
1

Timestamped State Sharing for Stream Analytics
Yunjian Zhao, Zhi Liu, Yidi Wu, Guanxian Jiang, James Cheng∗, Kunlong Liu, Xiao Yan

The Chinese University of Hong Kong
{yjzhao, zliu, ydwu, gxjiang, jcheng, klliu, xyan}@cse.cuhk.edu.hk

Abstract—State access in existing distributed stream processing systems is restricted locally within each operator. However, in
advanced stream analytics such as online learning and dynamic graph analytics, enabling state sharing across different operators
makes application development easier and stream processing more efficient. In addition, when stream records are timestamped,
proper time semantics should be defined for both state updates and fetches. We propose a new state abstraction to address the
limitations of existing systems and develop a distributed stream processing system, Nova, with native support for timestamped state
sharing. We validate the expressiveness and efficiency of Nova with extensive experiments.

Index Terms—State Sharing, Distributed Stream Processing, Online Learning, Dynamic Graph Analytics

F

1 INTRODUCTION

D ISTRIBUTED stream processing systems (DSPSs) are
gaining more attention due to the popularity of on-

line applications that continuously generate data and the
demands for real-time data analytics to obtain insights for
business decisions. Many DSPSs, e.g., Spark Streaming [1],
Structured Streaming [2], Flink [3], Storm [4], Samza [5],
Heron [6], MillWheel [7], Timely Dataflow [8], [9] and Dif-
ferential Dataflow [10] are developed and used in industry.

This paper studies state sharing in DSPSs. Most existing
DSPSs [1], [2], [3], [4], [9] describe streaming applications
in dataflow graphs and support stateful operators. For scal-
ability, an operator instantiates multiple instances, so that
the entries of a state are partitioned among the operator
instances and processed in parallel. This approach assumes
that the processing of a stream record only needs to access
the state entries in a local partition. Consider, for example,
a word count application that counts the occurrences of each
word, where the state (i.e., (word, count) pairs) is partitioned
by the words (i.e., keys), and each operator instance updates
the counts only for the words in its own partition. For
such applications, state management is simple and existing
DSPSs can achieve low latency and high throughput.

However, state sharing is more complicated for some
advanced stream analytics such as online learning and dy-
namic graph analytics. Typical applications of online learn-
ing include online recommendation [11], click-through rate
prediction [12] and contextual decision making [13], while
dynamic graph analytics such as continuous RDF query [14],
cycle detection [15] and community detection [16] have also
been widely used in industry. For processing these analytics
workloads, existing DSPSs suffer from various performance
problems due to the following difficulties in state sharing.

First, different operators and their instances need to
access multiple partitions of a state or states, instead of
accessing only the local partition of a state. For examples,
trainers (i.e., instances of an operator) in online learning
need to access multiple parts of the model (i.e., the state), or

∗ The corresponding author.

different queries (i.e., operators) in graph analytics need to
access the neighbors of multiple vertices. However, existing
DSPSs lack of an efficient mechanism to allow states to be
concurrently shared across different operators and their instances.

Second, states in these workloads are inherently associ-
ated with time information, which should be considered in
both state access and storage. For example, different trainers
access model parameters at different iterations (as logical
timestamps), or different queries look for the neighbors of
vertices within specific time periods. When different opera-
tors or instances access the same state, they may access the
values with different timestamps. Moreover, access to the
state entries may not follow the order of their timestamps.
However, existing DSPSs also lack of clear time semantics to
guarantee the consistency and correctness of state access.

There are alternative solutions, e.g., using an external
storage to keep the global state, but we will show in §2
that these solutions are inadequate and address the state
sharing problem in existing DSPSs by a new system-wide
state abstraction (§3). Our contributions are as follows:

• We identify critical limitations of existing DSPSs for
state sharing in processing an important class of
stream analytics applications, e.g., online learning,
dynamic graph analytics (§2).

• We propose a new state abstraction with flexible time
semantics for state access (§3).

• We develop a DSPS called Nova that integrates
our state abstraction with the popular dataflow
model [17], [18] adopted in existing DSPSs, and pro-
pose system designs and optimizations for efficient
state access and fault tolerance (§4).

• We evaluate Nova with extensive experiments on
a variety of workloads including stream analytics
benchmark, online learning, and real-time cycle de-
tection to show the benefits and effectiveness of our
design. Nova significantly outperforms alternative
solutions for these applications (§5).



2

2 BACKGROUND AND MOTIVATION

In this section, we give the background of state management
in existing DSPSs and discuss alternative solutions for state
sharing. We also discuss related work.

2.1 State Management in existing DSPSs

Most existing DSPSs [1], [2], [3], [4], [5], [6], [7], [8], [10]
adopt a dataflow model [18] and users construct dataflow
graphs with various operators (e.g., Map, GroupBy) to pro-
cess stream records.

Users inherit a class that has a state as its member
variable or write a function whose parameters include a
state, and then take the class or the function as the argument
of an operator. Such an API ties a state to an operator, and we
call such a state as in-operator state. Note that Keyed State in
Flink, or states attached with the mapWithState and updateS-
tateByKey operators in Spark Streaming, are also in-operator
states. At runtime, an in-operator state is partitioned among
the instances of its operator and an operator instance can
only access its local partition of the state. State accesses
within an operator instance are processed sequentially, and
thus state management in existing DSPSs do not need to
handle data races or consistency issues.

2.2 State Sharing and Possible Solutions

Many modern streaming data analytics workloads require
state sharing. In online learning, model parameters (i.e., the
state) need to be shared among the instances of an operator
that runs the machine learning algorithm, where an instance
may read or update any part of the model. For pattern
matching in a dynamic graph, multiple query operators
match different patterns and need to access different parts
of the graph at the same time, while the graph itself is being
updated continuously with an edge stream. In this case, the
state (i.e., the graph) needs to be shared among both the
operators (each of them is handling the matching of one
specific pattern) and the instances (which are parallelizing
the matching of a pattern) of an operator.

As a state can be concurrently accessed by multiple oper-
ators, state access consistency becomes an important issue.
In particular, many streaming applications also operate on
records with timestamps, which can be either physical (e.g.,
the time an edge is created in a dynamic graph) or logical
(e.g., the iteration number in online learning), and thus state
access with time semantics needs to be imposed. For example,
in real-time cycle detection, a typical operation is to query
the neighbors of a vertex within a time window W , in
which case the state access semantics should ensure that a
query should always return the correct result, i.e., not to
miss any neighbor within W nor to return those outside of
W , regardless of the time order by which the neighbors are
updated (i.e., the updates may arrive out of order).

Read-shared in-operator state. Some DSPSs also pro-
vide a special type of in-operator state, e.g., Queryable State
in Flink [3] and TridentState in Trident [19], which can be
read by other operators. Such a state is partitioned by key
among the instances of a “writer” operator, where a local
partition is updated only by the corresponding “writer”
instance. Other operators can perform read-only operations

Fig. 1: Workaround solutions

to read the latest snapshot of the state, which is useful for
serving ad-hoc queries to obtain immediate insights. How-
ever, such a state design fails to ensure consistent results as
readers only read the latest updated state, but updates with
timestamp earlier than the reads may actually arrive late
(e.g., due to network packet jitter).

Workaround solutions. It is possible to implement some
workarounds for state sharing in existing DSPSs, as shown
in Figure 1 and explained below.

Cyclic Dataflow (CD) To share a keyed state among the
instances of a single operator C , we can create a new serving
operator S to manage the state, where C sends update/read
requests to S, S processes the requests and sends the replies
to C . The request (C → S) and reply (S → C) form a cylic
dataflow and the requests/replies are delivered by shuffle
operations. For example, FlinkPS [20] uses this workaround
for machine learning workloads on Flink.

Operator Fusing (OF) To share a keyed state among two
operators A and B, we can fuse A and B into a single
operator M , where the states of A and B are stored in M ,
and their input records are co-partitioned and streamed to
M . In this case, the processing of records from A and B that
share the same key can write and read the local partition
(with the key) of the state in M .

CD+OF While CD/OF is restricted to one specific state
access pattern, we can combine them (i.e., CD+OF) to share
keyed state among the instances of multiple operators:
multiple operators are fused (by OF) into a single operator
C in CD, while the state is managed by S in CD.

