
On the Robustness and
Interpretability of Deep

Learning Models

WU, Weibin

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
September 2021

Thesis Assessment Committee

Professor MENG Wei (Chair)

Professor LYU Rung Tsong Michael (Thesis Supervisor)

Professor KING Kuo Chin Irwin (Thesis Co-supervisor)

Professor LEE Pak Ching (Committee Member)

Professor CHEN Chu Song (External Examiner)

Abstract of thesis entitled:
On the Robustness and Interpretability of Deep Learning

Models
Submitted by WU, Weibin
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in September 2021

The enormous success of deep neural networks (DNNs) popu-
larizes the deployment of DNNs in a broad spectrum of safety-
and security-sensitive applications, like autonomous driving and
medical diagnosis. Therefore, studying the robustness and
interpretability of the underlying DNN models is of paramount
importance. Unfortunately, due to the large-scale and black-box
nature of DNNs, it is challenging to investigate the robustness
and interpretability of DNNs. In this thesis, we endeavor
to address these problems from multiple facets. In short,
we explore two primary scenarios regarding the robustness of
DNNs: accidental failures and intentional ones. We also explore
providing global explanations for DNNs in pursuit of promoting
their interpretability.

Firstly, we focus on improving the robustness of DNNs
against accidental failures, where DNNs frequently manifest
erroneous behaviors in real-world corner cases, like abnormal
weather conditions. Existing countermeasures usually center on
improving the testing and bug-fixing practice. However, it is

i

scarcely viable to build an omnipotent DNN that can handle
all possible cases, so anomaly detection is indispensable in
practice. Motivated by the idea of data validation in traditional
software, we propose Deep Validation (DV), the first framework
for detecting real-world error-inducing corner cases in DNNs.
Deep Validation can achieve excellent detection results against
various corner case scenarios.

Secondly, we evaluate the robustness of undefended DNNs
against intentional failures, where attackers craft adversarial
samples to fool victim models into wrong predictions. We
center on transfer-based attacks against image classifiers, where
attackers are restricted to craft adversarial images based on local
proxy models without the feedback information from the remote
target ones. However, under such a constrained but practical
setup, the synthesized adversarial samples often achieve limited
success due to overfitting to the employed local model. We
propose a novel mechanism to alleviate the overfitting issue,
called Attention-guided Transfer Attack (ATA). Experimental
results confirm that our method can markedly promote the
transferability of adversarial instances.

Thirdly, we turn to assess the robustness of defended DNNs
against intentional failures. We also consider transfer-based
attacks as before. Since adversarial noises are usually purpose-
ful perturbations of small magnitude, previous attacks hardly
survive under defenses, like transformation-based ones. To
better evaluate the susceptibility of existing defenses, we pro-
pose a novel attack method named Adversarial Transformation-
enhanced Transfer Attack (ATTA). It is motivated by the data
augmentation methodology to improve the generalization of

ii

models. Extensive experiments show that our scheme outshines
previous proposals in evaluating the robustness of defended
DNNs against transfer-based attacks.

Lastly, we cover how to promote the interpretability of DNNs.
In addition to being a scientific problem itself towards building
safe and dependable DNNs, elevating the interpretability of
DNNs is conducive to spot robustness issues and promote the
robustness of DNNs. Specifically, we concentrate on offering
global explanations, which contribute to understanding model
predictions on a whole category of samples. However, existing
methods overwhelmingly conduct separate input attribution or
rely on local approximations of models, making them fail to
offer faithful global explanations of DNNs. To overcome such
drawbacks, we propose a novel two-stage framework: Attacking
for Interpretability (AfI), which explains model decisions in
terms of the importance of user-defined concepts. Experimental
comparisons corroborate that AfI can provide more accurate
estimations of concept importance than existing proposals.

iii

論文題目：論深度學習模型的魯棒性與可解釋性

作者 ：吳煒濱

學校 ：香港中文大學

學系 ：計算機科學與工程學系

修讀學位：哲學博士

摘要 ：

深度神經網絡的巨大成功使其在一些對安全和安保性要求

很高的領域得到了廣泛應用，比如自動駕駛和醫學診斷。因

此，研究這些深度模型的魯棒性和可解釋性顯得格外重要。然

而，由於深度模型的規模性和黑盒性，研究深度模型的魯棒性

和可解釋性顯得十分困難。本論文致力於從多方面解決這些問

題。簡言之，我們探索了涉及深度模型魯棒性的兩個主要情

況：意外故障和惡意故障。我們也研究了提供模型的全局解

釋，以改善其可解釋性。

首先，我們關注的是改善深度模型在面對意外故障時的魯

棒性。意外故障是指深度模型在面對現實的異常情況時，比如

異常的天氣情況，經常會產生錯誤的行表現。現有的解決方案

通常局限於改善故障測試和修復的過程。然而，構造一個萬能

的可以解決所有可能情況的深度模型是幾乎不可能的，因此異

常檢測在實際中就顯得不可或缺。受傳統軟件中數據驗證的思

路的發，我們首次提出了深度驗證框架（DV），用於檢測現
實中易導致模型錯誤的異常情況。該深度驗證框架在多種異常

場景下都能達到優異的檢測表現。

iv

第二部分，我們研究了評估未防禦過的深度模型在面對惡

意故障時的魯棒性。惡意故障是指攻擊者構建對抗樣本來誤導

目標模型使其預測出錯。我們關注的是對圖像分類器的可遷移

攻擊，也就是攻擊者在構造對抗樣本的過程中，只基於本地模

型而無需遠端目標模型的反饋信息。然而，在這一受約束的實

際場景下，構造的對抗樣本常常過擬合於本地模型，使其攻擊

成功率很低。我們提出了一個全新的機制來改善這一過擬合的

問題，叫做基於注意力的可遷移攻擊（ATA）。實驗結果證明
我們的方法可以顯著提升所得到的對抗樣本的可遷移性。

第三部分，我們轉向評估防禦過的模型在惡意故障下的魯

棒性。跟之前類似，我們同樣考慮了可遷移攻擊的場景。因為

對抗噪聲通常是惡意的小擾動，這使得之前的攻擊方法難以攻

破防禦措施，比如以圖形變換為基礎的防禦方法。了準確評估

現有防禦措施的魯棒性，我們提出了一種全新的攻擊方法叫做

對抗變形強化的可遷移攻擊（ATTA）。該方法是受利用數據
增補改善模型泛化能力的思路的發。大量實驗表明，相比於現

有方法，我們的工作可以更好地評估防禦過的深度模型在面對

可遷移攻擊時的魯棒性。

最後，我們研究了如何提高深度模型的可解釋性。這一問

題除了本身是構建安全和可靠的深度模型的過程中一個重要的

科學問題外，提高深度模型的可解釋性也有利於發現其魯棒性

問題並提高其魯棒性。具體而言，我們關注提供全局解釋，以

便於理解模型對整一類樣本的預測結果。然而，當前的方法絕

大多數都進行的是對獨立輸入的歸因或依賴於對模型的本地擬

合，使得這些方法不能提供對深度模型的準確的全局解釋。了

克服這些缺陷，我們提出了一個全新的兩步框架：利用攻擊來

解釋（AfI），用於說明各種人類定義的概念對模型決策的重
要性。實驗結果證明了，相比現有手段，該方法能提供更準確

的概念重要性的估計。

v

Acknowledgement

First and foremost, I would like to thank my supervisors,
Prof. Michael R. Lyu and Prof. Irwin King, for their excellent
supervision during my Ph.D. study at CUHK. From choosing the
research topic to technical writing, their inspiring guidance and
patience help me conduct challenging research work. During the
Ph.D. study period, I have learned so much from their knowledge
and attitude in doing research.

I am grateful to my thesis assessment committee members,
Prof. Wei Meng, Prof. Patrick P. C. Lee, for their constructive
comments and valuable suggestions to this thesis and all my
term presentations. Great thanks to Prof. Chu-Song Chen from
National Taiwan University, who kindly serves as the external
examiner for this thesis.

I would like to thank Dr. Yuxin Su, Dr. Xixian Chen,
and Dr. Shenglin Zhao for their valuable contributions to the
research in this thesis.

I would like to thank Dr. Hui Xu for his insightful discussion
and inspiring guidance on the research topic in the early stage
of my Ph.D. study.

I am also thankful to my fantastic group fellows, Xiaotian Yu,
Shilin He, Wang Chen, Wenxiang Jiao, Zhuangbin Chen, Yue

vi

Wang, Pengpeng Liu, Ken Chan, Jian Li, Haoli Bai, Jingjing Li,
Yifan Gao, Yu Kang, Guang Ling, Chen Cheng, Jieming Zhu,
Hongyi Zhang, Junjie Hu, Pinjia He, Tong Zhao, Cuiyun Gao,
Jichuan Zeng, Jiani Zhang, Han Shao, and Tianyi Yang.

