1 Introduction
1.1 Motivation
In recent years there is a strong demand on wireless multiplayer game based on Pocket PC, mainly due to increasing popularity of Pocket PC, their astonishing computational power and networking capabilities, and human needs for entertainment and interpersonal interaction. However many difficulties has been encountered when developing such kind of games. The major problem lies on the absence of a common game development platform. It forces game developers to build games from scratch, despite the fact that most games share a large portion of overall system architecture, modular functionalities, and of course, code. Because the scale of a game is so huge, code developed often cannot be maintained properly, making it nearly impossible to enhance game features and reducing the scalability. Also, reuse of code from previous game project is only restricted to ‘copy-and-paste’ of code.
Although some effort has been put on constructing a common platform on mobile game development and some products (such as Microsoft® DirectPlay® for Pocket PC) have been released to alleviate part of the problem, these products only focus one component (such as networking) of games but not other components. Game developers can choose either to develop other parts themselves, or to incorporate a number of different products handling different parts, which is obviously another difficult task and may incur compatibility problem. Up to now we do not find a solution which handles completely all the graphics, networking, and other game-related stuff in one-stop fashion.

Inspired by the current situation, our project will focus on development of an architecture to ease the work of implementing various components in mobile multiplayer games. This architecture should meet the requirement of easy and fast deployment, be easy to expand and enhance the maintenance and reusability of code.
1.2 Project Objective
The targets of our project are to illustrate how various issues such as graphics can be handled how. We also want to demonstrate how to use the platform to develop a game and how the platform would facilitate the development of games.
Specifically, our final year project aims at:

· Facilitating and standardizing development of various mobile multiplayer game types by providing The Open Bluetooth Networking Game Development Platform,
· Implementing a complete API which handles various aspects of games such as graphics, networking, game data storage, physics, event handling etc.,

· Enhancing scalability, maintainability and reusability of software code when evolving games or developing similar games, and
· Developing a sample game based on our platform to demonstrate the effectiveness and necessity of using such a platform.
1.3 Method to Achieve Goals
In order to achieve the above goals, The Open Bluetooth Networking Game Development Platform we developed has the following modules to standardize code development process:

· Network engine which can set up a Bluetooth peer-to-peer network with two to three lines of code. Host migration capability is also provided.
· Graphics engine which provides drawing utilities to simplify graphics coding without adversely affecting drawing performance. A class of graphical user interface components is also included to further ease development work (especially development of menu interface).
· Data engine by which game developers can conveniently store and retrieve various attributes of game objects. Game data synchronization between peers is also automatically carried out by this module through the use of network engine.
· Event handler, which is mainly responsible for collecting events happened and distributing these events to appropriate modules. According to the events generated, it changes the states of all game objects.
· Physics engine, which handles all physical phenomenon such as change of velocity and acceleration of game objects and collision between objects.
· Logic engine, whose implements artificial intelligence (A.I.) of game objects.
· Game timing module which controls all time-related issues, including controlling precision of clock, synchronization of clocks between peers and correction of clock drift without abruptly changing the time.
The Open Bluetooth Networking Game Development Platform is a complete solution for mobile multiplayer game development. The above modules covers all important aspects when developing mobile multiplayer games, letting game developers concentrate on game settings, game logic and art work, and hence substantially increasing enjoyment of games and more importantly, productivity of development team.
2 Platform Overview
2.1 Introduction

2.2 Programming Platform

2.2.1 Microsoft® eMbedded Visual C++

2.2.2 GAPI & GapiDraw

2.2.3 Widcomm Bluetooth for Windows CE SDK
2.3 Platform Architecture

2.3.1 Network Engine

2.3.2 Graphics and Graphics Engine

2.3.3 Data Engine

2.3.4 Event Handler

2.3.5 Physics Engine

2.3.6 Logic Engine

2.3.7 Game Timing Module
3 Network Engine

3.1 Introduction

Network engine is one of the most difficult components of a mobile multiplayer game to develop. Unlike the situation in desktop arena, in which TCP/IP provides a standardized and complete networking capabilities, existence of several connection technologies such as IEEE 802.11 family and Bluetooth complicates the matter in mobile computing. Besides the choice of connection technologies, some traditional networking issues have to be handled by network engine. One such issue is establishment and maintenance of peer-to-peer network topology. Election and migration of host, which is one particular peer in the game to play a particular role, is another example.
In this chapter, we would like
3.2 Bluetooth Technology
3.3 Peer-to-Peer Connection Topology

3.3.1 Dominating Connection Topology

3.3.1.1 Server-Client Topology

3.3.1.2 Peer-to-Peer Topology

3.3.1.3 Reason to Choose Peer-to-Peer Topology

3.3.2 Implementation of Peer-to-Peer Connection

3.3.2.1 Connection Procedure

3.3.2.2 Role of Host
3.4 Host migration

3.4.1 ???(sth like infro)
3.4.2 Review on Existing Host Migration Techniques
The development of host migration algorithm in distributed system community can be traced back as early as 70’s, as many other important algorithms such as distributed transaction and distributed mutual exclusion depend on the existence of an unique host to guarantee the correctness of these algorithms. Two important algorithms, namely ring-based election algorithm and bully algorithm, are introduced in section 3.3.2.1 and 3.3.2.2.
3.4.2.1 Ring-based Election Algorithm

Ring-based election algorithm is proposed to elect a host when all processes are arranged in a logical ring, which means a process pi can only send messages to the process p(i + 1) mod N and receive messages from the process p(i – 1) mod N, where N is the number of processes. Each process is assigned an identifier in the beginning, and the process with greatest identifier is the host. To notify all process the identity of the host, a two-phase algorithm is carried out. In election phase, a message initiated from one of the processes forwards round the ring to collect the greatest identifier of all processes. In elected phase, the greatest identifier message travels the ring once again to notify the identity of the host to all processes. Figure 1.1 illustrates the algorithm. The major disadvantage is that it is not fault-tolerant, making it not suitable in practical network situation.

3.4.2.2 Bully algorithm

blah blah blah……

3.4.3 Our Algorithm and Implementation

4 Graphics Engine

5 Data Engine
6 Event Handler

7 Physics Engine

8 Logic Engine

9 Game Timing Module
10 Sample Game Development
11 Contribution of Work

12 Conclusion

13 Reference

