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Security Issues in Grid Computing
Abstract
Grid Computing raises challenging issues in many areas of computer science. Among those areas, security is one of the major concerns that need to be addressed. In this paper we briefly introduce the basic concepts of Grid Computing. We then highlight a number of security issues, and discuss them one by one when applied to Grid Computing. We discuss six different security issues. They are single-signon, delegation, security policy issues, publish/subscriber communication systems, access control mechanism and trust.

We end up by proposing our own security solution towards the publish/subscriber communication system with integrated trust model so as to minimize the overhead while dealing with security.

1. Introduction

What is Grid Computing?

Nowadays, as computation and storage technologies improve steadily, increasingly large, complex and resource-intensive applications are being developed both in research institutions and in industry. It is found that computational resources are failing to reach the demand of those resource-intensive applications. As noted in [1], the power of network, storage, and computing resources is projected to double every 9, 12, and 18 months, respectively. Therefore, it is expected that computation power will fall behind storage in the long run and there will be increasing difficulty to gather enough computational resources for running applications at a single location.

Fortunately, improvements in wide-area networking make it possible to aggregate distributed resources in various collaborating institutions and to form what have come to be known as Grids. As noted in [2], Grid computing has been identified as a critical technology by industry for enterprise computing and business-to-business computing.


The term Grid was coined in the late 90s [3], to describe a set of resources distributed over wide-area networks that can support large-scale distributed applications. It is common to take electrical power grid as an analogy to Grid: access to computation and data should be as easy, pervasive, and standard as plugging in an appliance into an outlet. This analogy is persuasive.


In one of the foundational paper “The anatomy of the Grid” [2], Foster, Kesselman, and Tuecke attempt to (re-)define the Grid problem as coordinated resource sharing and problem solving in dynamic, multi-institutional, virtual organizations. 

What is virtual organization(VO)? The concept of a virtual organization (VO) is central to Grid computing. A simplified view is that a VO is a set of participants with various relationships that wish to share resources to perform some task. For example, if several parties co-operate together towards a particular project, says, space shuttle development project, a virtual organization is formed and each party will be considered as the member of the virtual organization.

2. Overview of Security in Grid Computing


As Grid combines computational and data resources across organizational boundaries, the sharing of code and data on the Grid gives rise to the need for security. Security is one of the major challenges that need to be addressed. Without security, the widely spread of Grid computing will be hindered to a certain extent. 

Grids are built on top of the existing operating systems like Linux, Unix, Windows …… or any other existing operating system. Therefore, security is a twofold challenge. Some security considerations are at the Grid level and independent of the underlying systems while the other security concerns are mainly at the operating system level.


In this paper, we will study six different security aspects and then end up by proposing our own security model/solution towards the information dissemination system.

    The six security issues are as follows:

· single-signon technique

· security policy issues

· access control

· security in publish/subscriber communication system

· delegation

· trust

2.1. Single-Signon, security policy and access control


In this section, we examine single-signon, security policy and access control one by one briefly. Our purpose is to address these three security issues in general.

2.1.1 Single-Signon

In Grid Computing, when an user executes a task, from time to time, that task may access to other restricted computational or storage resources on behalf of the user. It is normal for the user to be authenticated to those resources one by one so as to gain access. However, authentication often involves the encryption/decryption processes that induce heavy overhead. It is even worse if thousands of dispersed resources are being accessed so as to complete the task execution.


It would be nice if the user only need to be authenticated once and then subsequent authentications could be performed automatically (or hidden from the user/process involved). This is called signal-signon mechanism.


In Grid Computing, as the underlying operating system may be different and hence different security policies. Therefore, it needs extra effort to be done so as to realize the single-signon mechanism.

2.1.2 Security Policy Issues


As mentioned before, Grid computing is concerned with “coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations”. In other words, the Grid could be described as an infrastructure that tightly integrates computations devices, software, databases, specialized instruments, displays and people from widespread locations and under different management authorities. A Grid enforces users by allowing them to access heterogeneous resources, such as the above mentioned, that are distributed geographically and organizationally. It also benefits organizations by allowing them to offer unused resources on existing hardware. This is summarized in the following fact: A large number of applications are starved for computation resources, whereas an overwhelming majority of computers are often idle. This can be bridged by allowing computation-intensive applications to be executed on otherwise idle resources, no matter where the latter are located. 