Last but most important, I would like to thank my family.
Their deep love and constant support are the driving force
during my Ph.D. study.

vii

To my family.

viii

Contents

Abstract i

Acknowledgement vi

1 Introduction 1

1.1 Overview . 1

1.2 Thesis Contributions 11

1.3 Thesis Organization 14

2 Background Review 17

2.1 Deep Neural Networks 20

2.1.1 Convolutional Layer 22

2.1.2 Pooling Layer 23

2.1.3 Fully Connected Layer 23

2.1.4 Softmax Layer 23

2.2 Accidental Failures of DNNs 25

2.3 Intentional Failures of DNNs 26

ix

2.3.1 Synthesizing Adversarial Samples Against
Undefended Models 28

2.3.2 Synthesizing Adversarial Samples Against
Defended Models 30

2.4 Interpretability of DNNs 32

3 Detecting Real-world Corner Cases for Deep Neu-
ral Networks 36

3.1 Problem and Motivation 37

3.2 Preliminaries . 41

3.2.1 System Model of DNN Classifiers 41

3.2.2 Fault Model of DNN Classifiers 42

3.3 Methodology . 44

3.3.1 Corner Case Generation 44

3.3.2 Deep Validation 48

3.4 Experiments . 55

3.4.1 Experimental Setup 55

3.4.2 Corner Case Generation 56

3.4.3 One-class SVM Training 59

3.4.4 Corner Case Detection 60

3.5 Summary . 72

4 Synthesizing Adversarial Samples against Unde-
fended Deep Neural Networks 75

x

4.1 Problem and Motivation 76

4.2 Preliminaries . 81

4.3 Methodology . 82

4.3.1 Attention Extraction 83

4.3.2 Attention Visualization 84

4.3.3 Critical Feature Destruction 85

4.3.4 Optimization Algorithm 86

4.4 Experiments . 87

4.4.1 Experimental Setup 88

4.4.2 Transferability of Attacks 90

4.4.3 Effect of Hyper-parameters on Attack Suc-
cess Rates 94

4.4.4 Complementary Effect of the Proposed
Strategy 95

4.5 Summary . 97

5 Synthesizing Adversarial Samples against Defended
Deep Neural Networks 99

5.1 Problem and Motivation 100

5.2 Methodology . 102

5.2.1 Problem Description 103

5.2.2 Adversarial Transformation Network . . . 104

5.2.3 Adversarial Sample Generation 110

xi

5.3 Experiments . 111

5.3.1 Experimental Setup 111

5.3.2 Attacking Results 114

5.3.3 Further Analysis 116

5.3.4 Complementary Effect of Our Technique . 117

5.4 Summary . 117

6 Global Explanations of Deep Neural Networks
with Concept Attribution 120

6.1 Problem and Motivation 121

6.2 Methodology . 125

6.2.1 Feature Attribution 126

6.2.2 Concept Attribution 130

6.3 Experiments . 132

6.3.1 Attacking Results 133

6.3.2 Evaluation of the Feature Attribution Re-
sults . 134

6.3.3 Evaluation of the Concept Attribution
Results . 136

6.3.4 Class Concept Visualization 137

6.3.5 User-defined Concept Attribution 140

6.4 Summary . 141

7 Conclusion and Future Work 142

xii

7.1 Conclusion . 142

7.2 Future Work . 143

Appendix 147

Bibliography 149

xiii

List of Figures

2.1 Taxonomy of related work and our contributions.
The red text indicates our work. The grayed box
shows a sample approach. 18

2.2 A typical deep CNN architecture (modified from
the figure in [110]). 22

2.3 An adversarial image for GoogLeNet [144] (mod-
ified from the figure in [39]). 27

3.1 Deep Validation framework: fi is short-hand for
the output of the ith hidden layer where i ∈
{1, 2, ..., L− 1}. y′ means the predicted label for
input x. di is the discrepancy estimation for the
output of the ith hidden layer. 48

3.2 Examples of synthetic corner cases. 57

3.3 Discrepancy distributions of legitimate images
and invalid ones (successful corner cases). Each
plot is based on 200 histogram bins and fitted over
discrepancy estimations for the corresponding
evaluation dataset. 60

xiv

3.4 Detection rate with regard to increasing scale
ratios in MNIST. Both methods have the same
false positive rate of 0.059 on clean data. 71

4.1 The attention heatmaps of three representative
models (VGG 16 [135], ResNet V2 [48, 49], and
Inception V3 [146]) for a cat prediction. The visu-
alization is generated with the technique of [130]
as detailed in Section 4.3.2. Redder regions
possess higher importance to the model decision. . 78

4.2 The proposed procedure of model attention ex-
traction and its application to guide the search
of deceptive samples towards critical feature de-
struction. 79

4.3 A clean source image and the corresponding
adversarial image crafted with the proposed ATA.
The target model is Inception V3. Although the
perturbation is imperceptible to humans, it can
successfully fool top-performance models. 93

4.4 The effect of hyper-parameter λ on our attack
success rates. 95

5.1 From left to right: An example of the clean image,
the resultant image distorted by our adversarial
transformation network, and the corresponding
adversarial image generated by our method. . . . 101

xv

5.2 The diagram of our attack strategy. We proceed
by first training an adversarial transformation
network that can characterize the most harmful
image transformations to adversarial noises. We
then manufacture adversarial samples by addi-
tionally requiring them to remain effective against
the adversarial transformation network. 102

5.3 Illustrations of the output images from our ad-
versarial transformation network T . The top
row shows the clean input images, while the
bottom row enumerates the corresponding images
transformed by T . We discover that the learned
adversarial transformation network can perform
a diverse set of image manipulations, such as
blurring and a combination of multiple simple
transformations. Best viewed zoomed-in on-screen.106

6.1 The workflow of our framework: Attacking for
Interpretability (AfI). 123

xvi

6.2 Model accuracy variation when we start editing
the most important SSCs/SDCs estimated by
different approaches. For our method (AfI), the
top-5 SSCs are enough to recover over 74% of
the original accuracy across all models, while
removing the top-5 SDCs can result in a degra-
dation of over 45% of the original accuracy across
all models. We also plot the effect of editing
concepts in random order for comparison. The
concept importance scores derived by our method
(AfI) are consistently more accurate than the
benchmark (TCAV), since the change of model
accuracy is more drastic for our approach. 138

6.3 Class concepts captured by different models. Ex-
ample images of the corresponding class are ex-
hibited for better comparison. 139

6.4 Importance scores of different concepts to classi-
fication results. Error bars indicate the standard
deviation. 141

xvii

List of Tables

2.1 Notations and their descriptions. 21

3.1 Transformation matrices of affine transformations
covered in this chapter. 46

3.2 Model architecture for SVHN. 55

3.3 Model accuracy on test data. 55

3.4 Transformations and search space utilized when
synthesizing corner cases. 56

3.5 Success rates of different kinds of corner cases. . . 58

3.6 ROC-AUC scores of Deep Validation. 61

3.6 (Continued) ROC-AUC scores of Deep Validation. 62

3.7 Comparisons with feature squeezing and kernel
density estimation in detecting real-world corner
cases. 67

xviii

3.8 Comparison with feature squeezing in the face
of white-box attacks. We adopt the same nota-
tions in [171], where “Next” and “LL” mean the
next class and least-likely class in reference to
the ground-truth label, respectively. Successful
adversarial samples (SAEs) refer to those that
cause wrong predictions regardless of their target
labels, while the others are named failed adversar-
ial samples (FAEs). Adversarial samples (AEs)
contain both of them. 69

4.1 Accuracy of undefended models under attacks.
The first column shows the source model em-
ployed, while the first row states the remote
target models. 91

4.2 Accuracy of adversarially trained models under
attacks. The first column shows the source model
employed, while the first row states the remote
target models. 92

4.3 Accuracy of models under attacks that combine
the proposed ATA and compatible algorithms. . . 96

5.1 Success rates (%) of different attacks against
seven models. The first column lists the source
model adopted to craft adversarial samples, while
the first row shows the target model. 114

5.2 Success rates (%) of different attacks against
advanced defense methods. 115

xix

5.3 Success rates (%) of our attack when varying
the complexity of the adversarial transformation
network. The first row shows the target model. . 116

5.4 Attack success rates (%) when combining our
strategy with compatible algorithms. The first
column lists the source model adopted to craft
adversarial samples, while the first row shows the
target model. 118

6.1 Average top-1 accuracy of different models on
clean images and the counterparts perturbed with
corresponding global feature occluders. 133

6.2 The average accuracy of student models derived
from different approaches. 136

6.3 The layer selected to craft class impressions and
its original output shape (spatial resolution ×
channel number). 139

xx

Chapter 1

Introduction

1.1 Overview

Deep neural networks (DNNs), as emerging machine learning
techniques, have amazingly approached or surpassed human per-
formance on diverse tasks, such as image classification [48,59,70],
machine translation [47, 142, 157], and text analysis [26, 52, 91].
These advances have facilitated the application of DNNs in a
growing spectrum of safety- and security-critical domains, in-
cluding self-driving [149,169], biometric authentication [80,127],
and medical diagnosis [83, 158]. Therefore, it is imperative to
study the robustness and interpretability of DNNs, which are
the critical quality attributes to ensure the correct functionality
of DNN-based systems [3].

Let us first specify what quality attributes the robustness of
DNNs refers to in this thesis. In the IEEE Standard Glossary
of Software Engineering Terminology [1], robustness is defined
as follows.

The degree to which a system or component can

1

CHAPTER 1. INTRODUCTION 2

function correctly in the presence of invalid inputs or
stressful environmental conditions.

Therefore, robustness defines a quality attribute of a system or
component in terms of its immunity against invalid inputs or
stressful environmental conditions. In this thesis, we center on
the robustness of DNNs against invalid inputs.

Invalid inputs are undesired data that are likely to originate
from stressful environmental conditions and can trigger the
malfunction of a system or component [6, 24, 51, 116]. For
example, a sorting program may only be able to handle numbers,
and thus letters are invalid inputs for this program. Similarly,
when it comes to DNNs, invalid inputs are illegitimate inputs
that are not expected during the design of the system [176].

To formally define the invalid inputs and robustness, we can
denote a deep learning model as f : X → Y , which predicts a
label y ∈ Y for a given input x ∈ X. Let y∗ be the ground-truth
label of x, and V be the training data distribution of f . Then
we can define the invalid inputs of DNNs as follows.

Definition 1.1.1. (Invalid input). The invalid inputs for a deep
learning model f are a set of data X̃ ⊆ X such that X̃ 6∼ V .

Therefore, we can formulate the robustness of DNNs as
follows.

Definition 1.1.2. (Robustness). The robustness of a deep
learning model f measures the performance of f on invalid
inputs X̃, which can be quantified as: Ex∈X̃ [1(f(x) = y∗)].

The invalid inputs for DNNs can come from two sources. One
is natural environmental conditions that are overlooked during

CHAPTER 1. INTRODUCTION 3

the design of the system. The resultant invalid inputs are called
real-world corner cases, which may incur accidental failures of
DNNs. For example, a DNN-based self-driving car may hinge
on lane mark images for autonomous navigation. When the self-
driving car is working on a sunny day, the lane marks can be
easily spotted in the captured images, and the car can function
correctly. Nevertheless, when the self-driving car runs on a foggy
day, the lane marks may become vague and difficult to identify
in the captured images. Therefore, the input images become
real-world corner cases for the self-driving car and may incur
erroneous behaviors of the system.