The above workarounds have the following drawbacks.
For OF, it destroys the independence of operators and
thus complicates the execution logic, since it requires the
operators that access the shared state to be fused into a
monolithic dataflow structure. The case becomes even more
complicated when operators process different stream record
types and have different processing logic. The fusion of
operators also makes the implementation of applications
more complicated and error-prone. For CD, it adds a great
burden on users to handle the correct request delivery
and state access semantics for different applications. For
example, FlinkPS takes about 400 effective lines of code
to implement the necessary semantics for online learning
based on Flink and there is also performance problem as
reported in §5.2. As for CD+OF, it combines CD and OF to
allow state sharing among instances of multiple operators,
but also inherits the drawbacks of both CD and OF (§5.3).

We list various state sharing solutions in Table 1. Al-
though some of these solutions can support state sharing
among multiple operators and operator instances, they all
suffer from various drawbacks as we have discussed above.
In addition, none of these solutions support well-defined



3

TABLE 1: State management with existing DSPSs
State sharing among State access

instances operators semantics
In-operator state - - -
Queryable state X X -

TridentState X X -
CD X - -
OF - X -

CD + OF X X -
Our proposal X X X

state access with time semantics. As we will show in §3.4,
such state access semantics is essential to guarantee the
correctness of timestamped stream applications. We also
remark that [14], [15] commented that it is beyond the
expressiveness of today’s popular DSPSs to handle stream
analytics workloads such as those we consider in this paper.
This motivates us to design a new state abstraction (§3) to
support more expressive state sharing with time semantics,
while preserving the popular dataflow model [17], [18].

2.3 State Management by External Systems

We may consider to use specialized external systems to
manage states, while computation is performed in a DSPS.
For example, we can use a DSPS with parameter server
for online learning, and use Esper with Apache Jena for C-
SPARQL workloads. This, however, leads to non-negligible
overheads of cross-system communication and data trans-
formation for state access [5], [14], [21]. As we will show
in §5.2, such overheads cannot be ignored for stream ap-
plications as they usually require high throughput and low
latency. Besides, a composite solution that uses two different
types of systems adds extra burdens to users to implement
the application logics and ensure state consistency and fault
tolerance [22]. Depending on the fault tolerance mechanism
of the DSPS and the external system, users need to either
implement write-ahead logging inside the DSPS or modify
the external system intrusively.

For more general applications, we can consider key-
value stores or databases, e.g., Redis (an in-memory data
store widely used as database, cache and message broker
in industry), VoltDB (an in-memory database for processing
multiple data streams) and InfluxDB (a time-series database
with optimizations on storing and processing timestamped
data). However, they suffer from the same problems as
specialized systems. But unlike specialized systems, general
systems lack semantics for state access, i.e., updates and
queries are independent from each other and there is no
guarantee that updates are applied before queries even if
the updates happen before the queries. Thus, they rely on
the DSPS to guarantee the correctness of state access. As we
will show in §5.1, the lack of semantics limits the efficiency
of state access.

2.4 Related Work

State sharing. SDG [23] is a computation framework that
translates an imperative java program into distributed
dataflow execution. Users can use special annotations to in-
dicate two state access patterns, Partitioned State and Partial
State. Partitioned State is designed for partition-able states
but restricts state access to be inside a local partition. Partial

State is designed for states that are not partition-able and
require global aggregation. These two access patterns are
not sufficient for advanced stream analytics workloads. For
example, in dynamic graph analytics, a vertex typical needs
to query its k-hop neighbors and thus needs to actively
access multiple partitions. Such access patterns cannot be
expressed by Partitioned State and Partial State. S-Store [24]
extends H-Store, a main-memory OLTP system, to support
OLTP on streaming data with ACID transactional semantics.
States are stored in time-varying tables to be shared among
transactions. Their design targets for transaction processing
with ACID, while our target applications demand more for
high throughput and low latency, for which a less strict
state access semantics instead of ACID often provides a
better guarantee on the throughput/latency requirements.
Recently, shared arrangement [25] was proposed to support
multi-versioned state sharing for streaming applications,
which shares indexed state across operators with the seman-
tics that is identical to maintaining individual copies of the
state for each operator. However, it requires co-partitioning
a state with stream records that access it, and is not general
to the applications that require accessing multiple partitions
of a state (e.g., online learning).

Stream processing systems (SPSs). The execution model
of existing SPSs can be divided into two categories: one-
record-at-a-time and micro-batch. Flink [3], Storm [4],
Samza [5], MillWheel [7], Noria [26], Naiad [8], Timely
Dataflow [9] and Differential Dataflow [10] all adopt the
one-record-at-a-time model, where stateful operators pro-
cess stream records from upstream, update their internal
state and then emit results to downstream. Spark Stream-
ing [1], Structured Streaming [2] and Trident [19] group
streaming records into mini-batches. The computation of a
mini-batch is structured as a set of deterministic, stateless
partitioned tasks. The state is represented as a distributed
immutable dataset and updated in a batch fashion. These
SPSs lack an expressive state sharing mechanism with con-
sistency guarantee to support the advanced stream analytics
workloads discussed in §1 and rely on either workaround
solutions (§2.2) or external storage to share states (§2.3).

2.5 Timestamps
The dataflow model [17] summarizes two time domains
that are widely adopted in existing DSPSs, i.e., Event Time
(the time when an event actually occurred) and Processing
Time (the time when the event was observed by the DSPS
during processing). When using Event Time, data records
are assumed to carry event timestamps when entering the
DSPS. The DSPS directly uses the carried event timestamps
and the processing would yield consistent and determin-
istic results. As for Processing Time, it does not provide
determinism for many reasons, e.g., the time differences
among the machines, the speed for processing an event in
the DSPS. In this paper, the applications we target at have
strong requirements on the consistency and correctness of
state access, which can be hardly satisfied using Processing
Time. Thus, we mainly use Event Time as timestamps.

2.6 Watermark Management
Watermark [7], [17] is important in stream processing. As
we use watermark to guarantee the correctness of the state



4

access semantics in our system, we discuss watermark man-
agement as follows.

Stream records come into a DSPS by the source oper-
ators. A source operator forwards the records it receives
to downstream operators and then emits a watermark w
to its downstreams, which indicates that no more records
with timestamp t < w will be emitted to downstreams in
the future. Any future record with timestamp t < w will
be dropped by the source operator, which is to ensure the
timeliness of stream processing. Except the source operators,
if an operator has multiple upstream operators, the operator
maintains the latest watermark of all its upstreams and takes
the minimum upstream watermark. The operator then emits
a watermark as the minimum value between the minimum
upstream watermark and the minimum timestamp of the
records that are still being processed by the operator. Thus,
in our discussion, a watermark w emitted by an operator
guarantees that records with timestamp smaller (i.e., earlier) than
w have all been sent to the downstream operators, except those
delayed records that are dropped by the source operators.

3 PROGRAMMING MODEL

We present our new state abstraction, its programming
interface and time semantics in this section.

3.1 State Abstraction
We call the state in existing DSPSs as in-operator state (§2.1).
We introduce a new state abstraction, called system-wide
state, which is designed to work alongside with in-operator
state. For simplicity, we use State to refer to system-wide
state in this paper. Each entry in a State consists of a key
and a valueSet, where key is a unique ID and valueSet is a set
of (timestamp, value) pairs. Users may create multiple States
to manage logically different sets of State entries. For each
State, multiple instances can be created according to user-
specified parallelism and the State is partitioned by the keys
of its entries among the State instances.

3.2 Update and Fetch Operators
To manage States, we introduce two State access operators:
(1) Update, which issues requests to update or add values of
State entries at specific timestamps; (2) Fetch, which issues
requests to fetch the values of State entries. We first define
the two operators in this subsection and then give some
examples of using them in §3.5.

The two operators process timestamped stream records
and watermarks from their upstream operators. To pro-
cess a stream record, a Fetch/Update operator may send
fetch/update requests to and receive replies from the State. A
Fetch/Update operation takes three inputs:

1) The State to be accessed;
2) A user-specified request function to construct a

fetch/update request for a stream record;
3) A user-specified fetch/update rule for the State to

process a fetch/update request.

Update Operator issues update requests to be sent to the
State. An update request consists of a key K , a timestamp
T and a new value V . Upon receiving an update request,

the State processes it with the update rule and then sends
a reply acknowledgment to the Update operator. If K does
not exist, the State creates a new State entry with K as the
key and {(T , V )} as the valueSet. If K exists, a new (T , V )
pair is inserted into the valueSet of the entry with key K (if
a pair with timestamp T already exists, then it is replaced
by the new pair).

Users may specify different update rules for their ap-
plications. For example, in online learning, gradients (i.e.,
new values) are carried by update requests to update the
model parameters at each iteration, where the update rule
is “adding the gradients to the parameters”. For a dynamic
graph, an edge addition (or deletion) a→b at time T appends
a vertex addition +b (or a deletion -b) to the neighbor list of
vertex a at T , where +b or -b is the new value.