Along with the positive impact that the creation and deployment of Grid environments have had to the increase of computational performance, they have also introduced a new set of security concerns and issues. Since grid resources are managed by many widely dispersed organizations, often with different security requirements and possibly conflicting security policies, managing security for such an environment is not easy. The specific characteristics of Grids lead to security problems that have not been addressed by existing security technologies for distributed systems.

Currently, how to manage and convert the diverse security policies from disparate systems becomes one of the major security challenge issues. For example, if one system is making use of X.509 certificate as its authentication mechanism while the other system is adopting the Kerbose ticket as its authentication mechanism, how could the Grid system, which sits in between those two systems, deal with that different security policies and are able to coordinate the computational or storage recourses sharing among those two systems? Obviously, this is another research issue which may be addressed.

2.1.3 Access Control


When a resource is being accessed in Grid? What are the operations that should be granted or permitted? This will be answered by the access control policy for that resource. The access control policy will state who is allowed to perform what actions under some constraints. For example, access control policy may state that a file could be read by an user called Peter at all time. Besides, it may also state that a file could be read by an user called Peter on Sunday only.


Again, in Grid computing, different underlying systems may have different valid user in active. Therefore, an user called Peter under system A may be totally different from another user called Peter under system B. We can observe that there is a need to perform some global user id mapping among all the systems participating into the Grid. Along with the need of global user id mapping, management of those id mapping is essential as well.
2.2 Publish/Subscriber Communication Systems


In a distributed system like Grid, as it involves many different parties, there is a need to deliver dynamic information between those parties. The dynamic information may be either application data or Grid resources and is critical for enabling large-scale Grids. As Grids grow in scale, the trend is to assemble loosely-coupled autonomous components interconnected over wide-area networks. A class of event-based systems that are ideally suited for the dissemination of Grid information is that of publish/subscriber systems[4](or pub/sub for short): systems that interconnect information providers to information consumers in distributed environments. Figure 1 shows a simple pub/sub system. A broad pub/sub paradigm is that of subject-based routing(and its subtle variations: “group-based”,”channel-based”, and “topic-based”). Publishers label each event with a subject name, and subscribers receive all events with desired subjects.
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Fig. 1. A simple pub/sub communication system


A pub/sub system is a communication infrastructure that enables data access and sharing over disparate systems. It simply routes the datagrams from publishers to interested subscribers. As data that is sensitive may be involved and delivered between different parties, there is a security need for the pub/sub system. The security requirements for a pub/sub system can be divided into the requirements for a particular application involving publishers and subscribers, and the requirements for the pub/sub infrastructure:

· The application, comprising the publishers and subscribers. Publishers and subscribers may not trust each other, and may not trust the pub/sub network.

· The infrastructure, consisting of the pub/sub network that provides services to the application. The infrastructure may not trust publishers and subscribers. Components of the infrastructure may not necessarily trust each other.

For example, providing a mechanism that defines who has what access to what information is mostly an application-level concern. It requires a definition of identity, authorization and access control within the pub/sub infrastructure. In the meantime, controlling who is able to change the subscription database maintained by the pub/sub service and restricting channel utilization are infrastructure-level protection issues. Undoubtedly, this is one of the security challenge that should be addressed when we are developing Grids.

In this section, we explore the various security issues and requirements in the two categories. The general security needs of the application include confidentiality and integrity while the security concerns of the infrastructure focus primarily on system integrity.
In Section 2.2.1, we discuss security issues faced by pub-sub systems that are similar to those present in traditional network security. The content-based routing and dynamic subscription properties of pub-sub systems introduce many new security requirements and challenges. While some of these issues are new, there appear to be several opportunities to adapt known solutions to address these problems. Section 2.2.2 discusses specific confidentiality concerns for pub-sub systems.

2.2.1 Generic Issues

Some security issues in pub-sub systems are not unlike those that appear in other

distributed systems that cross administrative domains. In some cases, existing approaches can be adopted to achieve these goals, often with only minor modification.

We discuss those cases below.

2.2.1.1 Authentication

Authentication establishes the identity of the originator of an action. In

pub-sub, we consider two flavors of authentication, end-to-end and point-to-point. 
End-to-end authentication in this context means that if subscriber A receivers a message claiming to have originated from publisher B, A can verify that B is indeed the publisher of the message. Point-to-point authentication is concerned only with the immediate end points of a communication: if A receives a message from B, A can verify that B is indeed the sender of the message where A and B can be publishers, subscribers or network servers.