The other one is the adversarial environmental condition. In
this situation, attackers purposefully synthesize invalid inputs,
called adversarial inputs/samples, to mislead DNNs, resulting
in intentional failures of DNNs. For example, an attacker may
attach a photo of a human face to the lane. A DNN-based
self-driving car may mistake it in the captured image for real
persons. Therefore, the attacker succeeds in crafting adversarial
samples to make the system misbehave.

Similar to traditional software, testing and debugging play
an essential part in evaluating and improving the robustness
of DNNs during model development [15, 140]. More concretely,
testing aims to generate a diverse set of test cases to spot the
bugs of DNNs, while debugging implies fixing the discovered
failures, which is usually achieved by retraining models with the
error-prone inputs [112,140]. Therefore, testing can facilitate the
detection of invalid inputs to DNNs and is usually a prerequisite
for debugging. As per the requirements of the developer, testing
amounts to generating real-world corner cases or adversarial

CHAPTER 1. INTRODUCTION 4

samples, or both.

Two primary challenges have emerged from the research of
DNN testing. One is the test oracle problem, which involves
automatically attaining the ground-truth labels of the generated
test cases [58]. A prevailing workaround is the differential or
metamorphic testing technique [20, 90]. Briefly, metamorphic
testing resorts to semantic-preserving transformations to syn-
thesize test cases from seed samples while rendering their labels
identical. Hence it implies a failure of the system when we
can observe different outputs from the system on the test input
and the corresponding seed sample. For example, an adver-
sarial image can be constrained to be within a small lp-norm
neighborhood of the corresponding source image, which can thus
maintain the ground-truth label of the original image. By this
means, we can generate adversarial images from clean source
images and directly apply the resultant adversarial samples to
test the DNNs without manually labeling these samples.

The other is the test adequacy issue, and the obstacle is two-
fold. The first one is how to define the test adequacy of a DNN
testing scheme. In traditional software testing, test adequacy is
measured by the test coverage [186]. For example, statement
coverage defines test adequacy by computing the percentage
of exercised statements during testing. Unfortunately, unlike
traditional software, the adequacy of DNN testing cannot be
directly measured by the similar coverage criterion in traditional
software testing, since the operations of DNNs are not explicitly
programmed. Therefore, in pursuit of quantifying the adequacy
of a testing scheme for DNNs, we can first craft a fixed number
of test cases. Then we can estimate the test adequacy of a

CHAPTER 1. INTRODUCTION 5

testing technique with the percentage of triggered failures by
the synthesized test set. The second obstacle is how to raise the
test adequacy of a DNN testing approach. Existing methods
usually show limited success [61].

In this thesis, we focus on testing the robustness of deep
image classifiers under adversarial environmental conditions.
In other words, we aim to devise attack methods to generate
adversarial samples that can achieve high attack success rates
(test adequacy). From the perspective of simulating an ad-
versarial environmental condition during DNN testing, we can
adopt a threat model to define the assumptions we make about
the potential attackers [159], such as the attackers’ goal, the
attackers’ admissible actions, and the attackers’ knowledge of
the target model.

The threat model that we adopt is transfer-based attacks [162].
In transfer-based attacks, adversaries craft adversarial images
based on off-the-shelf local models without the feedback infor-
mation from the target model, and directly apply the resultant
adversarial samples to attack the victim DNNs. Besides, for
stealthiness, the adversarial images are restricted to be near the
corresponding seed images in the lp space. Therefore, transfer-
based attacks mirror a severe threat to DNNs in practice and
have attracted an exploding interest recently [28,162].

We first consider testing the robustness of undefended DNNs
against transfer-based attacks. Unfortunately, under such a
restricted but practical setup, existing attack schemes often
manifest limited transferability due to overfitting to the exclu-
sive vulnerabilities of the employed local model. Transferability
refers to the phenomenon that adversarial samples generated

CHAPTER 1. INTRODUCTION 6

from one model can remain malicious to another one [81].
Therefore, low transferability indicates low attack success rates
and low test adequacy. In this thesis, we propose to alleviate the
overfitting issue by introducing a regularization term [162]. Our
method, called the Attention-guided Transfer Attack (ATA),
features guiding the search of adversarial images towards the
common susceptible direction of different classifiers. As a result,
we can alleviate overfitting to a specific source model and boost
the transferability of resultant adversarial samples.

We then turn to evaluate the robustness of defended DNNs
against transfer-based attacks. As attackers craft adversarial
samples by prudently attaching small lp-norm adversarial noise
to legitimate images, the resultant adversarial samples become
sensitive to image transformations. Motivated by this obser-
vation, defenders can resort to semantic-preserving transforma-
tions to pre-process inputs to purify adversarial noise. This
body of defenses is shown to be highly effective against existing
attacks [22, 166]. To better evaluate the robustness of such
defended DNNs, we propose an Adversarial Transformation-
enhanced Transfer Attack (ATTA) [164]. It is inspired by the
data augmentation methodology to improve the model general-
ization capacity. Specifically, we augment the toughest image
transformations during the learning of adversarial samples and
require the crafted adversarial samples to resist such distortions.
As such, we can make the generated adversarial samples more
effective and elevate their transferability against the defended
DNNs.

Besides testing and debugging, we need detection to make
DNNs more safe and dependable during runtime. Although

CHAPTER 1. INTRODUCTION 7

testing and debugging are indispensable during the development
of DNNs, we should bear in mind that after deployment, the
real-world environmental conditions can vary with many factors,
like brightness, contrast, and camera positions for autonomous
cars. Therefore, the training data and test cases we possess
are just a relatively small fraction of all possible scenarios
in practice. Moreover, it is doubtful whether there exists a
perfect DNN model that can handle all possible situations in
light of the “no free lunch” theorem [156, 160]. Therefore, in
addition to testing and debugging that evaluate and improve
the robustness of DNNs before their deployment, we need a
detection mechanism to further secure the correct functionality
of DNNs during runtime. Concretely, detection endeavors to
identify invalid inputs at inference and thus is the prerequisite
of a fail-safe system.

In this thesis, we concentrate on elevating the robustness of
deep image classifiers against accidental failures via detecting
real-world corner cases during runtime. Our solution is moti-
vated by data validation, which is an effective strategy to detect
invalid inputs in traditional software engineering [6, 24, 51,116].
Data validation within conventional software often resorts to
specific validation rules. For example, we can define a vali-
dation rule that the entered operands should be integers for
a calculator program, if the calculator can only process integers.
Therefore, inputs that violate the validation rule are viewed as
invalid inputs, since they may incur erroneous outputs from the
program. Similarly, real-world corner cases are invalid inputs
that go beyond the capacity of DNNs. A similar data validation
procedure may also help to identify real-world corner cases for
DNNs.

CHAPTER 1. INTRODUCTION 8

However, existing data validation processes appear infeasible
for a DNN model due to its distinct design philosophy from
traditional software. The proper executions of a program are
manually defined and can be expressed as succinct control
flow statements. In contrast, the functionality of a DNN
model is indeed learned from a large amount of training data
spontaneously without much human supervision. As such, its
knowledge is encoded in millions of indecipherable parameters
and the associated intricate network structures [39, 103].

To tackle these challenges, we propose to resort to the train-
ing data of deep image classifiers to model their specifications
for data validation, which is also non-trivial. A naive idea is
to require the pixel values of the input images to be within [-
1, 1], or to require the input images to have occurred in the
training data. However, the former validation rule is too sloppy
to effectively detect real-world corner cases, while the latter is
too rigid to leave room for model generalization.

In this thesis, we propose Deep Validation (DV) as the
remedy, which is an effective adaption of data validation for
DNNs [165]. It first models the valid input range of inter-
mediate layers within DNNs through characterizing reference
distributions. We then quantify the validity of input images
by estimating their discrepancy to the valid input region. As
a result, we can identify real-world corner cases for DNNs at
inference and achieve superior detection performance over state-
of-the-art baselines.

In addition to the robustness issues, DNNs suffer from a lack
of interpretability. “Interpretability is the degree to which a
human can understand the cause of a decision” [94]. The reasons

CHAPTER 1. INTRODUCTION 9

for the insufficient interpretability of DNNs are as follows.
First, in stark contrast to traditional software, whose logic is
explicitly programmed, the operations of DNNs are learned
automatically from data with indirect human supervision. They
thus cannot be explicitly expressed with program statements.
Besides, the increasing complexity of modern DNNs makes it
more intractable to decipher the black box.

It is crucial to elevate the interpretability of DNNs. First, the
interpretability issue of DNNs raises doubts about the safe and
dependable deployment of DNNs in practice [43]. Consequently,
interpreting and understanding the behaviors of DNNs can
justify their decisions to promote model trustworthiness [43].
More critically, improving the interpretability of DNNs is advan-
tageous to spot their latent defects to inspire the design of better
models [50], including those with greater robustness [12,37,107].

For understanding the predictions of DNNs, attribution is
a prevailing methodology in the literature [38, 105]. It en-
deavors to succinctly summarize how DNNs arrive at their
final decisions. The convention is to measure the importance
of human-understandable units to model predictions, such as
pixels (i.e., input attribution) and concepts (i.e., concept attri-
bution) [66].

Input attribution has some pitfalls. The outcome of input
attribution, called saliency maps, can highlight the most respon-
sible parts of input images for model decisions. Unfortunately,
despite being intuitive, input attribution also suffers from
confining itself to input space. The primary culprit is that
the semantic meanings of image pixels are highly diversified
and interdependent. Consequently, the saliency maps returned

CHAPTER 1. INTRODUCTION 10

by input attribution are subject to human perceptions before
they become a human-readable interpretation. Unfortunately,
human judgments are error-prone and can lead to contradicting
conclusions [66].

Concept attribution can overcome the ambiguity of input
attribution by directly measuring the importance of human-
understandable concepts to model decisions. It thus has at-
tracted growing attention recently [38, 66, 184]. There are two
explanation interfaces of concept attribution studied in the
community: local explanations [184] and global explanations [66].

In this thesis, we center on increasing the interpretability
of deep image classifiers with global concept attribution. The
reasons are as follows. Local explanations investigate the
rationale of model predictions on individual data points, which
are helpful when we only care about a specific instance. In
contrast, global explanations center on mining generic decision
modes that apply to an entire class of examples. For instance,
global explanations can answer to what extent the banded
texture is related to a zebra class in model cognition. Therefore,
such global explanations are conducive to summarize the model
knowledge succinctly and understand the model as a whole [66].