Fetch Operator issues fetch requests to a State. A fetch
request carries a key K and a reply timestamp T , where K
is used by the State to locate the entry and T decides when
the fetch request can be processed by the State according to
the time semantics to be defined in §3.4.

The State processes a fetch request using the user-
specified fetch rule. For example, for cycle detection in a
dynamic graph, to fetch the neighbors of a vertex that match
certain labels L within a time window [T1, T2], we specify
the vertex id as the key K and set the reply timestamp T to
T2. Then, we write a fetch rule to select neighbors that fall
in [T1, T2] and match the labels in L. The fetch rule is then
executed at time T = T2, i.e., all edges with timestamps
before T2 have been collected. In online learning, a fetch
request fetches the model parameters at a specific iteration,
where the fetch rule is used to adopt a computation model
(e.g., BSP, SSP, ASP).

Comparison. The Update and Fetch operators are
different from the state access APIs in existing DSPSs,
e.g., mapWithState and updateStateByKey in Spark
Streaming, which still belong to in-operator states and do
not support state sharing. In contrast, our State abstraction
supports multiple States to be shared among instances of
multiple operators. Our design provides users the flexibility
to control how different operators jointly share and maintain
the shared States, as opposed to the alternative solutions
presented §2.2-2.3. Compared with update/get operations in
key-value stores, Update and Fetch are dataflow-level APIs
used together with normal dataflow operators (e.g., Map,
Join, GroupBy) of a DSPS. As dataflow-level APIs, they
provide efficient and user-transparent system supports for
asynchronous request processing, watermark management
and fault tolerance.

3.3 Progress Operator

The Fetch and Update operations alone are not sufficient for
State management for the following two reasons.

First, fetch/update requests may arrive out of time order
because the stream records that generate these requests may
arrive out of order and network packet jitter may also
disorder these requests. Fetch/update requests generated
by different operators may be interdependent. It is common
that an update request, which updates a value at time T1,
may arrive later than a fetch request, which looks for a value
at time T2, where T1 < T2 (i.e., update at T1 should happen



5

Fig. 2: Time semantics of State access

before T2). We need to ensure that the update request at T1

is applied before the fetch request at time T2 is replied. To
this end, we introduce update progress U , which indicates
the progress of updates to a State, so that the State can
tell whether it has applied all the update requests sent
from all its Update operators before U . Thus, U denotes
the boundary where the values of any State entry with
timestamp less than U are final.

Second, as time goes by, update requests keep adding
new values to existing State entries and creating new State
entries. For stream applications, more attention is put on
recent values and old values become less important. It
is helpful to store old values compactly to improve fetch
speed and reduce memory usage, e.g., a sequence of edge
insertion(+) and deletion(−) [+e1,+e2,+e3,−e2,−e3] can
be compacted into [+e1]. To this end, we introduce fetch
progress F , which indicates the progress of fetches from
a State. We use F to trigger the compaction of values that
have timestamp less than F (i.e., before F ). Users can define
different compaction rules for their applications. An example
is given in §3.5.

To update U and F , we introduce the Progress operator.
A Progress operation takes three inputs: the State, a flag
specifying whether it is a fetch or update progress, and the
current progress. Monotonically increasing progresses are to
be sent to the State. The current progress is often just the lat-
est watermark that the Progress operator has received from
its upstream operators, as the watermark (say, w) serves to
ensure that all records before w have sent their fetch/update
requests and received all the replies. There could be multiple
Progress operators, each reporting a different fetch/update
progress f/u to the State. The State maintains the minimum
value from the latest reported fetch/update progresses of
the Progress operators as the global fetch/update progress
F/U . Some examples of using the Progress operator are
given in §3.5.

Discussion. The Progress mechanism follows the philos-
ophy of watermark [7], [17] in existing DSPSs, where water-
mark helps trigger certain actions when all records before a
logical timestamp have arrived. In our case, a State manages
two types of independent “watermark”s simultaneously, i.e.,
update progress and fetch progress.

3.4 Time Semantics of State Access
Based on the global fetch/update progress F/U , we define
the time semantics of State access requests. As shown in
Figure 2, U and F logically divide the valueSet of each State
entry into three ranges:

1) Within [U,+∞), values may still be updated.
2) Within [F,U), values are final and no update re-

quest with timestamp T < U will be received.
3) Within (−∞, F ), values can be compacted.

With the above time ranges and their implications de-
fined, we can check the validity of a fetch request, i.e.,
whether the request can be replied. Given a fetch request
with reply timestamp T , the request can be replied as long as
T < U . Users can customize their fetch requests according
to the requirements of their applications. We show two
typical types of fetch requests below.

Read-committed fetch is to obtain values within a time
range [T1, T2] (both endpoints can be exclusive or inclusive),
where −∞ ≤ T1 ≤ T2 < U . The reply timestamp of the
request is set to T2, and the State replies the fetch request
only when T2 < U . For example, in cycle detection that
finds newly generated cycles with maximum length c within
the latest time window W = [T − span, T ), for each newly
added edge (u, v), we fetch neighbors within c hops of the
vertices u and v using read-committed fetch requests with
time range [T − span, T ).

Read-uncommitted fetch is to obtain values within
[T1, T2] but the reply timestamp is set to T1. This type of
fetch allows users to fetch values that may be still undergo-
ing updates, which is useful in applications that can tolerate
relaxed consistency and are more interested in immediate
answers. The condition T1 < U must be satisfied before the
fetch can be replied, while T2 may be smaller or larger than
U . In case of T2 > U , it means values within [T1, U) are final
while those in [U, T2] are not.

Read-uncommitted fetch is particularly common in it-
erative optimization algorithms in machine learning. Con-
sider mini-batch-based online training by Stale Synchronous
Parallel (SSP) with staleness s. The parameters (i.e., the
shared State) fetched by a worker for the i-th mini-batch
should have been updated by the (i − s)-th mini-batch of
all workers. Each worker sends its latest batch number to
the State as its update progress and fetch progress, and
issues read-uncommitted fetch requests with time range
[i − s,+∞) to obtain the latest-updated parameters within
the bound of staleness.

Discussion. Time semantics can also be added to an
external storage system that manages states for a DSPS, but
it requires a substantial amount of modification in order to
organize the timestamped data, track update progresses to
answer fetch requests correctly, and track fetch progresses
for compaction of old values. There is also non-negligible
cross-system communication overhead that is critical to
latency-sensitive stream applications.

3.5 Advertising Campaign Stream Analysis

We illustrate the use of State using an advertising cam-
paign stream analysis (AdCamp) application from a large



6

1 dym_table = make_state<Key, Time, Val>(); // Key is advertisement id, Val is campaign id.
2
3 dym_table.compaction_rule = (Entry e, Time F) { // ‘F‘ is the global fetch progress
4 timestamped_camps = e.values_within((-inf, F));
5 // remove all campaigns except the lastest one with timestamp before F
6 if (not timestamped_camps.empty()) { e.erase_until(timestamped_camps.last().time); }
7 };
8
9 update_stream.update(dym_table,

10 /* request func */ (Update u) { return UpdateRequest(/*key*/ u.ad, /*time*/ u.time, /*args*/ u.camp); },
11 /* update rule */ (Entry e, UpdateRequest r) { return Pair(/*time*/ r.time, /*new value*/ r.camp); })
12 .progress(dym_table, /*flag*/ UPDATE_PROGRESS,
13 /*progress func*/ (T upstream_watermark) { return upstream_watermark; });
14
15 event_stream.fetch(dym_table,
16 /*request func */ (Event e) { return CommittedFetchRequest(/*key*/ e.ad, /*time*/ e.time); },
17 /* fetch rule */ (Entry e, CommittedFetchRequest r) { return e.values_within((-inf, r.time)).last().camp; })
18 .progress(dym_table, /*flag*/ FETCH_PROGRESS,
19 /*progress func*/ (T upstream_watermark) { return upstream_watermark; })
20 .map((Pair<Event, Campaign> e_with_camp) { /* compute and return the effectiveness of ‘camp‘ */ });

Listing 1: Code snippet for the advertising campaign stream anslysis application

Fig. 3: AdCamp description

online shopping platform. The application consists of an
“event” stream that emits “user viewed advertisement ad
at time ta” records, and an “update” stream that emits “ad
belongs to promotion campaign camp starting at time tc”
records. The “update” stream models a dynamic mapping,
which records that an ad at a specific time belongs to which
campaign camp. At any specific time, an advertisement is
only assigned to exactly one campaign. The purpose of
AdCamp is to analyze how effective a promotion campaign
is.