End-to-end authentication can be implemented outside of the pub-sub domain. If a PKI exists independent of the pub-sub network, end-to-end authentication can be

accomplished by having publishers sign messages using their private keys. The

subscribers can then verify a publisher’s identity by verifying the digital signatures

attached to the message. The signing and verification operations occur outside of the pubsub domain, and they can be administered independently.

If the pub-sub infrastructure is trusted, end-to-end authentication can be replaced with point-to-point authentication. Point-to-point authentication is a well-understood practice, and standard techniques should apply here.

There have been instances of pub-sub systems implemented using Opengroup’s

Distributed Computing Environment (DCE) [5] and its security features.

The potential size of an Internet-scale pub-sub system may give rise to scalability

problems for DCE that are not present in smaller-scale systems. The pros and cons of

using DCE (and other existing technologies) to outfit a pub-sub system need to be

investigated closely before more informed assessment could be made.
2.2.1.2 Information integrity

The standard means to provide information integrity is by using digital signatures. A digital signature, when signed on the message digest with the sender’s private key, provides two pieces of evidence: a) the message content has not been changed since it is signed, and b) the message indeed originated from the sender.

The provision of digital signatures can be largely independent of the pub-sub

infrastructure. Consider again using a PKI for publishers and subscribers. Message

integrity can be enforced by the sender digitally signing every outgoing message. The

establishment and management of the PKI can be performed independently of the pubsub layer.

2.2.1.3 Subscription database integrity

In a pub-sub system, the subscription database kept by the network forms the basis for routing and forwarding — therefore the content of the database should not be changed without the consent of the owner. This is a traditional access-control issue that can be solved with traditional means providing proper authentication and rights management. For most realistic cases, it is reasonable to assume that subscribers can trust the pub-sub infrastructure to implement subscription functions

without malice.
2.2.1.4 Service integrity

Integrity of the pub-sub service can be put at risk if malicious faults

arise at the infrastructure level (e.g., infrastructure hosts are compromised). A malicious server can insert bogus subscriptions and act as a bogus subscriber to neighboring servers. Moreover, it can ignore the routing algorithm entirely and route messages to arbitrary destinations or drop them completely.

Protecting the pub-sub network from malicious intrusions is not unlike protection of other large networks. However, if the infrastructure is compromised, pub-sub systems present new research questions regarding mechanisms that preserve degraded service in the presence of malicious infrastructure servers.

We note that this is not solely a security architecture issue. For example, one can design the routing algorithm in such a manner that there is never a single route between any pair of publisher and subscriber, and that each message is routed on multiple routes to its destination. At the price of increased resource consumption, this mechanism ensures a high probability that a message will be delivered to its intended parties despite a small number of malicious servers.

To begin tackling the problem of service integrity in the presence of malicious

infrastructure hosts, a comprehensive fault analysis is needed in which the malicious

faults are enumerated and consequences examined. We can then begin to understand the extent to which the existing infrastructure may be able to tolerate such malicious faults and subsequently design mechanisms to increase this tolerance.

2.2.2 Confidentiality

Pub-sub systems introduce three novel confidentiality issues:

Can the infrastructure perform content-based routing, without the publishers

trusting the infrastructure with the content? (Information confidentiality)

Can subscribers obtain dynamic, content-based data without revealing their

subscription functions to the publishers or infrastructure? (Subscription

confidentiality)

Can publishers control which subscribers may receive particular publications?

(Publication confidentiality)

Each of these poses new problems, but there appear to be opportunities to adapt wellknown approaches towards satisfactory solutions.

2.2.2.1 Information confidentiality

When information being published contains sensitive content, publishers and subscribers may wish to keep information secret from the pub-sub infrastructure. This is especially important in a large pub-sub system where information may travel through network segments that are not necessarily trusted.
The requirement of confidentiality against the infrastructure is in a fundamental conflict with the pub-sub model. By definition, the pub-sub network routes information based on dynamic evaluations of information content against user subscriptions. Keeping the information private from the routing hosts may hinder such evaluations and hence routing. In particular, routing and forwarding optimizations will be impossible to carry out if the infrastructure hosts do not have access to the information content.

