90

100

Ut
iliz

at
io

n
%

[CPU]Totl%
[NET]Receive%

(b) Utilization

Figure 9. Setting 1: JCT and utilization

0 5 10 15 20 25 30 35 40
Job Id

0

100

200

300

400

500

600

700

800

Jo
c

Co
m

pl
et

e
Ti

m
e(

s)

EJF_JCT_Actual
EJF_JCT_Expect

(a) EJF
0 5 10 15 20 25 30 35 40

Job Id

0

100

200

300

400

500

600

700

800

Jo
c

Co
m

pl
et

e
Ti

m
e(

s)

SRJF_JCT_Actual
SRJF_JCT_Expect

(b) SRJF

Figure 10. Setting 2: JCT

it directly determines both resource allocation and mono-
task execution. We also see, for JO+MO, SRJF gives worse
makespan than EJF in exchange for better average JCT.

5.3 Experiments with Expectable Performance
For all the workloads we tested, due to the high heterogene-
ity of their jobs, it is difficult to expect what the optimal
resource utilization, makespan and JCT are. We generated a
synthetic workload for which we can calculate the ideal JCT
and makespan, so as to evaluate whether Ursa can achieve
the expected performance. We created synthetic jobs that
consist of 5 stages (typical DAGs of depth 5 [19]). Each stage
consists of homogeneous tasks that generate a large amount
of random numbers and perform data shuffles. The paral-
lelism of each stage is set as (30 cores × 20 machines). There
are two types of jobs. Type 1 jobs handle twice the amount
of data as Type 2 jobs.

When executed individually, the CPU and network utiliza-
tion of the two types of jobs is reported in Figure 8, which
shows regular fluctuations in both CPU and network uti-
lization. The average JCT of Type 1 and Type 2 jobs are 40
and 22 seconds (roughly 8 and 4.4 seconds per stage). The

13

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tatiana Jin, Zhenkun Cai, Boyang Li, Chenguang Zheng, Guanxian Jiang, and James Cheng

average CPU utilization for running a single job is 57% for
Type 1 and 50% for Type 2.

In the first setting, we ran only Type 1 jobs using EJF.
As each job uses CPU and network resources alternately,
we expect Ursa to obtain the following result in the ideal
case. According to the parallelism of each stage, the CPU
monotasks of each job occupy all the 30 cores in each of
the 20 machines. According to Algorithm 1, the tasks in
one stage of a job will be assigned to workers each time. If
Ursa can indeed enable fine-grained resource sharing among
jobs, then we should see the following utilization pattern:
while the CPU monotasks of a job are using all CPU cores, the
network monotasks of another job are using the network. And
this pattern repeats immediately when a stage completes.
Assume that the jobs are ordered by their submission

timestamps as j1 to j40. By the EJF policy, the tasks of j1 and
j2 will be assigned and executed first, and then followed by j3
and j4, and so on. As a result, we can calculate the expected
JCT for each job in the ideal case, i.e., j1 completes in 40
seconds, j2 completes in (40 + 8) seconds, j3 completes in
(40+40) seconds, j4 completes in (40+40+8) seconds, and so
on. Figure 9a shows that the actual JCTs are very close to the
expected JCTs in the ideal case, i.e., Ursa achieves near opti-
mal JCT (and makespan). This verifies the effectiveness of
Ursa’s task placement and its efficiency in resource allocation
and utilization. Figure 9b further shows that Ursa achieves
stable, nearly full utilization of CPU, meaning that it can ef-
fectively address the problem caused by fluctuating resource
utilization patterns.

Next in the second setting, we submitted 20 Type 1 and 20
Type 2 jobs alternately. This setting is harder to handle than
the first setting as there is more variation in the resource
utilization patterns. We tested the performance with both
EJF and SRJF. Figure 10 shows that the actual JCT achieved
by Ursa for both EJF and SRJF are close to the expected JCT
in the ideal case. The CPU and network utilization patterns
are also similar to Figure 9b and thus omitted.