Figure 3 describes the AdCamp application and Listing 1
gives the code snippet. We create a State, called dym table, to
keep the dynamic mapping from ad to camp at time t (line 1).
The “update” stream uses the Update operator to update the
entries in dym table, which adds a pair (t, camp) to the entry
with key ad (lines 9-11). There is also a Progress operator
(hidden in Figure 3 for simplicity) that reports the upstream
watermark (i.e., the watermark of the applied updates) as
update progress to the State (lines 12-13).

For each “event” record with timestamp t, the Fetch
operator constructs a read-committed fetch request with
time range (−∞, t], where ad is the key and the fetch rule
returns the latest value within (−∞, t] (lines 15-17). That is,
the fetch returns the campaign camp that ad belonged to at
time t. Similar to update progress, another Progress operator
is used to report the watermark of answered events as the
fetch progress to the State (lines 18-19).

We also use the compaction rule, which retains the latest
value before F for each State entry and all earlier values are
deleted (lines 3-7).

Here, the compaction only needs to retain the latest value
before F because for any incoming “event” record “user
viewed ad at time t”, the definition of F implies t ≥ F . Thus,
the mapping (ad, camp) must have a timestamp t1 such that
either (1) F ≤ t1 ≤ t, or (2) t1 < F ≤ t. For Case (1),
the value is not affected by the compaction. For Case (2),
the fetch rule returns the latest value before t, which is just
t1. We also remark that the values within the range [F,U)

should not be compacted because all values (not just the
latest one) within this time range may still be fetched by an
incoming stream record.

Compared with the workaround solutions in §2.2, our
State abstraction and operators provide a general program-
ming framework for timestamped state sharing, where the
details of State operations, correctness and optimizations are
transparent to users.

4 SYSTEM DESIGN & IMPLEMENTATION

Overview. We developed a DSPS, called Nova, to imple-
ment the State abstraction and integrate it with the popular
dataflow model [17], [18]. Nova follows the master-worker
architecture. The master distributes workloads to workers,
monitors the liveness of each worker, and initiates system
checkpoint. Workers run multiple executors concurrently.
As Figure 4 illustrates, each executor either (1) processes
stream records on a subgraph of a user-defined dataflow
graph, or (2) manages State entries and handles State access
requests both from local and remote executors.

We implemented Nova using the C++ Actor Framework
(CAF) [27], which provides an actor model layer, where
actors are a set of concurrent entities that communicate via
asynchronous message passing. Each executor in Nova is
an actor in CAF. We translated dataflow graphs to actor
execution and implemented various system components for
distributed computation with fault tolerance and exactly-
once processing guarantee.

Users construct a dataflow graph using the State access
operators (i.e., Fetch, Update and Progress) and common
dataflow operators (e.g., Map, Join, Shuffle, etc.). Nova splits
a dataflow graph into subgraphs, where two connected
operators are placed in different subgraphs if and only if
the data movement between them results in wide depen-
dency [28], i.e., a many-to-many mapping from the instances
of an upstream operator to the instances of a downstream
operator. Wide dependency is common for operations such
as Shuffle and Broadcast. Source operators have no upstream
and fetch data from data sources (e.g., Kafka) and then emit
records to its downstream. Sink operators have no down-
stream and send records to other systems for durability or
further processing.

To start the execution, a worker instantiates a subgraph
on multiple executors according to user-defined parallelism,



7

Fig. 4: On the left are two dataflows. On the right it shows
their execution at runtime, where each of the rounded
rectangles inside a worker represents an executor. A solid
(dash) circle represents an operator (instance).

and the executors process different partitions of records in a
data parallel manner. State instances also run on separated
executors. The entries of a State are partitioned among the
State instances. Each State instance manages one partition of
the State and processes update/fetch requests and progress
messages from State operator instances.

Although Nova itself is a DSPS, the focus of this paper is
not on stream processing and thus in the following sections
we only discuss the system components and techniques
used for efficient State operations, message delivery and
fault tolerance for State access.

4.1 State Operations
To process a stream record, an Update/Fetch operator may
send one or more update/fetch requests to the State. The
Update/Fetch operator waits for all the replies of a stream
record before forwarding the record (and the fetch replies)
to its downstream operators. The out-of-order processing
paradigm [17], [29] is adopted here, which forwards a record
as soon as all of its replies are received, without waiting
for any preceding record. This enables efficient asynchronous
processing on the stream records.

Upon receiving a fetch request, the State first checks
whether the request can be replied according to the time se-
mantics described in §3.4, i.e., whether the reply timestamp
T of the request is less than the global update progress U .
If yes, the request is processed with the fetch rule and the
result is sent back to the requesting Fetch operator immedi-
ately. Otherwise, the State buffers the request in a priority
queue, called the pending queue, where requests are sorted by
their reply timestamps. When the update progress U moves
forward, the State checks and processes the requests starting
from the head of the pending queue until meeting a request
that cannot be replied.

Upon receiving an update request, the State finds the
entry according to the key specified in the request and
then processes the update using the update rule. After that,
the State sends an update acknowledgment back to the
requesting Update operator to indicate that the update has
been applied.

We next discuss optimizations for State operations.
Prioritizing replies. An Update or Fetch operator needs

to process both stream records (from upstream operators)

and replies (from the State). One critical issue is delayed
replies due to head-of-line blocking, i.e., the replies are
queued after a long list of new stream records while the
downstream operators are waiting for the replies, especially
when records are flowed in small batches. The blocking de-
stabilizes the end-to-end latency and the situation can get
worsen in cycles if the blocking is not handled. Thus, we
prioritize replies over stream records, so that (1) the delivery
of replies have higher priority than new stream records, and
(2) an Update or Fetch operator always processes replies (if
any) before processing new stream records and generating
new requests.

Update progress acceleration. In most cases, an update
Progress operator is a direct downstream of an Update oper-
ator. Let P be the Progress operator and U be the Update
operator. When U emits a watermark w to P, it means
that U has received (from the State) all the replies for its
update requests that have timestamps smaller than w. P
then reports w as the update progress to the State. Let t1
be the time when U has sent (to the State) all its update
requests that have timestamps smaller than w, and t2 be
the time when U emits w. There is a gap between t1 and
t2. As w is used to update the global update progress, the
larger (t2 − t1), the greater is the latency of processing fetch
requests since a fetch request needs to wait for longer time
before the global update progress pasts its reply timestamp.
In the case when P is not a direct downstream of U, U should
emit w at t2 in order to guarantee the correctness of State
access. However, when P is a direct downstream of U, we can
actually push t2 to t1, i.e., U can emit w at t1, as we analyze
below.

Since the two operators U and P are in the same dataflow
subgraph, the progress message m will be put into the same
message queue as the update requests, in the order of the
message creation time. The State consumes messages in the
queue in FIFO order. Thus, when the State sees m, all update
requests that were sent to the State before m must have
been processed. This acceleration allows an update Progress
operator to send timely and correct progress of the update
operations to the State.

Compaction of old values. With stream records coming
in continuously, a State keeps accumulating more entries
and each entry may accumulate more values with different
timestamps. This will lead to unbounded memory usage
and slow down State access. Compaction addresses this
problem.

We may actively call compaction when the fetch progress
F moves forward. However, in case of a big increment on
F , a large number of values will have to be compacted,
which results in a halt on request processing and thus a
sudden, sharp increase in the latency, even if compaction
is processed in parallel by many State instances. Also, if
F advances frequently, this approach wastes time as each
compaction goes through all the State entries but only a
small fraction of the entries may be compacted. Thus, the
active approach may create latency spikes. For example,
active compaction for the AdCamp workload (tested with
an event rate of 1M/s and update rate over 50K/s) leads to
highly unstable 99% latency (from hundreds of msec to tens
of sec).

We consider a hybrid approach. We first take a lazy ap-



8

proach, which piggybacks the compaction of the old values
of a State entry when we actually access the entry. For the
case that some State entries may need to wait for a long time
for compaction because they are not frequently accessed,
we schedule an active compaction procedure periodically
with a configurable period. For each scheduled compaction,
we sweep over a fixed number of entries (starting from
where the previous compaction stops) such that normal
State processing is much less affected. Compared with active
compaction, this approach has stable 50% and 99% latency
at 2ms and 60ms for the AdCamp workload.

4.2 State Message Delivery

State messages refer to Fetch/Update requests and replies,
and progress messages. The delivery of State messages are
all based on messaging among operators. When stream
records come at a fast rate, a large number of requests
and replies are generated and delivered among many State
operator instances and State instances, both within the same
machine and across the network. That raises a challenge to
the design of the message delivery queue to meet the low-
latency requirement.