Further note that the legitimate receivers of the information (i.e., the subscribers) must be able to read the information content, which may require an out-of-band agreement among the publishers and the subscribers so that the subscribers can recover the content of the publication (such as using a key). Incorporating an out-of-band key distribution or a similar scheme takes away the benefits of the basic pub-sub model—it follows a point-to-point communication model rather than the many-to-many model in a true publish-subscribe system.

A potentially promising technique in providing information confidentiality against the infrastructure is computing with encrypted data. In general, a function f can be computed with encrypted data (a.k.a: f is encryptable) if there exists two functions E and D such that
- E and D are two polynomial time algorithms

- E maps x to an encrypted instance y

- D maps f(y) to f(x)

- Nothing about x is revealed by y except what is implied by the result of f(y)

Abadi et al. proved that all functions in ZPP1 are encryptable [6]. In other words, there exist E and D for every polynomial-time boolean function such that the data can be hidden from the function evaluator. However, a protocol between the publishers and subscribers is still needed so that E and D can be agreed upon and computed accordingly.

We pointed out earlier that this conflicts with the many-to-many communication model. In addition, these secure computation protocols are often computationally intensive and require a large amount of communication overhead, which could be prohibitively expensive to carry out.

2.2.2.2 Subscription confidentiality

User subscriptions can reveal sensitive information about the user, in which case the subscriber may wish to keep the subscriptions private.

Consider the human resource resume example. An HR person, upon being told that her company is starting a top-secret new project, wants to enter a new subscription that allows her to receive resumes with a particular background. Because of the sensitive nature of the project, she may wish to keep her subscription private even from the pubsub system—after all, the system may turn around and sell this knowledge to her competitors.

More formally, subscription confidentiality against the infrastructure can be viewed as follows:

The subscriber S would like the network N to compute f(x) without revealing f to

N. Here, x is the publication information and f is the subscription function.

A closely related topic of interest to subscription confidentiality is secure circuit

evaluation [7], which has been studied in various models. Secure circuit

evaluation hides the circuit2 from the circuit evaluator. In theory, if computing with

encrypted data can be achieved, hiding the circuit can be implemented as encoding the

circuit itself as an input to a universal circuit evaluation function [7]. In practice,

however, it is difficult and often impractical to encode the function as an input to a

universal circuit; the proposed schemes often involve an expensive protocol.

Another related subject of interest is Private Information Retrieval (PIR). PIR

mechanisms allow a user to retrieve records from a database, and in the meantime, hide what she retrieves from the database. Studies on PIR schemes showed that PIR is at least as hard as Oblivious Transfer, which implies the existence of one-way functions. A close examination of subscription confidentiality suggests that close relations exist between PIR and subscription confidentiality. 
For example, one can easily construct a PIR mechanism using a black box that implements subscription confidentiality simply by inputting every database record as a publication into the black box. Conversely, a simple case of a subscription function that matches a finite number of pre-defined strings can be reduced to PIR with publications modeled as databases and subscriptions as PIR queries.

The construction of PIR from subscription confidentiality suggests that the latter cannot be achieved using weak computational primitives—it is at least as hard as PIR schemes.A more general reduction from subscription confidentiality to PIR can be the starting point of constructing realistic confidentiality mechanisms to hide user subscriptions from the pub-sub infrastructure. However, all PIR-based schemes move some filtering operations from the database to the user, which implies more communication overhead as well as user-side computation load. Therefore challenges regarding performance and efficiency will still remain even if a general reduction can be constructed.

It is worth noting that the combination of information and subscription confidentiality against the infrastructure achieves a fairly strong level of user privacy—the most other people can deduce is that you are associated with this particular pub-sub system, however, they will not be able to find out how you are using the service (e.g., publishing what or subscribing to what). This can be a viable alternative to straightforward user anonymity.
2.2.2.3 Publication Confidentiality

In many pub-sub applications, publishers do not know and perhaps do not care to know the identity of the subscribers who receive their information.

In those applications, there is no need for subscription control — anybody can subscribe to anything. In other applications, however, it is important that publications be kept secret from ones who are not legitimate subscribers (the concept of legitimacy should be application specific). Consider the stock quote example. For billing purposes, quotes should be sent to paying customers only. Therefore they must be kept confidential from other users.