Prevailing methodologies for global concept attribution of
DNNs in the literature are not satisfactory. These efforts over-
whelmingly hinge on local approximations of models and analyze
individual predictions in isolation. As for global explanations,
they repeat the analysis of single samples from a category of
interest and simply return summary statistics [38, 66]. It is
doubtful whether such a strategy to obtain global explanations
indeed sees “globally”. The defect primarily originates from the

CHAPTER 1. INTRODUCTION 11

local approximation of DNNs. However, such an approximation
holds merely when we deal with the proximity of individual
instances or the last linear layer of DNNs. Worse still, inspecting
individual predictions separately ignores the connections among
examples of the same class, which may not capture the generic
properties of the class embedded in the model knowledge.

To alleviate the shortcomings of existing proposals, we pro-
pose a novel concept attribution framework for global ex-
planations of image classifiers: Attacking for Interpretability
(AfI) [163]. It systematizes the process to model explanations
in that we make each attribution step grounded and propose
to evaluate the intermediate results. More crucially, we extend
the methodology of input occlusion to feature occlusion. The
feature occlusion analysis features a process of attacking DNNs
and probing into model internals to identify critical features.
Therefore, our framework enables layer-wise inspections and
learns a global explanation. Experimental results confirm that
we can afford more accurate explanations of model decisions
than existing efforts.

1.2 Thesis Contributions

In summary, we focus on studying the robustness and inter-
pretability of deep learning models. To this end, we make
contributions from various perspectives. More specifically, when
considering the accidental failures of deep learning models,
spurred by traditional software reliability engineering, we em-
ploy detection to elevate model robustness against real-world
corner cases. When it comes to intentional failures of deep learn-

CHAPTER 1. INTRODUCTION 12

ing models, we resort to testing to evaluate model robustness
against adversarial samples. We cover synthesizing adversarial
samples against both undefended and defended models. As for
the distinct drawback of deep learning models from traditional
software, namely, their lack of interpretability, we focus on
promoting model interpretability via global concept attribution.

The overall contributions of the thesis are highlighted as
follows.

• For accidental failures of deep learning models, we intro-
duce Deep Validation (DV) as the first framework to au-
tomatically identify error-inducing real-world corner cases
for a deployed DNN-based system [165]. It is motivated
by the data validation methodology in traditional soft-
ware. Concretely, we first model the valid input range
of intermediate layers within DNNs through characteriz-
ing reference distributions with their training data. We
then quantify the validity of inputs by estimating their
discrepancy to the valid input distributions. We conduct
extensive experiments across various datasets and DNN
architectures to evaluate our framework. Deep Validation
consistently reports prominent detection results on eight
different categories of real-world corner cases.

• For intentional failures of undefended deep learning models,
we consider adopting the threat model of transfer-based
attacks to test model robustness against adversarial sam-
ples. In this setup, we propose a novel strategy to boost
the transferability of adversarial images: Attention-guided
Transfer Attack (ATA) [162]. It features an introduction of
model attention to regularize the search of deceptive noises,

CHAPTER 1. INTRODUCTION 13

which mitigates overfitting to specific blind spots of the
source model. Extensive experiments show that our tech-
nology can severely compromise diverse top-performance
image classifiers in both white-box and black-box scenarios,
confirming the remarkable test adequacy achieved by our
attacks.

• For intentional failures of defended deep learning models,
we also investigate evaluating their robustness against ad-
versarial samples under the threat model of transfer-based
attacks. Under this scenario, we first propose to improve
the transferability of adversarial samples against defenses
with adversarial transformations. It aims to augment
the most harmful image transformations to promote the
effectiveness of adversarial samples. We conduct extensive
experiments on the ImageNet benchmark to evaluate our
approach: Adversarial Transformation-enhanced Transfer
Attack (ATTA) [164]. Experimental results confirm the
superiority of our method over state-of-the-art baselines in
attacking defended models.

• For improving the interpretability of deep learning models,
we propose a novel concept attribution framework for
global explanations of DNNs: Attacking for Interpretability
(AfI) [163]. Our framework explicitly builds upon a two-
stage procedure and employs a novel feature occlusion
methodology to learn a global interpretation. Experimental
results validate the effectiveness of our approach and show-
case that it can afford more accurate model explanations
than prior efforts. Moreover, since better interpretability
of DNNs can be beneficial to reveal potential robustness

CHAPTER 1. INTRODUCTION 14

issues [12, 37, 107], it is promising to apply our framework
to analyze and elevate the robustness of DNNs.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

• Chapter 2
In this chapter, we systematically review the background of
the robustness and interpretability of deep learning models,
incorporating the brief introduction of DNNs, accidental
failures of DNNs, intentional failures of DNNs, and the
interpretability of DNNs.

• Chapter 3
In this chapter, to improve the robustness of DNNs against
accidental failures, we propose Deep Validation (DV) as
the first framework to detect real-world corner cases for
DNNs [165]. Concretely, we first specify the real-world
corner cases well recognized in the community by defining
the fault model of DNNs in Section 3.2. Then in Sec-
tion 3.3, we elaborate on our Deep validation framework,
which is inspired by the data validation methodology in
traditional software. Finally, we extensively evaluate our
framework and compare it with state-of-the-art baselines
in Section 3.4.

• Chapter 4
In this chapter, to test the robustness of undefended DNNs
against adversaries, we devise a novel transfer-based attack

CHAPTER 1. INTRODUCTION 15

mechanism to manufacture adversarial samples: Attention-
guided Transfer Attack (ATA) [162]. It features the
introduction of model attention to regularize the search
for adversarial samples, which we describe in Section 4.3.
With extensive experiments in Section 4.4, we demonstrate
that the proposed strategy can consistently exceed state-
of-the-art attacks by a large margin, while only requiring a
regularization term.

• Chapter 5
In this chapter, we turn to evaluate the robustness of
defended DNNs against adversaries. To this end, we
introduce a novel approach to synthesize transferable ad-
versarial samples: Adversarial Transformation-enhanced
Transfer Attack (ATTA) [164]. The key is to enhance the
effectiveness of the generated adversarial examples against
the toughest image transformations, and we elaborate on
how to achieve this goal in Section 5.2. In Section 5.3, we
conduct extensive experiments to compare the performance
of our method with state-of-the-art attacks, and experimen-
tal results validate the superiority of our approach.

• Chapter 6
In this chapter, to improve the interpretability of DNNs,
we explore global explanations of DNNs with concept
attribution. We design a novel framework for learning
global explanations of DNNs: Attacking for Interpretability
(AfI) [163]. It involves a two-stage procedure: feature
attribution and concept attribution, which we present
in Section 6.2. Then in Section 6.3, we systematically
evaluate the interpretation results of our method both qual-

CHAPTER 1. INTRODUCTION 16

itatively and quantitatively. Experimental results confirm
that our framework can afford more accurate explanations
of DNNs than other competitive strategies.

• Chapter 7
In this chapter, we summarize this thesis and provide some
promising future research directions about the robustness
and interpretability of deep learning models.

2 End of chapter.

Chapter 2

Background Review

In this chapter, we review related work to situate our con-
tributions in the literature. Figure 2.1 exhibits the taxonomy.
Specifically, this thesis centers around the robustness and inter-
pretability of deep neural networks. Therefore, we first offer the
preliminaries of deep neural networks in Section 2.1.

Then we review related work on the robustness of deep neural
networks against invalid inputs. According to the categorization
of invalid inputs, we discuss the robustness of deep neural
networks in two scenarios. One is accidental failures caused
by real-world corner cases, and the other is intentional failures
resulting from adversarial samples.

Section 2.2 introduces two lines of research on the accidental
failures of deep neural networks. One is testing, which aims
to synthesize an immense quantity of real-world corner cases
to evaluate the robustness of DNNs against accidental failures.
DeepXplore and DeepBackground are representative works of
this kind [112,181]. The other line of research proposes to detect
real-world corner cases during runtime to enhance the robustness

17

CHAPTER 2. BACKGROUND REVIEW 18

DNNs

Robustness

Interpretability

Accidental

Failures

Testing

Detection

Intentional

Failures
Testing

DeepXplore

DV

TIM

ATTA

Input

Attribution

Concept

Attribution

Grad-CAM

Global

Explanation

Local

Explanation

AfI

TCAV

IBD

Undefended

Defended

TAP

ATA

AT

SIN

Figure 2.1: Taxonomy of related work and our contributions. The red text
indicates our work. The grayed box shows a sample approach.

of DNNs against accidental failures. Our Deep Validation (DV)
is the first framework to this end [165].

As for the intentional failures of DNNs, we focus on testing,
which amounts to manufacturing adversarial samples to evaluate
the robustness of DNNs against intentional failures. Since the
most promising defense to date is adversarial training [87],
which employs adversarial samples to augment the model’s
training data, testing is also conducive to defend against in-
tentional failures of DNNs. Section 2.3 presents two bodies
of studies on applying adversarial attacks to evaluate the
robustness of DNNs against intentional failures. One targets
undefended models. The transferable adversarial perturbation

CHAPTER 2. BACKGROUND REVIEW 19

(TAP) [185], transferable targeted perturbations (TTP) [98],
and our Attention-guided Transfer Attack (ATA) [162] fall into
this category. The other attacks defended models, for example,
the Translation-Invariant Method (TIM) [29] and our Adversar-
ial Transformation-enhanced Transfer Attack (ATTA) [164].

Finally, in Section 2.4, we present the recent advance in
improving the interpretability of DNNs, which proposes to
explain the model’s decision in terms of the importance of
human-comprehensible units. Such attribution techniques can
be further divided into input attribution and concept attribu-
tion, which aim to figure out the importance of input pixels
and concepts to model’s decisions, respectively. Among many
proposals, Grad-CAM is a well-established input attribution
method [130]. Our work concentrates on concept attribution,
since it can overcome the ambiguity of the input attribution
results. Two explanation interfaces exist in concept attribution,
namely, local explanations and global explanations. The former
interprets the model’s decision on individual inputs, like Inter-
pretable Basis Decomposition (IBD) [184]. The latter one mines
the generic decision mode of DNNs on the same class of samples,
such as Testing with Concept Activation Vectors (TCAV) [66],
the Causal Concept Effect (CaCE) [44], Integrated Conceptual
Sensitivity (ICS) [129], and our Attacking for Interpretability
(AfI) [163].