One standard design [27], [30] is a single-reader-many-
writer queue, where only one reader consumes the queue
and many writers can push messages to the queue using
atomic compare-and-swap (CAS) operation. However, reads
may conflict with writes and writes may also conflict with
each other when writing to the same queue. The conflicts
lead to retries of reads and writes. The more conflicts we
have, the more retries we will get, which leads to higher
end-to-end latency. The case is especially common when
many State operator instances send requests at a high rate
to the same State instance, which leads to many conflicts
in reading/writing from/to the message queue of the State
instance (for local delivery) or the network communication
module (for remote delivery).

Conflict-free message delivery. To address the above-
mentioned problem, we first adopt a circular message queue
design for the delivery from one writer to one reader, as
shown in Figure 5a. The message queue is based on a
circular array of fixed length N , with a write offset W and a
read offset R. Each slot of the array stores one message. The
offset W (or R) indicate the latest position that the writer (or
reader) can write (or read). When a new message is written,
W is incremented by 1. W is reset to 0 if W = N , meaning
that the writer should write from the beginning next time.
The offset R is incremented in a similar way when reading
messages in the queue.

To handle message delivery from multiple writers to one
reader, we create one message queue for the connection
from each writer to the reader, e.g., in Figure 5b we have
four queues (in blue) from each writer connected to the
reader. This design eliminates (1) the conflicts among writers
because each writer writes to a separated queue, and (2) the
conflicts between a reader and a writer because they operate
on different positions of the queue and update different
offsets, unless the queue is full. Here, a reader or a writer
is physically an executor in Nova. The number of executors
in one machine is usually not larger than the number of
CPU cores. Thus, even for a full connection among all the

(a) Message queue (b) Multiple writers

Fig. 5: Conflict-free message queues

executors, the number of queues that an executor needs is
still reasonably small, and even a full scan on these message
queues has little overhead.

Timely message processing. While the message queue
design is conflict-free, it is challenging to ensure that a
reader reacts timely to new messages. One simple solution
is busy-waiting for new messages, i.e., the reader keeps
checking if there is any new message in all the queues.
However, this approach results in CPU cores being occupied
by writer and reader threads, which wastes CPU resource
and makes other threads (e.g., threads for network I/O, disk
I/O or timing service) more difficult to obtain CPU resource
for their processing.

To avoid busy-waiting, we use a notification mechanism
as follows. We associate a notification flag Fi with each
conflict-free queue Qi. Initially Fi = 0. When a new message
is written to Qi, we have two cases. (1) Fi = 0, indicating
that the new message is not noticed by the reader. In this
case, the writer of Qi sets Fi = 1 and sends a notification
to the reader. When the reader receives a notification, the
reader first sets Fi = 0 and then reads all the messages
it sees in Qi. (2) Fi = 1, meaning that a notification has
been sent by a prior message, though the reader has not
received it yet. In this case, we simply wait for the reader to
receive the notification and read Qi. Thus, the notification
mechanism ensures that new messages pushed into Qi will
be read by the reader when the reader receives a notification
from Qi.

The notifications are written/read to/from a queue us-
ing CAS operation, which brings back some conflict over-
head. However, for this notification queue, we can effec-
tively lower its conflict overhead as follows. We reduce
the need for notification by keeping the reader actively
reading from conflict-free queues that are receiving new
messages. Upon receiving a notification sent by some queue
Qi, the reader marks Qi as “toRead” and triggers a periodical
consumption procedure (if it was not already triggered
by a prior notification of some Qj). This procedure runs
repeatedly in rounds as long as there is a “toRead” queue. In
each round, the reader reads the messages in each “toRead”
queue. If the reader fails to get any message from a “toRead”
queue Qi (i.e., no new message is pushed into Qi) in the
last K rounds (K = 100 by default), it un-marks Qi, sets
Fi = 0, and reads Qi once again to consume messages that
may have arrived during the time gap between the last read
and the setting of Fi.

Using the above mechanism, when the stream speed is
high, the reader will get new messages from the conflict-



9

Fig. 6: Communication between State and operators

free queues continuously and writers need not send noti-
fications frequently to the reader, where the writer/reader
can achieve high write/read speed without conflict. When
a queue is empty, the reader needs not waste time checking
the queue but it can react to new messages with the help of
notifications.

4.3 Fault Tolerance on State Access
Asynchronous barrier snapshotting (ABS) [22], [31] proposed
by Apache Flink is a state-of-art technique for fault tolerance
and exactly-once processing, which avoids global halts and
supports cyclic dataflow graphs. Nova adopts ABS as the
underlying fault tolerance mechanism to ensure the exactly-
once message delivery for all the physical communications.
In this section, we discuss how we ensure fault tolerance on
the communication between State and State operators based
on ABS, and optimize ABS specifically for State access.

We first attempt to apply ABS directly for the com-
munication between State and State operators. Consider
the communication pattern shown in Figure 6. ABS peri-
odically generates a checkpoint barrier. When a Fetch/Up-
date operator instance receives a barrier, it first persists
its state1 to durable storage, then sends the barrier to its
downstream Progress operator instance and all the State in-
stances. Similarly, a Progress operator instance also persists
its state and sends the barrier to the State instances. When a
State instance receives the barriers from all the associated
Fetch/Update/Progress operator instances, it persists its
state (including the State entries, the yet-to-process fetch
requests, and the latest reported progresses of the Progress
operator instances) and sends the barriers through the
“resp” edges back to the Fetch/Update operator instances.
The Fetch/Update operator instances need to log all the
replies that they receive through the “resp” edge until they
receive a barrier. Persisted states along with logged replies
form a complete checkpoint. In case of failure, each operator
instance loads its persisted state from the latest globally-
completed checkpoint and resumes the execution from there.

While this solution promises exactly-once processing, it
is not efficient as a State instance has to wait for checkpoint
barriers from many operator instances. As shown in [22],
waiting for more barriers incurs higher alignment time (i.e.,
the time gap from the receipt of the first barrier to the receipt
of the last barrier), which in turn adds higher end-to-end
latency to record processing.

To address the above problem, we make the following
change: (1) Fetch operator instances and update Progress in-

1. The state here refers to the (local) state of an operator instance,
which is not the same as the entries stored in a State, i.e., a system-
wide state. Note that although the data and the results of stream
processing are stored in a State, each operator in Nova still keeps a
minimal amount of essential information (e.g., upstream watermark)
for its processing.

stances do not send checkpoint barriers to the State instances;
(2) State instances do not persist yet-to-process fetch requests.
The above optimization helps reduce the alignment time
as Fetches are more frequent than Updates. However, it is
not straightforward to see why this change still ensures the
correctness of fault tolerance, which we explain below.

To show the correctness, we only need to consider
(A) whether requests and progress messages are delivered cor-
rectly, and (B) whether requests and progress messages are
processed by a State instance in a correct order.

For (A), the exactly-once delivery of update requests and
fetch progress messages are automatically covered by ABS.
For fetch requests, since un-responded fetch requests are
checkpointed by the Fetch operator instances that process
them, the exactly-once delivery of fetch requests can be
guaranteed by simply re-sending these requests during re-
covery. As for update progresses, missing some of them due
to failure does not matter, because new update progresses
will be generated.

For (B), we need to ensure that (i) an update/fetch
progress p is seen by the State only after all update/fetch
requests before p have all been processed, and (ii) a fetch
request with reply timestamp t is replied only when all
update requests before t have all been processed. Point (i)
is guaranteed because after the recovery, an update/fetch
progress is also generated only when all the update/fetch
requests before the progress are replied. As in the case when
update progress acceleration is applied, (i) is also ensured as
the analysis in §4.1 still holds. With (i) guaranteed, the up-
date progress U and the fetch progress F are thus correctly
maintained, which guarantees (ii) by the time semantics
discussed in §3.4.

5 EXPERIMENTAL EVALUATION

We evaluated Nova using three applications and compared
with alternative solutions (§2.2-2.3) to show that a general
solution for state sharing is needed. We used a cluster of 10
machines, each with 16 Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz and 32GB RAM, connected with 10Gbps Ethernet
(average latency≈ 80us). For all the systems tested, we care-
fully tuned their parameters to give the best performance as
we could.