Publication confidentiality can be handled independent of the pub-sub infrastructure. For example, the publisher can distribute a group key to the subscribers using some out-of-band channel and encrypt the information content with the key. 
This ensures that only the subscribers with the right key can read the message. The drawback of this scheme is obvious: setting up a group key a priori, in essence, transforms the communication model into a traditional multicast model, and therefore minimizes the benefits of publish and subscribe.

Alternatively, publishers can trust the infrastructure to maintain publication

confidentiality. For example, instead of registering with the stock quote provider, a user can register with the pub-sub system for the stock quote service. Publishers enter the quotes into the system without knowing who will be receiving them. It is then up to the pub-sub system to ensure that only registered users receive the appropriate quotes.

A potential solution here is to let the application choose an appropriate mechanism. That is, applications that do not care about publication confidentiality should not have to pay the cost in associated with exerting confidentiality control. Meanwhile, for applications that desire publication confidentiality, the pub-sub layer must provide a) an interface for the application to specify a control policy, and b) a mechanism that supports such policies. Designing such a flexible security framework is no trivial undertaking—the interface must be expressive and easy to use, and the system must be prepared to carry out a whole spectrum of mechanisms desired by the applications. There is also the question of whether to implement an inexpensive policy as the default case—the default case can always be overwritten but the specifics of a default policy must be carefully laid out so that it does not detract from the system flexibility.
2.4 Delegation


In a Grid, a user may need to ask an entity to perform an operation on his/her behalf. For example, a scheduler may need to query an information service to determine on which machines a user is allowed to and has enough allocation to execute a job. The scheduler does not have the privilege to ask the information service directly, because the information service protects its potentially proprietary information from unauthorized access. The information service would provide a user’s information to a scheduler if it was acting on that user’s behalf. That’s the reason why delegation comes to the reality. Delegation is the technique that an entity could be asked to perform some operations on that user’s behalf.

.

The conventional approach when a user must ask a service to perform some operation on his/her behalf is to grant unlimited delegation, which is to unconditionally grant the service the ability to impersonate the user. Currently, restricted delegation is not used in emerging Grids because it is too difficult to design, implement, and validate except in very limited, ad-hoc cases. While unlimited delegation is a reasonable approach in which all services can be wholly trusted by the users who wish to invoke them, it is clearly not scalable for the general-purpose Grids. For delegations within a Grid, the crucial issue is the determination of those rights that should be granted by the user to the service and the circumstances under which those rights are valid. Delegating too many rights could lead to abuse, while delegating too few rights could prevent task completion. Under unlimited delegation it is possible for a rogue object, to which unlimited rights have been delegated, to trick a trustworthy object into executing a service that it would otherwise not perform. 
Therefore, how to restrict or eliminate, the potential security breaches possible when one object misplaces trust in another object? The problem does not focus on what an untrustworthy object can do directly, but rather what the untrustworthy object can get other trustworthy objects to do. Obviously, in Grid Computing, we should strive to ensure that that malicious object cannot obtain and misuse another object’s rights. Restricted delegation is one of the solutions which deal with the mentioned delegation problem. One particular constraint that we may need to consider is “Realizable”. “Realizable” in this context refers to the ability of one user to define and implement a policy by which to grant a limited set of privileges to another user.
We examine three schemes of restricting delegation: restricting methods that may be called, restricting objects that may pass delegated rights or be the target of such calls, and restricting the validity of delegated rights to a given time period. In each of the following, we start with the base credential: [The bearer of this credential may do anything on Alice’s behalf forever] signed Alice.
2.4.1 Method Restrictions

Instead of allowing the presenter of a bearer credential to perform any and all

operations, the constructor of a bearer credential can explicitly enumerate allowable

methods, either individually or categorically.

                [image: image2.png]Bearer Idenity R

Method Restrictions: My, Mz
Time Restrictions:

none

trictions: none

M










Fig. 2. Bearer Credential with Method Restrictions.
2.4.1.1 Explicit Method Enumeration by Manual Inspection 
A set of well-known object-to-object interactions can be manually identified to determine a remote method invocation tree rooted at a particular remote call, and a credential can list these methods. By restricting the methods that the service can call on her behalf, the user has significantly reduced the ability of an untrustworthy service to perform malicious operations, such as destroy one of her private files.