Moreover, we review the progress in investigating the inter-
play between the robustness and interpretability of DNNs. On
the one hand, researchers have discovered that greater robust-
ness of DNNs can facilitate their interpretability. For example,
adversarial training (AT) is one scheme born to enhance model

CHAPTER 2. BACKGROUND REVIEW 20

robustness, while found to produce more interpretable models
as an unexpected emergent benefit [155]. On the other hand,
there are attempts to demonstrate the opposite direction. That
is, better interpretability of DNNs can assist in analyzing and
promoting their robustness. Stylized-ImageNet (SIN) [37] and
Permuted Adaptive Instance Normalization (pAdaIN) [104] are
exemplars of this kind. Our AfI is also related to this line of work
in that we are devoted to producing better interpretations of
DNNs, offering a toolkit to identify potential robustness issues.

2.1 Deep Neural Networks

It has been shown either theoretically or empirically that differ-
ent neural networks structures are more suitable than the others
for different tasks [39]. Like in natural language processing, the
Long Short Term Memory network (LSTM) proposed by [55]
is widely used. It is a variant of recurrent neural networks
which is specialized for processing sequential data. However,
in image recognition, it is the convolutional neural network -
a variant of the feedforward network - that overwhelms the
others, because it is quite good at handling data that contain
rich spatial information like images. Since we will focus on the
DNNs for the image recognition problem, it is useful to introduce
the convolutional neural networks here first.

We take a classic image recognition task as an example. The
notations are summarized in Table 2.1. Suppose there are totally
m mutually exclusive classes for all the input images. Then
the convolutional neural network is designed to be an m-class
classifier and directly acts on the raw pixel values of grey-scale

CHAPTER 2. BACKGROUND REVIEW 21

Table 2.1: Notations and their descriptions.

Notation Description
m Number of classes
x Image vector
Rn Real coordinate space of dimension n
h Height of an image
w Width of an image
xi Intensity of pixel i

F (x; θ) DNN function with parameter θ
y Output vector
θi Weight of the i-th layer
θ̂i Biases of the i-th layer
σ(x) Activation function
Z(x) Logit layer function

z Logit vector
C(x) Classification function

or RGB images. We can view an image as a vector x ∈ Rn.
Specifically, for an h × w-pixel grey-scale image, we represent
it as a two-dimensional vector x ∈ Rhw, where xi denotes the
intensity of pixel i and is often scaled to be in the range of [0, 1].
All the pixel values of the image are stored in row-major order
and from left to right within a row. While for an RGB image,
we encode it as a three-dimensional vector x ∈ R3hw, where xi
denotes the intensity of pixel i and is also scaled to be in the
range of [0, 1]. The pixel values for three channels - red, green,
blue - are stored in a predefined order. Within each channel,
the pixel values of the image are also stored in row-major order
and from left to right within a row.

As a result, we can regard our convolutional neural network
model as a function F (x; θ) = y, which accepts an input image
x ∈ Rn and outputs a vector y ∈ Rm. For convenience, we
denote the corresponding deep neural network as F , and it is a

CHAPTER 2. BACKGROUND REVIEW 22

cascading of different kinds of layers of neurons. Certainly, the
model function F depends on the model’s parameter θ, which is
implicitly encoded in the model architecture.

Now let us introduce the component layer of a typical deep
convolutional neural network (CNN) architecture, AlexNet,
developed by [70] to get a taste of such kind of neural network
model.

Figure 2.2: A typical deep CNN architecture (modified from the figure
in [110]).

2.1.1 Convolutional Layer

Convolutional layers are feature filters, and are used to learn and
detect certain features from the input image. In contrast to the
fully connected layer, where each neuron has connections with

CHAPTER 2. BACKGROUND REVIEW 23

all the neurons of the former layer, convolutional layers apply
the ideas of local receptive fields and shared weights. There-
fore, convolutional layers tremendously decrease the number of
connection weights needed to learn.

2.1.2 Pooling Layer

Pooling layers are often attached to convolutional layers to
compress the feature maps output by convolutional layers and
extract their main characteristics. The side effect of such
abstraction is that it can further cut down the parameters
needed to learn and thus the complexity of the model.

2.1.3 Fully Connected Layer

Neurons are fully connected to the neurons in the previous layer
in a fully connected layer. It is used to blend different features
learned by the former layers so that the final classifier can obtain
the overall information of features.

2.1.4 Softmax Layer

A Softmax layer is often used as the final output layer of a
deep CNN model. An example of such a deep CNN model is
depicted in Figure 2.2, where the model weights are represented
as weighted links among neurons.

From Figure 2.2, the final function of a neural network can
be seen as a composition of a series of layer functions:

F = Softmax ◦ Fn ◦ Fn−1 ◦ · · · ◦ F1, (2.1)

CHAPTER 2. BACKGROUND REVIEW 24

where
Fi(x) = σ(θi · x) + θ̂i (2.2)

is the function of the i-th component layer. Here θi summarizes
the weights of the i-th component layer, and θ̂i is the corre-
sponding layer biases. All these weight matrices and biases
vectors make up the complete model parameters. σ is called
the activation function, whose common choices are non-linear
functions like tanh [93], sigmoid, ReLU [86], or ELU [21].

The last hidden layer is designed to be a fully connected layer,
and the number of neurons in this layer equals the total number
of classes in our task. The output vector of this layer Z(x) = z
is called the logits.

The final Softmax layer conducts a kind of normalization for
all the elements in z, and computes the i-th component of the
final output vector F (x) using the Softmax function:

F (x)i = ezi∑m
t=1 e

zi
. (2.3)

Obviously, we can summarize it as:

F (x) = Softmax(Z(x)) = y. (2.4)

It ensures that the final output vector y satisfies the following
properties:

0 ≤ yi ≤ 1 (2.5)

and
m∑
i=1

yi = 1. (2.6)

The output vector y can thus be treated as a probability
distribution. In other words, we can regard yi as the probability

CHAPTER 2. BACKGROUND REVIEW 25

of input x belonging to class i. Therefore, our classifier will infer
that C(x) = arg maxi F (x)i is the label for input x.

2.2 Accidental Failures of DNNs

Despite their marked performance, DNNs often suffer from
accidental failures incurred by real-world corner cases. Generally
speaking, real-world corner cases are invalid inputs that are
overlooked during the design of the system, but can naturally
occur in practice. For example, an autonomous Uber vehicle
misclassified a pedestrian during road-test at night [154], since
the self-driving car is trained mainly based on daytime data.
Such misbehavior of DNNs is named accidental failures, and the
corresponding culprit input is called real-world corner cases.

In this section, we review two bodies of related works on
exploring the robustness of DNNs against real-world corner
cases. One is testing, which aims to evaluate the robustness
of DNNs. The other is detection, which endeavors to increase
their robustness.

There is a growing interest in automatically generating a
mass of test cases [112, 113, 150, 176], since regular test data
often lack diversity and fail to expose stealthy bugs in DNNs.
The synthesized test cases intend to simulate different real-
world circumstances. In order to bypass the test oracle prob-
lem [58], existing works often resort to differential/metamorphic
testing techniques [20, 90]. They generally synthesize test
cases by applying image transformation or taking advantage
of Generative Adversarial Networks (GANs) [79]. Such efforts
are conducive to enhancing the robustness of DNNs before

CHAPTER 2. BACKGROUND REVIEW 26

deployment. Nevertheless, in a running DNN-based system, we
still need to monitor the status of the system in case of any
unexpected situation it cannot handle.

Our detection method is motivated by data validation. In
software engineering, data validation seeks to protect the sys-
tem by disallowing the entry of data that violate predefined
validation rules [6, 24, 51, 116]. For example, web applications
often turn to data validation to prevent input attacks like buffer
overflow, SQL injection, and cross-site scripting [8, 106].

Concurrent with our work, Zhang et al. propose to validate
the inputs of DNNs via VGGNet features [176], but these two
frameworks are distinct. Zhang et al. only demonstrate the
viability of their method to differentiate images under different
weather conditions. Furthermore, they do not investigate the
efficacy of their approach in mitigating model misbehavior. So
their technique is merely aware of changing weather, no matter
whether misclassification occurs, which generally has compar-
atively limited use in practice. Contrarily, we investigate the
general misbehavior of DNN classifiers and propose an effective
model validation mechanism to enable fail-safe operations in
practice.

2.3 Intentional Failures of DNNs

Apart from accidental failures, DNNs are under the threat of
intentional failures when attackers are present. The weapon of
attackers is called adversarial samples, which are crafted by pur-
posefully perturbing legitimate images in a human-imperceptible
manner. An example of attaching some deliberately engineered

CHAPTER 2. BACKGROUND REVIEW 27

Figure 2.3: An adversarial image for GoogLeNet [144] (modified from the
figure in [39]).

“noise” to a legitimate input image so that the model mis-
classifies the adversarial sample with high confidence is shown
in Figure 2.3. Here the difference between the legitimate source
image and the adversarial variant is hardly perceptible, while
the model is too “sensitive” about the adversarial distortion to
make a correct decision.

Therefore, adversarial attacks can serve as a critical surrogate
to test the robustness of DNNs against intentional failures. In
this section, we review two facets of evaluating the robustness
of DNNs against intentional failures: synthesizing adversarial
samples against undefended models and synthesizing adversarial
samples against defended models.

CHAPTER 2. BACKGROUND REVIEW 28

2.3.1 Synthesizing Adversarial Samples Against Unde-
fended Models

According to the knowledge of attackers, there are generally two
categories of threat models in the literature [11]. One is white-
box settings where attackers acquire full access to the victim
model, for example, the model architecture and parameters.
The other is black-box settings where adversaries only obtain
query access, namely, image input uploading and prediction
output downloading. Under both scenarios, attackers aim to
synthesize adversarial samples to mislead learning algorithms by
perturbing legitimate images in a human-unnoticeable manner.