5.1 Advertising Campaign Stream Analysis

We used the AdCamp workload in §3.5 as a benchmark
to measure the performance of State access. We compared
Nova with three composite solutions: Nova with state man-
aged by Redis (5.0.0), Nova with state managed by VoltDB
(10.1.1), and Flink (1.12.0) with state managed by InfluxDB
(2.0.3). By comparing Nova with Nova+Redis and Nova+VoltDB,
we want to show that the performance differences come only from
the differences in state management, i.e., using Nova, Redis or
VoltDB.

In addition, we also compared Nova with DB-only so-
lutions: VoltDB and InfluxDB, by directly implementing the
AdCamp workload on them without using any DSPS, where
state is managed by VoltDB or InfluxDB while requests and
replies of updates and events are handled by threads using
VoltDB or InfluxDB client library.



10

(a) Latency (Ru = 1K/s) (b) Latency (Re = 1M/s)

(c) Te (Ru = 1K/s) (d) Te (Re = 1M/s)

(e) Tu (Ru = 1K/s) (f) Tu (Re = 1M/s)

Fig. 7: Performance on the AdCamp workload

The storage systems, i.e., Redis, VoltDB and InfluxDB,
do not support time semantics for state access, i.e., they
cannot tell whether updates up to a given timestamp are
all applied. Thus, before we issue a fetch request on time
range (−∞, T1], we need to ensure that every update with
timestamp T2, where T2 ∈ (−∞, T1], has been applied in
the storage system. We maintain a progress P for all replied
updates, i.e., P guarantees that all updates with timestamp
T2 < P have been applied in the storage system. For
composite solutions, P is delivered from the update stream
to the event stream to indicate that queries in the time range
(−∞, T1], where T1 < P , can now be sent. For DB-only
solutions, P is updated to the DB system and the event
stream learns the changes of P by actively querying the DB
system. Asynchronous operation is used for both update
and query operations for the communication between the
external storage and the DSPS.

We report the latency for different update rate Ru and
event rate Re, i.e., the number of updates or events generated
per second by the sources. We also report the actual update
throughput Tu and event throughput Te, i.e., the number of
updates and events processed per second.

In Fig 7a and Fig 7b, each pair of curves plot the 99% and
50% latency of a method. Among all the methods, Nova
has significantly lower and stable latency. For Ru=1K/s,
the 99% latency of Nova remains less than 60ms when
Re=10M/s. For Re=1M/s, Nova can handle Ru up to 200K/s
with latency around 3ms. We explain the main difference
between Nova and the other methods as follows.

For Nova+Redis, Nova+VoltDB, and VoltDB, a fetch
request r needs to wait for the progress P of the replied

(a) (b)

Fig. 8: Scalability performance on the AdCamp workload

updates to pass r’s time range before r can be sent out, but
the advance of P can be delayed by some update requests
that are not timely processed. When the update rate is
higher, the advance of P needs to wait for more update
requests to be replied and this leads to higher latency. In
contrast, a fetch request in Nova can be sent to the State
once it is created, without the need to check the progress
of update replies. The time semantics of State (§3.4) ensures
that fetch and update requests will be processed correctly.
Compared to the progress P above, the update progress
U in Nova is advanced more timely with the acceleration
technique (§4.1), which helps the fetch requests to be replied
timely.

We report Te and Tu in Fig 7c-7f. Nova achieves signifi-
cantly higher Te and Tu than the other methods. We notice
that Tu of Nova+VoltDB and VoltDB in Fig 7f drops rapidly
when Ru goes beyond 10K/s and 50K/s, while Tu of Nova
and Nova+Redis eventually becomes flat and stable. With
higher Ru, more keys are created and each key carries more
timestamped values. For VoltDB, each query needs to scan
more entries in the table and each update suffers more delay.
But for Nova and Nova+Redis, a query/update only needs
to look up a key from a hash table and searches/inserts the
value in a sorted structure, which is much more efficient and
stable even under a large amount of keys and values.

Flink+InfluxDB and InfluxDB have similar performance.
In both the composite solution and DB-only solution, we
observed that InfluxDB used all the CPU cores to process
updates and queries, but the processing throughput was still
low and the latency was still high. Thus, we were only able
to obtain the results for Flink+InfluxDB and InfluxDB when
Ru and Re are as low as 1K/s.

We also examined the scalability of our State. Fig 8
reports the maximum Te that Nova can handle (within
200ms latency). Each curve in Fig 8 is for a different Ru,
from 1K/s to 100K/s. Fig 8a shows that the maximum Te
increases when more threads are added for State. Te stops
increasing when the number of threads is around 8 to 10
where all the CPU cores are fully utilized by the State and
its access operators. If more threads are added, State starts to
compete with other operators (e.g., update) for computing
resources, which degrades the performance. In Fig 8b, the
maximum Te scales linearly when we increase the number of
machines from 2 to 10. Note that when 1 machine is used, Te
is stable around 2.9M/s for Ru < 100K/s, which is higher
than Te when 2 machines are used because of the network
communication overhead. But as the number of machines
increases to 3 or 4, Te is already higher than 2.9M/s.



11

Fig. 9: Online inference latency

Fig. 10: Online training time

5.2 Online Learning
We evaluated the use of State in online learning applica-
tions. We tested both (1) inference with low-latency require-
ment, where samples were processed one after another, and
(2) training with high-throughput demand, where samples
are grouped by a window operation on mini-batches and
processed in a BSP manner. We used FTRL [32], [33], a
standard online learning algorithm used in industry, on
the kdd12 dataset (with 54M features) on 10 machines.
For inference, we compared with FlinkPS [20], which is a
parameter-server implementation based on Flink using the
CD workaround (§2.2). For training, we compared with a
composite solution, Spark-on-Angel (2.0.0) [34], [35], which
integrates Apache Spark and Angel (a parameter server) for
online learning in industry (it outperforms native Spark in
machine learning workloads under batch processing).

In Fig 9, each pair of curves report the 50% and 99%
latency for inference. Nova achieves very low 50% latency
in all cases. In contrast, the latency of FlinkPS is hundreds of
times larger than Nova mainly due to inefficient parameter
pulling operation. The pull replies in FlinkPS are processed as
normal stream records and Flink does not have a mechanism
to raise the priority of pull replies. Thus, the pull replies
suffer from the head-of-line blocking (as discussed in §4.1),
which becomes worse at a higher data rate since pull replies
and new stream samples can easily fill up the message
queue of a worker in FlinkPS. This further triggers back
pressure and causes cyclic deadlock. FlinkPS provides a
user-configurable option to set a limit on the number of
unanswered pull requests of each worker. But as we tested,
the maximum limit we can set is only 1.8K, which gives the
lowest latency without deadlock. In contrast, using priori-
tizing reply (PR) (§4.1), the pull replies (i.e., fetch replies) in
Nova have higher priority than normal records in terms of
delivery and processing. To validate this, we disabled PR in
Nova and Fig 9 shows that its latency worsens significantly.
The result is still better than FlinkPS because Nova has other
designs such as conflict-free message delivery (§4.2) that
allows it to process requests and replies more efficiently
under higher data rates (§5.4).

Fig 10 reports the average training time of a mini-batch
under (1) different batch intervals and fixed data rate at
100K/s and (2) different data rates and fixed batch interval

TABLE 2: Mini-batch training time decomposition
PullGen Pull Cal PushGen Push

Nova 30% 9% 51% 4% 6%
Spark-on-Angel 7% 37% 18% 38%

at 60s. Nova records competitive training time compared
with Spark-on-Angel, showing that the State design can
handle online training with high throughput. To analyze the
performance, Table 2 reports the percentage of time spent
on different steps of the training: pull request generation
(PullGen) and delivery (Pull), gradient calculation (Cal),
push request generation (PushGen) and delivery (Push). The
percentages of each step for different settings do not vary
significantly and we report the average. We found that
Spark-on-Angel spent most of the time on Pull and Push,
while Nova spent more time on PullGen and Cal. Although
PullGen and Cal are most time consuming in Nova, their
actual time is still relatively small. For Pull and Push that
are communication intensive, Nova’s percentages are sig-
nificantly lower than Spark-on-Angel, which shows that
Nova is more efficient on the delivery of pull/push (i.e.,
fetch/update) requests/replies.

Based on the above analysis, we further studied the
communication between Spark and Angel. Here we mainly
discuss Pull since the delivery for both Pull and Push are
similar. A Spark executor puts pull requests to Dispatcher
threads via lock-based blocking queues and then waits
until all requests are replied. Each Dispatcher uses Requester
threads to deliver pull requests to one server in Angel.
Another type of Dispatcher threads use Responser threads
to process pull replies from servers in Angel, where the
Responsers use lock to avoid conflicts when writing results to
the same executor. The request processing is asynchronous,
but the frequent uses of locks incur non-negligible over-
heads on the Pull (and Push) operation in Spark-on-Angel. In
contrast, the message delivery in Nova is also asynchronous
but the conflict-free message queue design and notification
mechanism (§4.2) enable efficient message delivery and
processing, which we will further examine in §5.4.