However, this approach does not require any meaningful context for the credential. This strategy is tedious to implement and inflexible. In large systems, it is extremely difficult, if not impossible, to determine remote method invocations through manual code inspection, e.g., the source code may not even be readily available. Any changes to code shared by many objects (such as Grid infrastructure support code) require that all previously computed restricted credentials be modified to reflect the changes.
When a user wishes to invoke a remote method call, the user must pass an

enumeration containing each subsequent remote method invocation. In the cases of

large call chains, this list may well be larger than the message itself. This will lead to

additional network contention and message setup and transmission latencies. Further,

because one monolithic signed enumeration is sent, it cannot be selectively

dismantled and will be sent down each branch of the call chain, though many of the

enumerated methods will have no bearing on an object or its descendants. The

obvious approach is to partition this set into multiple credentials, and generate the

necessary information for a particular object in the call chain to determine when it can

discard a credential that will not be used in the future.

2.4.1.2 Compiler Automation 
In order for the method enumeration approach to scale beyond a trivial number of operations, the reliance on direct human interaction must be reduced or eliminated. A bottom-up security compiler could annotate each remote method call with the remote method calls invoked recursively from it. 
When compiling an application, the compiler would examine the dependencies to other modules to union these annotations. The compiler would then automatically insert code to initialize the application’s credential set in accordance with these annotations.

Once the security compiler is written, it is reusable for any operation. In principle, this eliminates many of the limitations of the previous section, particularly the tedious and error-prone nature of generating credentials. If the security compiler is invoked as part of the general compilation process, then this should be viewed as an automatic mechanism with relatively little overhead.

While independence from user intervention removes the tedium of manual

enumeration, it also removes the user from the policy decision altogether. That is, the

security compiler blindly blesses untrusted code by enumerating the remote method

invocations it performs. Under the manual approach, the user is forced to visually

inspect the code and may thus discover blatant security violations. For this reason and

because of the daunting complexity involved in writing compilers for all of the

languages (C, C++, Fortran), this approach has not been pursued for most Grid middleware.

2.4.1.3 Method Abstractions
A higher level of abstraction than that of specific method enumeration can be used. As a first approach, methods can be coarsely described as read or write operations. Then, it is possible to construct a credential for read and/or write operations in general, in lieu of specific methods. The size and complexity of a

credential can thus be significantly reduced. This approach is attractive for high-level

object interactions that can be wholly classified as read-only, which seemingly need

not authorize write operations (and thus reduce the scope of a compromise).

This approach is limited because it likely does not provide additional security for

applications that perform ‘write’ operations. That is, if a particular remote method

invocation entails some destructive or write operation, the credential must grant the

whole ‘write’ capability. Because the Grid infrastructure will almost certainly require

some form of ‘read’ capability, this approach is reduced to an all-inclusive bearer credential. A better approach is to combine the gross categorization of the ‘read’ capability with specific write operations.

Method abstraction represents a good tradeoff between flexibility and ease of

Implementation. Unfortunately, such partitioning of the method space requires updating the infrastructure as remote methods are introduced and removed from the system.
2.4.2 Object Restrictions
In Section 2.4.1, the scope of attack is limited to those methods enumerated, but the methods are not associated with specific objects and thus may be invoked by any

object acquiring the credential. By explicitly associating an object or objects with

each method, greater security can be provided by restricting not only what may be

invoked, but also who may invoke it or upon whom it may be invoked. Object

restrictions are discussed as both a complementary and stand-alone measure.
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Fig. 3. Bearer Credential with Method and Object Restrictions.
2.4.2.1 Object Classes

Due to the dynamics of the system, it may not be possible for an application to ascertain the identity of all principals involved in a call chain.

Furthermore, in some systems, the class or type of the object is more useful than the identity of a particular instance of that class. Therefore, one approach is to restrict the bearer identity to a particular class.

The approach of utilizing class restrictions could follow from the enumeration

mechanisms explained above. Unfortunately, it would suffer many of the same

setbacks. Nevertheless, when used in tandem with method enumeration, greater

security is achieved than via either mechanism in isolation.
This approach is directly applicable to any object-based Grid middleware, in which the object hierarchy is rooted at a particular well-known object. All objects are derived directly or indirectly from this class.