Corresponding to the setting that they are tailored for, at-
tacks are classified as white-box attacks and black-box ones [11].
The white-box attack enjoys great popularity among early work
on attacking DNNs [18,42,72,147]. Unlike the process of model
training, white-box attacks feature an optimization in input
space to elevate training loss. The fast gradient sign method
(FGSM) alters clean seed images by taking one step along
with the sign of the gradient of the model loss function [42].
Its successor, the basic iterative method (BIM), iteratively
applies FGSM perturbations of smaller magnitude to improve
attack success rates [72]. Projected gradient descent (PGD)
extends BIM with a random start to diversify the synthesized
adversarial instances [88]. The Carlini and Wagner attacks
(C&W) devise a novel attack object to absorb the perturbation
budget constraint [18], which also admits the employment of
sophisticated optimizers like Adam [67] during the search for
deceptive noises. The Jacobian-based Saliency Map Attack
(JSMA) [109] is tailored for seeking the adversarial noise with

CHAPTER 2. BACKGROUND REVIEW 29

the minimal l0 norm. Therefore, it proposes to prioritize the
modification of the most important image pixels to model
decisions.

However, white-box attacks hardly reflect the threat to
models in practice since only query access is allowed in most
realistic cases. Therefore, black-box attacks have attracted
increasing attention recently. There are roughly two sorts
of black-box attacks according to the mechanism they adopt.
One is query-based [10, 46, 108], and the other one is transfer-
based [29,81,96,167,185].

Query-based black-box attacks can settle the susceptible
direction of the victim model as per the response of the target
model to given inputs [46]. Alternatively, attackers can approx-
imate the loss gradient of the target model through training a
local replica [108] or finite difference techniques [10]. However,
such attacks usually require excessive queries before a successful
trial and thus have limited applicability in practice [29].

Transfer-based black-box attacks are motivated by the trans-
ferability of adversarial samples across different models. Con-
cretely, attackers first launch attacks on off-the-shelf local
models to which they have white-box access. Then the deceptive
samples are directly transferred to fool the remote victim model.
Therefore, attackers can apply any white-box attack algorithm
in this task, such as FGSM and BIM. Unfortunately, such
a straightforward strategy frequently suffers from overfitting
to specific weaknesses of local source models and manifesting
limited success. We show that by introducing regularizers
into the optimization process of adversarial samples, we can
significantly improve the performance of such transfer-based

CHAPTER 2. BACKGROUND REVIEW 30

black-box attacks.

There also exist two sorts of methods to promote adversarial
transferability. Ensemble-based mechanisms often require the
deduced distortion to remain harmful for an ensemble of mod-
els [81, 132] or images [29, 96, 167]. More related to our work
is the regularization-based approach: transferable adversarial
perturbation (TAP) introduced by [185]. TAP injects two
regularization terms into the vanilla training loss function of
the model to guide the search of adversarial manipulations,
which alleviates the issue of vanishing gradient and reduces the
variations of resultant adversarial samples. We discover that
different models share similar attention when making correct
predictions. Therefore, we can exploit this property to boost
the transferability of malicious images.

2.3.2 Synthesizing Adversarial Samples Against De-
fended Models

Enormous efforts have been devoted to defending against adver-
sarial samples, which generally fall into two axes. The first one is
termed adversarial training, which remains the state-of-the-art
defense to date [73,153]. Adversarial training works by injecting
the generated adversarial samples into the training data to
retrain the model [42]. Ensemble adversarial training is a refined
successor of vanilla adversarial training [153], which employs
the adversarial samples synthesized from hold-out models to
augment the training data. As such, the adversarially trained
models can showcase robustness against transfer-based attacks.

The second line of defenses proceeds by purifying the adver-

CHAPTER 2. BACKGROUND REVIEW 31

sarial samples. Specifically, they pre-process the input images as
a potential defense to rectify adversarial perturbations without
reducing the classification accuracy on benign images. The
state-of-the-art defenses of this kind include applying random
resizing and padding [166], a high-level representation guided
denoiser [77], randomized smoothing [22], an image compres-
sion module [63], and a JPEG-based defensive compression
framework [82]. Although being straightforward, such defenses
achieve amazing performance against prior attacks.

With the blooming progress of defenses, there is a demand
to better evaluate the robustness of defended DNNs. In other
words, we need to devise more effective transfer-based attacks
so that the generated adversarial samples can achieve better
transferability from undefended models to defended ones.

Prevailing solutions usually require the synthesized adversar-
ial samples to remain malicious against certain image trans-
formations that can preserve the image content, such as re-
sizing [167], translation [29], and scaling [78]. However, these
approaches bear the deficiency of only considering individual
image transformations or their simple combination under fixed
distortion strength. It makes the crafted adversarial samples
overfit the applied image transformations and hardly survive
under unknown distortions, which may lead to sub-par transfer-
ability [22,63,82].

In this chapter, we propose to address the defects of ex-
isting proposals. A straightforward remedy would involve
first identifying a large corpus of image transformations that
can retain the image content. Then it carefully tunes the
combination of image transformations that is appropriate to

CHAPTER 2. BACKGROUND REVIEW 32

each image. Unfortunately, such a process can incur prohibitive
computational costs.

Inspired by the recent progress in performing image ma-
nipulations with convolutional neural networks [36, 85, 187],
we propose to exploit a CNN-based adversarial transformation
network to mitigate the issue of explicitly modeling the em-
ployed image transformations and automate the tuning process.
Specifically, our Adversarial Transformation-enhanced Transfer
Attack (ATTA) proceeds by training an adversarial transforma-
tion network to model the most harmful image transformations
to adversarial noises by adversarial learning. Then we require
the generated adversarial samples to additionally defeat the
adversarial transformation network. As a result, our strategy
can improve adversarial transferability against defended DNNs.

2.4 Interpretability of DNNs

In pursuit of improving the interpretability of deep image
classifiers, attribution is the mainstream methodology in the
literature [105]. Specifically, attribution aims to quantify the
importance of human-readable units to model decisions [38,105].
Based on the unit to which it attributes model predictions, there
are two attribution techniques: input and concept attribution.

Input attribution explains model behaviors in terms of the
importance of different input pixels. The outcome of input
attribution, termed as saliency maps, can highlight the most
responsible parts of input images for model decisions. There
is a vast body of work under this track, such as the gradient-
based [105, 130, 133, 134, 136, 137, 141], structure-based [4, 95,

CHAPTER 2. BACKGROUND REVIEW 33

174, 183], proxy model-based [84, 122], and decision-based ap-
proaches [25,27,35,123,174,179,188].

Unfortunately, despite being intuitive, input attribution also
suffers from confining itself to input space. The primary
culprit is that the semantic meanings of image pixels are highly
dependent on others and diverse. Consequently, the saliency
maps returned by input attribution are subject to human per-
ceptions before they become a human-readable interpretation.
Unfortunately, human judgments are error-prone and can lead
to contradicting conclusions [66].

Concept attribution, on the other hand, attempts to address
this issue by directly measuring the importance of human-
understandable concepts to model decisions. It affords two inter-
pretation interfaces: local explanations that work for individual
predictions [105, 184] and global explanations that apply for a
whole category of examples [38,66].

Both lines of concept attribution overwhelmingly follow an
implicit two-stage procedure. They first conduct feature at-
tribution to derive feature importance, and then translate
it to concept importance to accomplish concept attribution.
In the feature attribution step, prior schemes coincidentally
employ backpropagated gradients to estimate the importance
of individual features to a class (the feature importance vector).
In the concept attribution phase, they usually exploit concept
classification to derive the embedding of a concept in hidden
layers of CNNs (the concept vector). Such a concept vector de-
notes the combinations of feature filters that can best detect the
concept. They then project the feature importance vector along
the direction of the concept vector to gauge the importance

CHAPTER 2. BACKGROUND REVIEW 34

of the corresponding concept to model decisions [38, 66, 184].
For a global explanation, they simply run the above routine for
individual samples in isolation and report the average concept
importance [38,66].

Our concept attribution framework defeats the pitfalls of
both local approximations of models and separate investigations
of samples in existing global explanation approaches. During
feature attribution, we devise a novel feature occlusion analysis.
It abandons local model approximations, and learns a global
interpretation that considers the extensive connections among
samples of the same class in model cognition. Motivated by
the prior work [7,34,66,97,184], our concept attribution scheme
directly combines feature filters as per their importance. Then
we estimate the combined filters’ representation capacity of a
concept of interest to measure concept importance. Conse-
quently, compared with current attempts, our concept attribu-
tion procedure is more general, which also offers the opportunity
to integrate prior model visualization techniques [97, 182] into
concept attribution.

Like ours, a few other efforts aim to overcome the above
shortcomings in existing global explanation methods [44, 178].
However, they possess less general applicability than ours. [44]
proposes to perform a direct concept occlusion analysis, whereas
it assumes access to the generation process of natural images for
given concepts. [178] counts on an inherently more interpretable
model, where each feature filter independently and exclusively
responds to one concept. In contrast, our technology widely
applies to post-training CNN image classifiers, without the need
for the data generation mechanism or model modification.

CHAPTER 2. BACKGROUND REVIEW 35

Notably, there is a growing spectrum of efforts on bridging
the robustness and interpretability of DNNs. Some focus on
the contribution of the robustness of DNNs to their inter-
pretability. [65, 155] are the pioneering work of this kind. They
reveal that adversarial training (AT) can produce more human-
readable models, although it is primarily designed to enhance
the robustness of DNNs via augmenting their training data with
adversarial samples.

The others are devoted to demonstrating the opposite di-
rection. That is, better interpretability of DNNs can help
to analyze and boost their robustness [37, 163]. [37] examines
the relative importance of textures and shapes to models’
decisions by measuring the models’ performance on samples
with texture-shape cue conflicts. Experimental results unearth
that ImageNet-trained DNNs intensively hinge on textures for
classification, which is an unfavorable bias that may incur
robustness issues. Therefore, [37] introduces Stylized-ImageNet
(SIN) to modulate the training of DNNs towards learning more
shape-based models. As a side effect, the resultant models
become robust against a broad array of image distortions. Our
AfI is also related to this line of research, since we endeavor
to offer more accurate explanations of models’ behaviors [163].
Consequently, our framework can serve as a toolkit to uncover
potential robustness issues of DNNs and spur the design of more
robust models.