6 Related Work
We discuss existing scheduling works on both system archi-
tecture designs and algorithms. For execution frameworks,
we only discuss some closely related ones.
Schedulers. As discussed in §1, the architecture designs of
existing schedulers fall into three categories: centralized, dis-
tributed, and hybrid. YARN [42], Mesos [21], and Borg [43]
are (logically) centralized schedulers adopted in large clus-
ters. In YARN5 and Borg, a single scheduler makes schedul-
ing decisions, while in Mesos scheduling decisions are made
by individual applications and coordinated by a central re-
source provider. Sparrow [34], Tarcil [13], Apollo [3] are
distributed schedulers designed for high scalability, in which

5Since YARN 2.9.2, a distributed scheduler has been added to handle oppor-
tunistic containers.

multiple schedulers asynchronously assign tasks to workers
based on their loads, and each worker maintains a local task
queue. Sparrow uses batch-sampling to assign tasks to work-
ers with lighter loads. Tarcil extends Sparrow by providing
dynamic adjustment of sampling sizes based on the cluster
load. Apollo maintains a wait-time matrix for CPU and mem-
ory on each worker for placing tasks. Yaq-c [35] describes
an architecture where a centralized scheduler places tasks
to worker queues, which is most similar to Ursa’s architec-
ture. However, Yaq-c adopts slot-based resource allocation
and uses historical task execution time to estimate waiting
time at workers for task placement. Thus, Yaq-c does not
satisfy Obj-1&2 for processing workloads with dynamic re-
source usage. Hawk [10], Eagle [9] and Mercury [26] are
hybrid schedulers, where critical tasks (i.e., tasks with high
priority or long running time) are scheduled by a central-
ized scheduler, while other tasks are allocated by distributed
schedulers.
Many algorithms have been proposed to achieve differ-

ent scheduling objectives, including fairness [14, 24, 49],
SLO [11, 12, 41], resource utilization [8, 11, 12, 15, 17, 24, 31],
and JCT [14, 18, 19, 25, 27]. Ursa focuses on improving re-
source utilization bymore accurate and fine-grained resource
allocation for dynamic workloads.
Execution frameworks.Dataflowmodel is commonly adopted
in general-purpose data analytics frameworks [4, 23, 36, 46,
50]. Apache Hive [39] is a widely adopted data warehouse
system that supports OLAP. It provides query optimization
and processing, and allows plugin of different execution en-
gines including Spark and Tez. Ursa has a connector to Hive
for SQL execution.
MonoSpark [33] extends Spark for performance clarity

of jobs. It monitors queues of monotasks at each server for
reliable performance reasoning based on per-resource usage.
Thus, the use of monotask in [33] is different from our work,
as Ursa enables fine-grained resource sharing among jobs
by attaching resource allocation to monotask execution and
provides runtime resource demands based on monotasks. We
used Ursa to simulate MonoSpark in §5.1.2.

7 Conclusions
We presented Ursa — a framework for both resource sched-
uling and job execution. Ursa is designed to handle jobs with
frequent fluctuations in resource usage, which are commonly
found in workloads such as OLAP, machine learning and
graph analytics. Our experimental results validate that Ursa’s
designs are effective in achieving high resource utilization,
which is translated into significantly improved makespan
and average JCT.
Acknowledgments. We thank the reviewers and shepherd
Dan Tsafrir of our paper for their constructive comments
that have helped improve the quality of the paper. This work
was supported in part by ITF 6904945 and GRF 14208318.

14

Improving Resource Utilization by Timely Fine-Grained Scheduling EuroSys ’20, April 27–30, 2020, Heraklion, Greece

References
[1] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2019. A Large

Time-Aware Graph. http://law.di.unimi.it/webdata/uk-union-2006-06-
2007-05/

[2] Léon Bottou. 2019. MNIST8M - The infinite MNIST dataset. https:
//leon.bottou.org/projects/infimnist

[3] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. 2014. Apollo: scalable and
coordinated scheduling for cloud-scale computing. In Proceedings of
the 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 14). 285–300.