5.3 Real-time Cycle Detection (RTCD)
In this experiment we evaluated the performance of Nova
for RTCD. Following [15], we created three queries to detect
cycles of length 3, 4 and 5 that are formed in the recent 48,
24 and 12 hours. When an edge update with timestamp t
arrives, we detect new cycles in the updated graph within
time window [t − s, t], where s is 48, 24 or 12 hours.
We generated a graph stream from a public social graph,
Twitter [36], as follows: first, we extracted a subgraph from
Twitter as the starting graph and assigned timestamps to its
edges, where the timestamps are evenly distributed over a
period of 48 hours; then, we randomly sent the remaining
edges as an edge stream.

We compared Nova with Timely Dataflow (0.10.0) [9],
denoted as Timely. Nova and Timely use the same RTCD
algorithm and the difference is in the state management. We
use the CD+OF workaround (§2.2) to manage state in Timely
as follows. We implemented two types of operators: a state
operator for storing the dynamic graph as partitioned in-
operator state and three query operators for processing the
three queries. Each time a new batch of edge updates is sent



12

Fig. 11: Query time of RTCD

Fig. 12: Delivery time for 100M messages

to the state operator to update the graph, and to the query
operators to trigger query execution. The query operators
and the state operator form a cyclic dataflow for request/re-
ply delivery of graph data, where the query operator fuses
request processing and cycle detection.

We ran Nova and Timely on 10 machines, and carefully
tested Timely with different number of worker threads to
get the best results. We started with a graph with 3.5M edges
and the systems processed a batch of new edge updates
in each second, where the update rate varied from 2K/s
to 14K/s. In Fig 11, each pair of curves report the 50%
and 99% latency for processing a query, which shows that
Nova achieves significantly better performance especially at
higher data rates.

We analyzed the CD+OF workaround and found that its
performance problem is due to its large amount of progress
traffic. To compact stale graph data, the state operator needs
to know the progresses of the query operators, in order to
get a correct time boundary T such that no more update
with timestamp t < T is still being processed inside the
dataflow cycle. However, to get the correct T in the CD+OF
workaround, we need to maintain different progresses at
different iterations for the requests and replies that are
flowing inside the dataflow cycle, which generates many
progresses to be delivered. In addition, since the state op-
erator is inside the cycle, it also has to report progresses
to the query operators. In contrast, our State design decou-
ples State progress from State access operations, where a
State needs not send progress to other operators. We use
a Fetch operator in a dataflow cycle to fetch the neighbors
of a vertex iteratively, but we report fetch progresses by a
Fetch Progress operator after the dataflow cycle so that the
Progress operator can report to the State the output water-
mark of the dataflow cycle, without iteration information.

We also evaluated the effectiveness of Update Progress
Acceleration (UPA) (§4.1). We disabled UPA in Nova and
Fig 11 shows that UPA improves the 99% query processing
time, as it helps advance the update progress more timely.

5.4 Performance on Message Delivery

We evaluated the performance of the message delivery
mechanism in §4.2 with an X : 1 communication scenario,

(a) Checkpointing (b) Recovery

Fig. 13: Fault tolerance results (best viewed in color)

which measures the competition among X writers commu-
nicating with the same reader. Each writer and the reader
run in separate threads. The total number of messages sent
by the writers was 100M and each message was a 8-byte
integer to mimic a message pointer. The length of each mes-
sage queue was set to 216 = 65,536. We varied X from 1 to
32 (as each machine has 32 cores). We compared Nova with
Disruptor [30] and the default delivery mechanism in CAF
(as Nova is built on CAF). Disruptor is a high performance
inter-thread messaging library, where the message queue is
also based on a cyclic array design but different writers push
messages to the same queue via CAS operation. As writers
in Disruptor share the same queue, the length of its queue
was set to 65,536X .

Fig 12 reports the delivery time for 100M messages.
When the number of writers increases, the delivery time
of Disruptor and CAF first decreases because messages are
written concurrently into the queue, but then increases be-
cause the conflicts among the writers on the CAS operations
become severe and the overhead of conflicts outplays the
benefit of concurrent writes. In contrast, Nova’s delivery
time decreases continuously. With 32 writers, Nova has a
throughput of 298M messages/sec. This is because each
writer in Nova writes to its own queue and writers have no
conflict with each other, and thus more workers effectively
improve the overall message delivery throughput.

5.5 Performance on Fault Tolerance
We examined Nova’s performance on checkpointing and
recovery using the AdCamp workload on 10 machines. For
checkpointing, we fixed the update rate to 1K/s and tested
different event rates and checkpoint intervals. We compared
our optimized ABS in §4.3 with the original ABS [22], [31].
Figure 13a shows that our optimization effectively reduces
the 99% latency, especially for larger event rates and smaller
checkpoint intervals. To evaluate the performance of recov-
ery, we killed one of the workers after the application ran
stably for a period of time and replaced it with a backup
worker. We set the checkpoint interval to 5s. Figure 13b
shows that the worker failure happened at around 20s and
the 50% latency remained stable at 2ms, while the 90%
latency went up to around 200ms but soon dropped and
stabilized at 4ms.

6 CONCLUSIONS

We presented a new system-wide state abstraction with
well-defined time semantics, filling in a missing piece in
existing stream processing systems, i.e., timestamped state



13

sharing. We built Nova, a prototype system, to validate our
State design with efficient implementation and optimiza-
tions. Experiments show that Nova effectively improves
performance on a wide range of workloads such as adver-
tising campaign stream analysis, dynamic graph analytics,
and online learning. The results also show that designs such
as conflict-free message delivery, prioritizing replies, update
progress acceleration and optimized ABS are effective.

Acknowledgments. We thank the reviewers for their con-
structive comments that help significantly improve the qual-
ity of the paper. This work was supported by GRF 14208318
from the RGC of HKSAR.

REFERENCES

[1] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Dis-
cretized streams: Fault-tolerant streaming computation at scale,”
in Proceedings of the twenty-fourth ACM symposium on operating
systems principles. ACM, 2013, pp. 423–438.

[2] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi,
I. Stoica, and M. Zaharia, “Structured streaming: A declarative
API for real-time applications in apache spark,” in Proceedings of
the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, 2018, pp. 601–
613.

[3] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,
and K. Tzoumas, “Apache flinkTM: Stream and batch
processing in a single engine,” IEEE Data Eng. Bull.,
vol. 38, no. 4, pp. 28–38, 2015. [Online]. Available:
http://sites.computer.org/debull/A15dec/p28.pdf

[4] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat,
S. Mittal, and D. V. Ryaboy, “Storm@twitter,” in International
Conference on Management of Data, SIGMOD 2014, Snowbird, UT,
USA, June 22-27, 2014, 2014, pp. 147–156. [Online]. Available:
https://doi.org/10.1145/2588555.2595641

[5] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell, “Samza: stateful scalable stream
processing at linkedin,” Proceedings of the VLDB Endowment,
vol. 10, no. 12, pp. 1634–1645, 2017.

[6] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter heron: Stream
processing at scale,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, T. K. Sellis, S. B. Davidson, and
Z. G. Ives, Eds. ACM, 2015, pp. 239–250. [Online]. Available:
https://doi.org/10.1145/2723372.2742788

[7] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman,
R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Mill-
wheel: Fault-tolerant stream processing at internet scale,” PVLDB,
vol. 6, no. 11, pp. 1033–1044, 2013.

[8] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi, “Naiad: a timely dataflow system,” in ACM
SIGOPS 24th Symposium on Operating Systems Principles, SOSP
’13, Farmington, PA, USA, November 3-6, 2013, M. Kaminsky and
M. Dahlin, Eds. ACM, 2013, pp. 439–455. [Online]. Available:
https://doi.org/10.1145/2517349.2522738

[9] Timely dataflow. ”https://github.com/TimelyDataflow/timely-
dataflow”.