2 End of chapter.

Chapter 3

Detecting Real-world Corner
Cases for Deep Neural
Networks

The exceptional performance of Deep neural networks (DNNs)
encourages their deployment in safety- and dependability-critical
systems. However, DNNs often demonstrate erroneous behav-
iors in real-world corner cases. Existing countermeasures center
on improving the testing and bug-fixing practice. Unfortunately,
building a bug-free DNN-based system is almost impossible
currently due to its black-box nature, so anomaly detection is
imperative in practice.

Motivated by the idea of data validation in a traditional
program, we propose and implement Deep Validation, a novel
framework for detecting real-world error-inducing corner cases
in a DNN-based system during runtime. We model the speci-
fications of DNNs by resorting to their training data and cast
checking input validity of DNNs as the problem of discrepancy
estimation. Deep Validation achieves excellent detection re-

36

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 37

sults against various corner case scenarios across three popular
datasets. Consequently, Deep Validation greatly complements
existing efforts and is a crucial step toward building safe and
dependable DNN-based systems.

3.1 Problem and Motivation

Deep neural networks (DNNs), as emerging machine learning
techniques, have achieved excellent performance on diverse
tasks, such as image classification [48, 59, 70], machine trans-
lation [47, 142, 157], and text analysis [26, 52, 91]. These
advances have facilitated the application of DNNs in a growing
spectrum of safety- and dependability-critical domains, like self-
driving [149,169], biometric authentication [80,127], and medical
diagnosis [83, 158].

Despite the impressive capacities, researchers recently un-
cover a prominent issue in the context of image classification
that these top performers often exhibit unexpected behaviors
facing unforeseen real-world corner cases. For example, a Tesla
car in Autopilot mode failed to identify a trailer against a
bright sky [138], and an autonomous Uber vehicle misclassified
a pedestrian during road-test at night [154], both resulting
in deadly accidents. In essence, real-world corner cases are
naturally transformed images that will not harm human percep-
tion [112,150]. Therefore, it is dangerous to trust the prediction
of a DNN classifier when developers do not include similar scenes
in its training data. We focus on coping with such accidental
failures of DNN classifiers in this chapter.

Existing solutions to harden DNNs against such flaws mainly

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 38

follow the idea of model retraining with data augmentation [32,
70, 112, 113, 150]. They assume that the DNN classifier has
never seen these difficult corner cases before, and retraining with
known corner cases can contribute to a more knowledgeable
model. Unfortunately, real-world scenes can vary with many
factors, like brightness, camera alignment, and object move-
ments. Hence the training data we possess are just a relatively
small fraction of all scenarios in practice. Beyond that, it is
also doubtful whether there exists a perfect DNN classifier that
can handle all possible images in light of the “no free lunch”
theorem [156, 160]. Such methods are also notorious for their
painful bug-fixing process since it is computationally intensive
to train DNNs, which usually contain millions of parameters.

Therefore, corner case detection should be an indispensable
safety tool when deploying DNNs in real-world systems. This
kind of anomaly detection is a fundamental building block in
many fail-safe systems. It is employed to foresee possible risks,
which enables human intervention to correct system errors.
However, to our best knowledge, there is no existing detection
method in the literature tailored for addressing such real-world
error-inducing corner cases in DNNs.

We believe a meaningful corner case detector should be
scenario-agnostic. It is discouraged to build a detector upon
known anomalies, which may inherit similar drawbacks of model
retraining. We consider that the error-inducing corner cases
come from distributions that the classifier has not yet learned
to settle. Motivated by the idea of data validation in traditional
software engineering [6,24,51,116], we hence infer error-inducing
corner cases are out of range of the valid input domain of a DNN

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 39

model and propose Deep Validation. It proceeds by validating
intermediate model inputs/states to identify invalid examples
that may lead to misbehaviors of the whole system. As a result,
the detector is favorably model-dependent rather than scenario-
dependent.

However, adapting data validation to validate the input
of DNNs is non-trivial. Data validation within a traditional
program often resorts to specific validation constraints, because
the logic of a program is manually defined and can be expressed
as succinct control flow statements. In contrast, a similar
validation process appears infeasible for a DNN model due to
the distinct design philosophy. The functionality of a DNN
model is indeed learned from a large amount of training data
spontaneously without much human supervision. Therefore, its
knowledge is encoded in millions of indecipherable parameters
as well as the associated intricate network structures [39,103].

The methodology to explore these challenges is as follows.
We first justify why we can instead look for support from the
training data for the declaration of valid inputs. We then
show how to model the valid input range of intermediate layers
within DNNs through characterizing reference distributions. We
follow by introducing our approach to quantify the validity of
input images by estimating their discrepancy to the valid input
region. We finally provide extensive experiments to corroborate
the high effectiveness and great superiority of our framework in
detecting real-world corner cases. Along with other merits we
demonstrate, Deep Validation conduces to promoting the safety
and dependability of DNN-based systems.

In summary, the main contributions of this chapter are:

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 40

• We introduce Deep Validation as the first framework to au-
tomatically validate internal inputs/states and to identify
error-inducing real-world corner cases for a working DNN-
based system. It monitors the deviation from the normal
functionality of internal components within a DNN and
makes sure this black-box system works correctly. As such,
Deep Validation contributes to further improving the safety
and dependability of a DNN-based system by enabling fail-
safe solutions.

• We conduct extensive experiments across various datasets
and DNN architectures to evaluate our framework. Deep
Validation consistently reports prominent results on eight
different categories of corner cases with an overall ROC-
AUC score of 0.9937 on MNIST, 0.9805 on CIFAR-10, and
0.9506 on SVHN, respectively. The superior performance
of Deep Validation also breaks the unexplored belief that
detection methods tailored for intentional attacks can also
work well facing real-world corner cases.

• We investigate the efficacy of Deep Validation on defending
against numerous cutting-edge white-box attacks. It also
achieves impressive performance with an overall ROC-AUC
score of 0.9572 and 0.9755 in two settings, respectively.
Both are competitive with state-of-the-art results. We
further test Deep Validation under high dynamical range
working conditions. It confirms that Deep Validation is
sensitive to impending dangers with consistently satisfac-
tory detection rates.

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 41

3.2 Preliminaries

The organization of this section is as follows. In order to
precisely characterize the real-world corner cases that attract
substantial interest in the community and disclose their harm-
fulness, we first elaborate on the system model and fault model
of DNN classifiers considered in this chapter [112, 113, 150].
We then present a categorization of representative techniques
for adversarial image detection, which makes it convenient to
determine the state-of-the-art benchmark methods for better
comparisons.

3.2.1 System Model of DNN Classifiers

In the field of image classification, a customized DNN struc-
ture, convolutional neural network (CNN), is embraced as the
canonical solution [56,75]. CNN classifiers often stack numerous
simple components (namely, layers of neurons) with non-linear
activation. These simple components collaborate to extract
increasingly abstract features automatically [54, 100, 101, 174].
As a whole, they can learn the mapping between raw input
images and a predefined set of labels (namely, classes of images)
by mere end-to-end supervision.

We now set up some notations. We can regard a CNN as
a function f : X → Y . Here X denotes the input space,
and Y is the output space representing a predefined categorical
set {1, ..., N}. In a conventional CNN, neurons in each layer
are connected to the ones in the succeeding layer by weighted
edges. We can thus regard the ith layer (with i ∈ {1, ..., L}) as a

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 42

function fi(fi−1; θi). It is controlled through parameters θi and
takes as inputs the outputs from the former layer fi−1.

Consequently, we can formulate the link between input im-
ages and label predictions delineated by a CNN as a composition
of L parametric functions:

f(x; θ) = fL(fL−1(...f1(x; θ1); θL−1); θL). (3.1)

Here x represents the vectorized pixel values of raw images,
which is considerably high-dimensional. The parameter set
θ := {θ1, θ2, ..., θL} hence encodes the model knowledge learned
from the training data. When it is clear from the context, we
may take fi(x) or fi as shorthand for the output of the ith layer
for the input image x.

We usually translate the final output of a CNN classifier as a
probability vector f(x), where the kth entry f(x)[k] stands for
the confidence of the model on categorizing image x as class k.
Because the last layer is a softmax layer, we can see the final
output f(x) as fitting a logistic regression on the logit outputs
zk (k ∈ {1, ..., N}) of the penultimate layer.

3.2.2 Fault Model of DNN Classifiers

We adopt a behavioral-level fault model to specify the fault
type of DNN classifiers covered in this chapter [14, 68, 114]. It
clarifies the real-world corner cases with which we are concerned.
Therefore, the fault model can not only guide the selection of
strategies for corner case generation but also profile the testbed
for evaluating anomaly detection methods.

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 43

As introduced before, a DNN classifier merely possesses a
limited capacity, and hence it often misbehaves in the presence
of unfamiliar images. In contrast with the training data of
a DNN classifier, these error-inducing samples bear distinct
characteristics. They usually arise out of unexpected, especially
dramatic changes in the working environment, like the variations
in illumination, which is why they are dubbed real-world corner
cases in the literature [112,113,138,150,154].

Therefore, in order to simulate variable working conditions a
DNN-based system may face, we follow the idea of metamorphic
testing to generate real-world corner cases [20]. Specifically,
we convert available normal images into real-world corner cases
by applying naturally occurring image transformations without
destroying their original semantic meanings. For example,
utilizing image rotation, we can craft images perceived by a
DNN-based system when its camera deviates from the original
position.

Although the defects of computing infrastructures can thwart
the normal functionality of a DNN-based system, the misuse of
DNN classifiers is one main culprit of their failures in practice,
which remains challenging to alleviate [30, 32, 57, 102, 112, 113,
150, 176]. We believe that error-inducing corner cases are
not born of the same distribution that the DNN classifier has
grasped. Hence identifying these abnormal inputs beforehand
can prevent the misuse of DNN classifiers.

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 44

3.3 Methodology

3.3.1 Corner Case Generation

In line with the fault model we account for, we now detail
the metamorphic testing technique employed to synthesize real-
world corner cases, which can simulate unexpected changes in
the working conditions of a DNN-based system. In particular,
we will introduce the image transformations and search strategy
exploited.

Image Transformations

There is a growing body of research on DNN testing that
applies metamorphic testing techniques to enrich their test
cases [31,32,57,112,113,150,176]. They find that classical image
transformations, like rotation, are capable of effectively mim-
icking changing working environments and exposing erroneous
behaviors of DNNs in practice [32,57,112,113,150].