[4] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. 2015. Apache Flink™: Stream and
Batch Processing in a Single Engine. IEEE Data Eng. Bull. 38, 4 (2015),
28–38. http://sites.computer.org/debull/A15dec/p28.pdf

[5] Carlos Castillo. 2019. Datasets for Research on Web Spam Detection.
http://chato.cl/webspam/datasets/

[6] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion Stoica. 2016.
HUG: Multi-Resource Fairness for Correlated and Elastic Demands.
In Proceedings of the 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16). 407–424.

[7] Cloudera. 2015. How-to: Tune Your Apache Spark Jobs. https://blog.
cloudera.com/how-to-tune-your-apache-spark-jobs-part-2/

[8] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. 2017. Resource central: Understand-
ing and predicting workloads for improved resource management in
large cloud platforms. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP 17). ACM, 153–167.

[9] Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel.
2016. Job-aware scheduling in eagle: Divide and stick to your probes.
In Proceedings of the 7th ACM Symposium on Cloud Computing (SoCC
16). ACM, 497–509.

[10] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy
Zwaenepoel. 2015. Hawk: Hybrid datacenter scheduling. In 2015
USENIX Annual Technical Conference (USENIX ATC 15). 499–510.

[11] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-
aware scheduling for heterogeneous datacenters. In Proceedings of the
18th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 13), Vol. 48. ACM, 77–88.

[12] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-
efficient and QoS-aware cluster management. In Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 14), Vol. 42. ACM, 127–144.

[13] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. 2015.
Tarcil: reconciling scheduling speed and quality in large shared clusters.
In Proceedings of the 6th ACM Symposium on Cloud Computing (SoCC
15). ACM, 97–110.

[14] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. 2011. Dominant Resource Fairness: Fair Allo-
cation of Multiple Resource Types.. In Proceedings of the 8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
11), Vol. 11. 24–24.

[15] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert NM Watson, and
Steven Hand. 2016. Firmament: Fast, centralized cluster scheduling
at scale. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). 99–115.

[16] Google. 2019. Production-Grade Container Orchestration - Kubernetes.
https://kubernetes.io/

[17] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram
Rao, and Aditya Akella. 2015. Multi-resource packing for cluster sched-
ulers. In Proceedings of the ACM SIGCOMM Computer Communication
Review (SIGCOMM 15), Vol. 44. ACM, 455–466.

[18] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh
Ananthanarayanan. 2016. Altruistic scheduling in multi-resource

clusters. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). 65–80.

[19] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and
Janardhan Kulkarni. 2016. GRAPHENE: Packing and Dependency-
Aware Scheduling for Data-Parallel Clusters. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). 81–97.

[20] Apache Hadoop. 2019. Hadoop: Capacity Scheduler. https:
//hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/CapacityScheduler.html

[21] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011.
Mesos: A platform for fine-grained resource sharing in the data center..
In Proceedings of the 8th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 11), Vol. 11. 22–22.

[22] Yuzhen Huang, Yingjie Shi, Zheng Zhong, Yihui Feng, James Cheng,
Jiwei Li, Haochuan Fan, Chao Li, Tao Guan, and Jingren Zhou. 2019.
Yugong: Geo-Distributed Data and Job Placement at Scale. PVLDB 12,
12 (2019), 2155–2169. https://doi.org/10.14778/3352063.3352132

[23] Yuzhen Huang, Xiao Yan, Guanxian Jiang, Tatiana Jin, James Cheng,
An Xu, Zhanhao Liu, and Shuo Tu. 2019. Tangram: Bridging Im-
mutable and Mutable Abstractions for Distributed Data Analytics. In
2019 USENIX Annual Technical Conference (USENIX ATC 19), Dahlia
Malkhi and Dan Tsafrir (Eds.). USENIX Association, 191–206. https:
//www.usenix.org/conference/atc19/presentation/huang

[24] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal
Talwar, and Andrew Goldberg. 2009. Quincy: fair scheduling for
distributed computing clusters. In Proceedings of the 22nd ACM Sym-
posium on Operating Systems Principles (SOSP 09). ACM, 261–276.

[25] Prajakta Kalmegh and Shivnath Babu. 2019. MIFO: A Query-Semantic
Aware Resource Allocation Policy. In Proceedings of the 2019 ACM
International Conference on Management of Data (SIGMOD 19). ACM,
1678–1695.