2.4.2.2 Transitive Trust. 
A form of transitive trust can be used to address the scalability concern of passing around one all-encompassing credential, as introduced in Section 2.4.1. In this approach, each remote method invocation is annotated with the methods it invokes directly or those within a certain depth relative to the current position in the call chain. The annotations reflect the target of the method invocation. Unlike previous models discussed, this option would concatenate credentials signed by intermediary nodes throughout the call chain, rather than passing one monolithic list signed by the invoking principal at the root of the call chain.

Embedded metadata within the annotations might allow intermediary nodes to

discard credentials that apply neither to themselves nor their descendants. Though the

credential set is determined dynamically, the credentials themselves are not created

dynamically. They are associated with remote method invocations as before, using

either a manual or automatic approach.

While it addresses the scalability concerns of passing bloated credentials, this

approach is less secure than the monolithic approaches. A target would recognize an

intermediary acting on behalf of the initiator if the credentials form a chain originating at the initiator. While the initiator may specify method restrictions, there is

no obvious means for a target to discern that an intermediary is acting in the intended

context. For example, two objects could conspire such that the first object gives the

second object the ability to execute arbitrary methods within the rights of any of its

predecessors. To avoid such a coordinated attack, it could be required that the final

target object trust each principal named in the chain in order to respect the transitivity

properties of that chain. Because of this concern, the use of this approach is still under consideration to a certain extent.
2.4.2.3 Trusted Equivalence Classes

Another approach is to group objects into security equivalence classes (e.g. according to importance, functionality, administrative domain, etc.). Instead of specifying an object instance or class name, the name of the equivalence class would be specified as a credential restriction.
Such objects form the core of the system and include objects representing hosts,

schedulers, and storage units. Method invocations initiated from such objects need not

be explicitly granted on a per-object basis in the list of rights contained in a credential. 
This could significantly reduce both the off-line costs and the on-line overhead of generating and sending restricted credentials, as it provides a coarse-grain abstraction. Note that it is not mandated that every user trust a collection of objects, any user is free to simply not use this approach when constructing credentials.

The major problem in this approach is how to both define these groups and verify membership in these groups, because groups will most likely need to be defined on a per-user basis. Another shortcoming is that a user implicitly trusts any changes made to objects of trusted classes objects.
2.4.2.4 Trusted Application Writers and Deployers

Rather than trusting classes of objects, trust can be placed in principals that implement those classes. Implicit in this approach is the assumption that an object trusts another object if and only if it trusts the principal which ‘vouches’ for it. 
Intuitively, this is more appealing than simply trusting an object which exports a familiar interface but which may have been implemented by a malicious user.

When a user compiles an object or application and makes it available to the general Grid community, the deployment of the object or application in this approach now includes the signature of that user and the signatures attached to any dependent

modules — the application is “branded” with the signature of its developer and/or

compiler. When a user interacts with services in a Grid, the user sends a credential

stating its trust in a specific subset of users and/or compilers. When an object receives

a request for service, it bases access on the direct or indirect objects that made the request for service. If the request for service on behalf of a particular user is augmented with a credential stating trust in the deployer of the object from which the

request arrived, then access is allowed.

One particular implementation is that applications and objects must be registered before they can be executed in a distributed environment. Registration serves as a convenient time to bind the trust relationship. The principal initiating the registration of a particular binary would be noted as the ‘owner’ of that object. A user could specify her trust in particular principals or groups. This enumeration could be made explicit in a credential. This approach is appealing because of its generality and the ease with which it allows the instantiation of policy decisions. It should work well for common cases in which a large group of users trust one another (e.g. within a single administrative domain), but do not necessarily trust another group.
2.4.3 Time-Dependent Restrictions
The last approach is orthogonal to the previous mechanisms and may be used in

conjunction with them to restrict the window of vulnerability to replay attacks. In the

simplest version of this approach, a pre-determined amount of time is used as the

time-out for the credential. This guarantees that the credential cannot be abused in a

replay attack after a fixed time interval. Unfortunately, as the perceived slack time in

the timeout value is reduced, the likelihood that the credential will need to be refreshed increases. Too much slack time opens the door for a replay attack.
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Fig. 4. Bearer Credential with Method, Object, and Time Restrictions.
If the initiating object will be alive during the entire operation, then it is possible to mandate that each object in the call chain perform a callback to verify that the initiator is indeed still running. This prevents a malicious object from acquiring a bearer credential and using it long after the application has exited but before a fixed timeout value has expired. Unfortunately, this doubles the number of object-to-object

transactions and it does not benefit a long-lived application, whose natural execution

duration provides plenty of opportunity for a man-in-the-middle to abuse privileges.