[10] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard, “Differential
dataflow,” in CIDR 2013, Sixth Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January 6-9, 2013,
Online Proceedings. www.cidrdb.org, 2013. [Online]. Available:
http://cidrdb.org/cidr2013/Papers/CIDR13 Paper111.pdf

[11] D. H. Stern, R. Herbrich, and T. Graepel, “Matchbox: large scale
online bayesian recommendations,” in Proceedings of the 18th
International Conference on World Wide Web, WWW 2009, Madrid,
Spain, April 20-24, 2009, J. Quemada, G. León, Y. S. Maarek, and
W. Nejdl, Eds. ACM, 2009, pp. 111–120. [Online]. Available:
https://doi.org/10.1145/1526709.1526725

[12] C. Li, Y. Lu, Q. Mei, D. Wang, and S. Pandey, “Click-through
prediction for advertising in twitter timeline,” in Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Sydney, NSW, Australia, August 10-13, 2015,
L. Cao, C. Zhang, T. Joachims, G. I. Webb, D. D. Margineantu, and
G. Williams, Eds. ACM, 2015, pp. 1959–1968. [Online]. Available:
https://doi.org/10.1145/2783258.2788582

[13] A. Agarwal, S. Bird, M. Cozowicz, L. Hoang, J. Langford, S. Lee,
J. Li, D. Melamed, G. Oshri, and O. Ribas, “Making contextual
decisions with low technical debt,” arXiv preprint arXiv:1606.03966,
2016.

[14] Y. Zhang, R. Chen, and H. Chen, “Sub-millisecond stateful stream
querying over fast-evolving linked data,” in Proceedings of the
26th Symposium on Operating Systems Principles, Shanghai, China,
October 28-31, 2017. ACM, 2017, pp. 614–630. [Online]. Available:
https://doi.org/10.1145/3132747.3132777

[15] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and J. Zhou,
“Real-time constrained cycle detection in large dynamic graphs,”
PVLDB, vol. 11, no. 12, pp. 1876–1888, 2018. [Online]. Available:
http://www.vldb.org/pvldb/vol11/p1876-qiu.pdf

[16] A. Anagnostopoulos, J. Lacki, S. Lattanzi, S. Leonardi, and
M. Mahdian, “Community detection on evolving graphs,” in
Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, D. D. Lee, M. Sugiyama, U. von
Luxburg, I. Guyon, and R. Garnett, Eds., 2016, pp. 3522–
3530. [Online]. Available: http://papers.nips.cc/paper/6173-
community-detection-on-evolving-graphs

[17] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt,
and S. Whittle, “The dataflow model: A practical approach
to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing,” PVLDB,
vol. 8, no. 12, pp. 1792–1803, 2015. [Online]. Available:
http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf

[18] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K.
Gunda, and J. Currey, “Dryadlinq: A system for general-purpose
distributed data-parallel computing using a high-level language,”
in 8th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2008, December 8-10, 2008, San Diego,
California, USA, Proceedings, 2008, pp. 1–14. [Online]. Available:
http://www.usenix.org/events/osdi08/tech/full papers/yu y/yu y.pdf

[19] Trident. ”http://storm.apache.org/releases/current/Trident-
tutorial.html”.

[20] Flink-parameter-server. ”https://github.com/FlinkML/flink-
parameter-server”.

[21] T. Rabl, M. Sadoghi, H. Jacobsen, S. Gómez-Villamor, V. Muntés-
Mulero, and S. Mankowskii, “Solving big data challenges
for enterprise application performance management,” PVLDB,
vol. 5, no. 12, pp. 1724–1735, 2012. [Online]. Available:
http://vldb.org/pvldb/vol5/p1724 tilmannrabl vldb2012.pdf

[22] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, and K. Tzoumas,
“State management in apache flink: Consistent stateful distributed
stream processing,” PVLDB, vol. 10, no. 12, pp. 1718–1729, 2017.
[Online]. Available: http://www.vldb.org/pvldb/vol10/p1718-
carbone.pdf

[23] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. R. Piet-
zuch, “Making state explicit for imperative big data processing,”
in 2014 USENIX Annual Technical Conference, USENIX ATC ’14,
Philadelphia, PA, USA, June 19-20, 2014., 2014, pp. 49–60. [Online].
Available: https://www.usenix.org/conference/atc14/technical-
sessions/presentation/castro-fernandez

[24] J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas, U. Çetintemel,
J. Du, T. Kraska, S. Madden, D. Maier, A. Pavlo, M. Stonebraker,
K. Tufte, and H. Wang, “S-store: Streaming meets transaction
processing,” PVLDB, vol. 8, no. 13, pp. 2134–2145, 2015. [Online].
Available: http://www.vldb.org/pvldb/vol8/p2134-meehan.pdf

[25] F. McSherry, A. Lattuada, M. Schwarzkopf, and T. Roscoe,
“Shared arrangements: practical inter-query sharing for streaming
dataflows,” Proc. VLDB Endow., vol. 13, no. 10, pp. 1793–1806, 2020.
[Online]. Available: http://www.vldb.org/pvldb/vol13/p1793-
mcsherry.pdf

[26] J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araújo, M. Ek,
E. Kohler, M. F. Kaashoek, and R. T. Morris, “Noria:
dynamic, partially-stateful data-flow for high-performance web
applications,” in 13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2018, Carlsbad, CA, USA,



14

October 8-10, 2018., 2018, pp. 213–231. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/gjengset

[27] D. Charousset, R. Hiesgen, and T. C. Schmidt,
“Revisiting actor programming in C++,” Comput. Lang.
Syst. Struct., vol. 45, pp. 105–131, 2016. [Online]. Available:
https://doi.org/10.1016/j.cl.2016.01.002

[28] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” in Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2012, San Jose, CA, USA,
April 25-27, 2012, 2012, pp. 15–28.

[29] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. John-
son, and D. Maier, “Out-of-order processing: a new
architecture for high-performance stream systems,” PVLDB,
vol. 1, no. 1, pp. 274–288, 2008. [Online]. Available:
http://www.vldb.org/pvldb/vol1/1453890.pdf

[30] Lmax disruptor. ”https://github.com/LMAX-
Exchange/disruptor”.

[31] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas,
“Lightweight asynchronous snapshots for distributed dataflows,”
CoRR, vol. abs/1506.08603, 2015. [Online]. Available:
http://arxiv.org/abs/1506.08603

[32] H. B. McMahan, “Follow-the-regularized-leader and mirror
descent: Equivalence theorems and L1 regularization,” in
Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2011, Fort Lauderdale,
USA, April 11-13, 2011, 2011, pp. 525–533. [Online]. Available:
http://proceedings.mlr.press/v15/mcmahan11b/mcmahan11b.pdf

[33] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner,
J. Grady, L. Nie, T. Phillips, E. Davydov, D. Golovin, S. Chikkerur,
D. Liu, M. Wattenberg, A. M. Hrafnkelsson, T. Boulos, and
J. Kubica, “Ad click prediction: a view from the trenches,”
in The 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2013, Chicago, IL, USA,
August 11-14, 2013, 2013, pp. 1222–1230. [Online]. Available:
https://doi.org/10.1145/2487575.2488200

[34] J. Jiang, L. Yu, J. Jiang, Y. Liu, and B. Cui, “Angel: a new large-scale
machine learning system,” National Science Review, vol. 5, no. 2, pp.
216–236, 2017.

[35] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware
distributed parameter servers,” in Proceedings of the 2017 ACM
International Conference on Management of Data. ACM, 2017, pp.
463–478.

[36] P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). Manhattan, USA: ACM Press, 2004, pp.
595–601.

Yunjian Zhao is currently a PhD candidate in
the Department of Computer Science and Engi-
neering at the Chinese University of Hong Kong.
His research interests include graph databases,
online pattern matching and stream processing
systems.

Zhi Liu is currently a PhD student in the De-
partment of Computer Science and Engineer-
ing at the Chinese University of Hong Kong.
His research interests include graph databases,
stream processing systems and cluster resource
management.

Yidi Wu is currently a PhD candidate in the De-
partment of Computer Science and Engineering
at the Chinese University of Hong Kong. His
research interests include machine learning sys-
tems, distributed data processing systems and
cluster schedulers.

Guanxian Jiang is currently a PhD student in
the Department of Computer Science and Engi-
neering at the Chinese University of Hong Kong.
His research interests include graph databases
and distributed computing systems.

James Cheng is currently an associate profes-
sor in the Department of Computer Science and
Engineering at the Chinese University of Hong
Kong. His research interests include distributed
systems, graph databases, machine learning
systems, and cluster resource management.

Kunlong Liu was a research assistant in the De-
partment of Computer Science and Engineering
at the Chinese University of Hong Kong when he
worked on this project.

Xiao Yan was a PhD candidate in the Depart-
ment of Computer Science and Engineering at
the Chinese University of Hong Kong when he
worked on this project. His research interests
include large-scale similarity search, distributed
machine learning, and graph neural networks.