[26] Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas,
Kishore Chaliparambil, Giovanni Matteo Fumarola, Solom Heddaya,
Raghu Ramakrishnan, and Sarvesh Sakalanaga. 2015. Mercury: Hybrid
centralized and distributed scheduling in large shared clusters. In 2015
USENIX Annual Technical Conference (USENIX ATC 15). 485–497.

[27] James E Kelley Jr and Morgan R Walker. 1959. Critical-path planning
and scheduling. In Papers presented at the December 1-3, 1959, eastern
joint IRE-AIEE-ACM computer conference. ACM, 160–173.

[28] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky,
Casey Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht,
Matthew Jacobs, Ishaan Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang,
Nong Li, Ippokratis Pandis, Henry Robinson, David Rorke, Silvius
Rus, John Russell, Dimitris Tsirogiannis, Skye Wanderman-Milne, and
Michael Yoder. 2015. Impala: A Modern, Open-Source SQL Engine for
Hadoop.. In Proceedings of the 7th Biennial Conference on Innovative
Data Systems (CIDR 15), Vol. 1. 9.

[29] Kubernetes. 2015. Taking network bandwidth into account for scheduling.
https://github.com/kubernetes/kubernetes/issues/16837

[30] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica.
2014. Tachyon: Reliable, memory speed storage for cluster computing
frameworks. In Proceedings of the ACM Symposium on Cloud Computing
(SoCC 14). ACM, 1–15.

[31] Libin Liu and Hong Xu. 2018. Elasecutor: Elastic Executor Scheduling
in Data Analytics Systems. In Proceedings of the ACM Symposium on
Cloud Computing (SoCC 18). ACM, 107–120.

[32] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva
Shivakumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: interac-
tive analysis of web-scale datasets. Proceedings of the 36th International
Conference on Very Large Data Bases (VLDB 10) 3, 1-2 (2010), 330–339.

[33] Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy, and Scott
Shenker. 2017. Monotasks: Architecting for performance clarity in

15

http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/
http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/
https://leon.bottou.org/projects/infimnist
https://leon.bottou.org/projects/infimnist
http://sites.computer.org/debull/A15dec/p28.pdf
http://chato.cl/webspam/datasets/
https://blog.cloudera.com/how-to-tune-your-apache-spark-jobs-part-2/
https://blog.cloudera.com/how-to-tune-your-apache-spark-jobs-part-2/
https://kubernetes.io/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://doi.org/10.14778/3352063.3352132
https://www.usenix.org/conference/atc19/presentation/huang
https://www.usenix.org/conference/atc19/presentation/huang
https://github.com/kubernetes/kubernetes/issues/16837

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tatiana Jin, Zhenkun Cai, Boyang Li, Chenguang Zheng, Guanxian Jiang, and James Cheng

data analytics frameworks. In Proceedings of the 26th ACM Symposium
on Operating Systems Principles (SOSP 17). ACM, 184–200.

[34] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013.
Sparrow: distributed, low latency scheduling. In Proceedings of the
24th ACM Symposium on Operating Systems Principles (SOSP 13). ACM,
69–84.

[35] Jeff Rasley, Konstantinos Karanasos, Srikanth Kandula, Rodrigo Fon-
seca, Milan Vojnovic, and Sriram Rao. 2016. Efficient queue man-
agement for cluster scheduling. In Proceedings of the 11th European
Conference on Computer Systems (EuroSys 16). ACM, 36.

[36] Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal Vijayaraghavan, Arun
Murthy, and Carlo Curino. 2015. Apache tez: A unifying framework
for modeling and building data processing applications. In Proceedings
of the 2015 ACM International Conference on Management of Data
(SIGMOD 15). ACM, 1357–1369.

[37] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John
Wilkes. 2013. Omega: flexible, scalable schedulers for large compute
clusters. In Proceedings of the 8th European Conference on Computer
Systems (EuroSys 13).