Callbacks could potentially serve the alternate purpose of recording an audit trail of methods invoked under the identity of a given principal. To limit the performance

degradation of indiscriminant callbacks, the principal may require notification of only

‘important’ method invocations.
Normally, it is impossible to predict how long an operation will require, due to the inherent unpredictability in the computational nodes and the networks. Even if this could be performed on a single case, it is not clear to what extent the results can be applied to another tool, as each tool has different functionality. It is also not clear if the increased security of short time-outs will be of any value to an average user — if more than one operation “fails” in a short time period, the user may think that the Grid as a whole is experiencing errors, even though the observed behavior is the result of credential expiration.
2.6 Trust


As we mentioned before that Grids indeed involves various different systems, in order to achieve a particular target, there should be some kind of collaborations between different parties. For example, system A may make use of the storage resource of system B while system C may make use of the computational resource of system A. However, how could system B decide to let system A to make use of its storage resource? Besides, how could system A determine whether to grant system C to utilize its computational power or not? 

Obviously, there exists certain kind of relationship between those systems. Here is where trust comes to play. Trust is usually specified in terms of a relationship between a trustor, the subject that trusts a target entity, and a trustee (i.e. the entity that is trusted). Trust forms the basis for allowing a trustee to use or manipulate resources owned by a trustor or may influence a trustor’s decision to use a service provided by a trustee. Thus, trust can form an important factor in decision-making. The level of trust has an approximate inverse relationship to the degree of risk with respect to a service or an e-commerce transaction. In many current business relationships, trust is based on a combination of judgement or opinion based on face-to-face meetings or recommendations of colleagues, friends, and business partners.

Trust is a natural human behavior. However, how to and where to integrate trust in Grid Computing is still a challenging research issue that need to be studied.

Purposed research direction


Up to now, we have introduced the basic concept of Grid computing. In the meantime, six different security issues in Grid computing have been briefly reviewed. 

Here, we would like to propose our own research direction.


In a distributed system like Grid, communication between different parties will be vital and essential as those involved parties need to collaborate with each other from time to time. Among different communication paradigms, pub/sub communication system is known to be the best in term of space decoupling, time decoupling and synchronization decoupling[4]. 
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On the other hand, in section 2.2, we stated that considering security in pub/sub communication systems may induce substantial overhead.


We know that both security and efficiency are equally important to the widely spread of Grid computing. However, how to strive a balance between these two vital parameters? Obviously, one possible approach is to improve the existing security algorithm. However, as the message exchanged/involved in a large-scale Grid should be huge and each message gives rise to the security overhead, the improvement of security algorithm may not substantially reduce the overhead. 

In our research, we would like to remedy the problem using a human behavior oriented approach. That is, we are trying to integrate trust into the pub/sub communication systems so as to minimize the security overhead induced. Meanwhile, we could integrate some inter-human/organization relationships (such as relatives/partnership, subsidiary) into the pub/sub communication systems as well.  


In order to integrate trust into the pub/sub communication systems, we should define our own trust model first. Jøsang’s Opinion Model, based on subjective logic, may be a suitable technique for assigning trust values in the face of uncertainty. An opinion is a representation of a belief and is modeled as a triplet, consisting of: b (a measure of one’s belief), d (a measure of one’s disbelief), and i (a measure

of ignorance), such that b + d + i = 1. It is assumed that b, d , and i are continuous and between 0 and 1 (inclusive). This model’s strength lies in the ability to reason about the opinions (on a mathematically sound basis) and its consensus, recommendation, and ordering operators. However, its major weakness is that it cannot be guaranteed that users will accurately assign values appropriately. Therefore, we may also need to design a trust management system so as to deal with trust establishment and trust propagation.

Future Work


In the coming semester, we would try to study the underlying nature of pub/sub communication systems so as to apply our own trust model. Besides the integration, the trust management trust should also be studied, particularly when the scale of the pub/sub system is large.
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1 The class ZPP consists of boolean functions that can be computed in polynomial time with zero


probability of error.


2 Circuit here means a function that can be represented as a binary circuit.
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