[38] Xiaoyang Sun, Chunming Hu, Renyu Yang, Peter Garraghan, Tianyu
Wo, Jie Xu, Jianyong Zhu, and Chao Li. 2018. ROSE: Cluster Resource
Scheduling via Speculative Over-Subscription. In 2018 IEEE 38th In-
ternational Conference on Distributed Computing Systems (ICDCS 18).
IEEE, 949–960.

[39] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham
Murthy. 2009. Hive: a warehousing solution over a map-reduce frame-
work. Proceedings of the 35th International Conference on Very Large
Data Bases (VLDB 09) 2, 2 (2009), 1626–1629.

[40] TPC-H. 2019. Decision support benchmark. http://www.tpc.org/tpch/
[41] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch,

Mor Harchol-Balter, and Gregory R Ganger. 2016. TetriSched: global
rescheduling with adaptive plan-ahead in dynamic heterogeneous
clusters. In Proceedings of the 11th European Conference on Computer
Systems (EuroSys 16). ACM, 35.

[42] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, Saha Bikas, Carlo Curino, Owen O’Malley,
Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. 2013. Apache
hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th
annual Symposium on Cloud Computing (SoCC 13). ACM, 5.

[43] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster man-
agement at Google with Borg. In Proceedings of the 10th European
Conference on Computer Systems (EuroSys 15). ACM, 18.

[44] Markus Weimer, Yingda Chen, Byung-Gon Chun, Tyson Condie, Carlo
Curino, Chris Douglas, Yunseong Lee, Tony Majestro, Dahlia Malkhi,
Sergiy Matusevych, Brandon Myers, Shravan M. Narayanamurthy,
Raghu Ramakrishnan, Sriram Rao, Russell Sears, Beysim Sezgin, and
Julia Wang. 2013. Reef: Retainable evaluator execution framework.
Proceedings of the 39th International Conference on Very Large Data
Bases (VLDB 13) 6, 12 (2013), 1370–1373.

[45] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak
Lee, Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu.
2015. Petuum: A new platform for distributed machine learning on
big data. IEEE Transactions on Big Data 1, 2 (2015), 49–67.

[46] Fan Yang, Jinfeng Li, and James Cheng. 2016. Husky: Towards a More
Efficient and Expressive Distributed Computing Framework. PVLDB
9, 5 (2016), 420–431. https://doi.org/10.14778/2876473.2876477

[47] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating net-
work communities based on ground-truth. Knowledge and Information
Systems 42, 1 (2015), 181–213.

[48] Yi Yao, Han Gao, Jiayin Wang, Ningfang Mi, and Bo Sheng. 2016.
OpERA: opportunistic and efficient resource allocation in Hadoop

YARN by harnessing idle resources. In Proceedings of the 25th Interna-
tional Conference on Computer Communication and Networks (ICCCN
16). IEEE, 1–9.

[49] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-
egy, Scott Shenker, and Ion Stoica. 2010. Delay scheduling: a simple
technique for achieving locality and fairness in cluster scheduling.
In Proceedings of the 5th European conference on Computer systems
(EuroSys 10). ACM, 265–278.

[50] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12). USENIX Association, 2–2.

[51] Xiaoda Zhang, Zhuzhong Qian, Sheng Zhang, Xiangbo Li, Xiaoliang
Wang, and Sanglu Lu. 2018. COBRA: Toward Provably Efficient Semi-
Clairvoyant Scheduling in Data Analytics Systems. In 2018 IEEE Con-
ference on Computer Communications (IEEE INFOCOM). IEEE, 513–521.

[52] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
2016. Gemini: A computation-centric distributed graph processing
system. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). 301–316.

16

http://www.tpc.org/tpch/
https://doi.org/10.14778/2876473.2876477

	Abstract
	1 Introduction
	2 Dynamic Resource Utilization Patterns
	3 Design Objectives
	4 System Design
	4.1 The Execution Layer
	4.2 The Scheduling Layer
	4.3 Discussion

	5 Performance Analysis
	5.1 Resource Utilization Analysis
	5.2 The Effects of Individual Designs
	5.3 Experiments with Expectable Performance

	6 Related Work
	7 Conclusions
	References