Note that as one cannot cover all types of corner cases, we
employ well-recognized transformations (brightness adjustment,
contrast adjustment, rotation, shear, scale, and translation) to
synthesize corner cases following [150]. Compared to other
transformations, our preliminary study also confirms that se-
lected ones can generate effective real-world corner cases and
reserve original labels of images through controllable parame-
ters, avoiding introducing problematic test cases.

We now detail each transformation. Image brightness is a
measure of color intensity. Therefore, to change the brightness

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 45

of an image, we can increase or reduce all the current pixel values
by a constant bias β. The contrast of an image, as its name
implies, is determined by the amount of color and luminance
differentiation that exists between various objects in the image.
We can manipulate the contrast of an image through multiplying
all the current pixel values by a constant gain α. The brightness
and contrast of an image can frequently change in practice due
to the variation of illumination.

Rotation, shear, scale, and translation compose the whole
set of affine transformations, which is common geometric de-
formation that happens to captured images due to perspective
irregularity. We leverage them to simulate the distorted appear-
ance of an object resulting from varying camera positions and
the shift of this object, which can frequently occur in the real
world as well.

Using homogeneous coordinates can formulate affine transfor-
mations succinctly. In homogeneous coordinates, we first extend
the original coordinates of a two-dimension image I = (a, b)
into homogeneous coordinates I = (a, b, 1) with three dimen-
sions. Then the coordinates of an affinely transformed image
I′ = (a′

, b
′
, 1) are merely the dot product of the corresponding

transformation matrix T and I (i.e., I′ = T · I). We list the
transformation matrices of four kinds of affine transformation
in Table 3.1.

Complement is a different type of image transformation
that flips all the pixel values of an image. For example, in
the complement of a binary image, black and white are re-
versed. For greyscale images, their complements are still clearly
distinguishable and familiar to human observers, whereas the

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 46

Table 3.1: Transformation matrices of affine transformations covered in this
chapter.

Affine Transformation Transformation Matrix Parameters Example

Rotation

Shear

Scale

Translation
1 0 ��00 10 ��1

1 �� 0��0 10 01
cos � sin � 0−sin �0 cos �0 11
�� 0 000 ��0 01

�	: the rotation angle

�� ∶	shift along � axis��	: shift along � axis

�� ∶	shear ratio along � axis�� 	: shear ratio along � axis

�� ∶	scale ratio along � axis��	: scale ratio along � axis

complements of color images look peculiar and are unlikely to
appear in reality. Therefore, we only apply this transformation
to greyscale images. Since the model never sees the complement
of an image during training, it can be regarded as a kind of
corner cases as well.

Search Strategy

As introduced before, all the image transformations we covered
except for complement can be parameterized with different
strengths, so the first question is how to determine the most
suitable parameters for them. A small degree of deformation
is scarcely sufficient to reproduce real-world corner cases and
disclose the vulnerability of DNNs. On the other hand, too
much distortion may compromise the semantic meanings of seed
images and render them unrecognizable. We resolve this issue
by grid search in a trial-and-error fashion.

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 47

The grid search proceeds as follows. For the sake of exploring
a variety of real-world corner cases, we start by applying single
transformations to each seed image in turn. We then follow by
performing the combination of different image transformations.
To decide the parameter for single transformations, we apply
a transformation to a fixed set of clean test images with
growing distortion strength iteratively. During the search, we
also monitor whether the altered images preserve their original
semantic meanings. The search stops when the average accuracy
of the model on the transformed image set starts to drop by a
notable margin. We take it as a sign that the DNN classifier is
unfamiliar with the distorted test images and working in trouble.
We hold the resultant synthetic test images for the following
experiments.

We also consider the combination of image transformations.
Combining these transformations also contributes to discovering
new corner cases. However, it is computationally prohibitive
to explore all combinations exhaustively. Therefore we mainly
consider the combination of two transformations. The idea of
figuring out the most suitable parameters here is similar to
that discussed before. Small modification according to empirical
observation is explained in Section 3.4.2.

Although the most suitable parameter choices rely on subjec-
tive judgments, we also collect error-inducing samples via trans-
formations with a broader range of parameters. We evaluate
Deep Validation under this dynamic setting in Section 3.4.4.

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 48

 𝒙 𝑓ଵ 𝑓ଶ 𝑓𝐿−ଵ

d
L-1

d
2

d
1

joint(d
1 , …, d

L-1
) > 𝜖 Yes No

Invalid Legitimate

𝑦′

Figure 3.1: Deep Validation framework: fi is short-hand for the output of
the ith hidden layer where i ∈ {1, 2, ..., L− 1}. y′ means the predicted label
for input x. di is the discrepancy estimation for the output of the ith hidden
layer.

3.3.2 Deep Validation

Figure 3.1 outlines the framework of Deep Validation. In a word,
we take a trained DNN model and add probes into every layer
internal to it. During inference, rather than taking the classifier
as a black-box oracle and trusting its final decisions blindly, we
validate the internal states of the model, namely, outputs of
the layer i through discrepancy estimation di. We quantify the
validity of an input image by its joint discrepancy. Once the
total discrepancy exceeds a preset threshold ε, we will mark the
test image as invalid input, namely, corner cases that may lead
to unexpected behaviors of the system. In this way, we seek to
ascertain that the model functions correctly and that there is
no sign of tampering.

More specifically, we make sure that the internal states of
a running DNN classifier follow consistent patterns observed

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 49

from the training samples when making the same prediction.
Otherwise, it is risky to accept its decisions due to rare training
samples similar to those it confronts.

We present our framework as follows. We at first justify the
fundamental idea of Deep Validation that validating the internal
states of a model assists in alleviating its misbehavior. Then we
show how to turn to the training data to quantify the validity of
inputs via computing discrepancy, which estimates its distance
to the region where the probability density of training data
resides.

Justification

Our motivation comes from the idea of data validation in tradi-
tional software engineering. In a traditional program, complex
tasks are usually divided into smaller ones and conquered by
individual modules separately. We can hence assign these sub-
tasks to different developers. In order to make these modules
work together seamlessly, it is a good practice to work out
a detailed specification first. The specification of a module
generally elaborates on what tasks it is supposed to complete,
the expected inputs and outputs, and so on. Data validation is a
beneficial way to guarantee that every component within a large
program abides by the respective specification and functions
correctly during collaboration [6, 8, 24, 51,106,116].

Similarly, as introduced in Section 3.2, a DNN classifier can
also be regarded as a sophisticated program. Its layers are
small components that summarize the raw input image into
increasingly abstract forms, which are usually called the hidden

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 50

representations of the image. Recall that each layer can only
perform a specific simple computation and owns relatively much
limited capability. It is thus apparent that each layer has an
input domain where it has learned to work well. We can regard
this region as its valid input range.

Therefore, we propose to validate the input of each layer,
which is favorable. Under normal circumstances, since the test
images follow the same distribution of the training data, the raw
images are mapped into valid input space of each inner layer
sequentially, and all layers cooperate in harmony as a whole.
Therefore it is enough for images to escape from the “familiar”
input region of any middle layer to crack the whole system.
Worse still, due to the high dimensionality of input space, small
unsafe perturbations can be exacerbated when pushed forward
along layers [42, 107]. As a result, the contaminated outputs of
internal layers can gradually deviate from the regular input areas
of succeeding layers and bring about false predictions in the
end. Therefore, validating the input/state of all middle layers is
conducive to spotting abnormal images that the DNN classifier
has not yet learned to handle and preventing the misuse of each
component layer.

Discrepancy Estimation

However, it is challenging to adapt data validation for DNNs.
In traditional programs, we can develop data validation routines
in line with detailed program specifications. Nevertheless, the
obstacle in the context of DNN models is that the legitimate
input range for every layer is ill-defined. It is because the
decision functions of these layers are learned on their own

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 51

rather than manually designed by the developers. Moreover,
the classification rules they derive from the training data are
encoded in millions of parameters, which are nearly impossible
to translate.

We instead circumvent this difficulty by backtracking the
training data. Since the model has learned to work well on
training samples, their hidden representations are supposed to
outline the valid working areas of corresponding layers. These
legitimate regions, however, can still be too complicated to
depict. We hence further decompose the valid input domain
of each layer according to different image classes.

Our solution to capture the valid working areas of each layer
is motivated by the following observations. Recall that in order
to tell different categories of images apart, each layer within a
DNN should carefully abandon redundant features and retain
discriminative ones until only the label information survives
in the end. Consequently, images of different classes can fire
different patterns and follow different paths when transferred
from one area into another one when going through layers.

Based on this observation, Deep Validation proceeds by
validating the following claim for each intermediate output of
a test image:

Whether the output stays near the region where the cor-
responding hidden representations of training images with the
same label are concentrated.

Whenever there are considerable discrepancies, the prediction
for the test image is no longer credible. Besides, this abnormal
input is likely to be an error-inducing corner case, because

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 52

some components within the DNN classifier are compelled to
extrapolate in unknown regions, or the input has gone through
a strange mapping route.

As a result, the algorithm of Deep Validation proceeds as
follows. We begin by portraying the regions where training
images of different categories locate layer by layer. We then
mark them as reference distributions. When a new test image
comes, we evaluate its divergence regarding the corresponding
reference distributions to determine whether the test image is
legitimate.

We build our discrepancy estimation on the method proposed
by Schölkopf et al. [128] to efficiently model the reference
distributions. Roughly speaking, their method aims to locate
the separating hyperplane of training points after casting them
into kernel space. We leverage this approach to capture the
region where the probability density of training images resides.
Specifically, for each reference distribution, we train a one-class
support vector machine (SVM) on the corresponding set of
hidden representations of training images. We follow their idea
to learn the decision function through requiring its values to be
non-negative on small input regions where most of the training
data spread while negative otherwise.

After that, we approximate the validity of a given sample
by calculating its signed distance to the learned supporting
hyperplane in kernel space. By doing so, we circumvent the
difficulty in depicting data whose underlying distribution is too
elusive to express explicitly. On top of that, since we simplify the
reference distribution through a careful segmentation of training
samples, it helps the training of one-class SVM to scale well to

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 53

Algorithm 1 One-class SVM Training
Require: CNN classifier f , layer number L, class number N , and training

data set Xtrain

1: // obtain correctly classified images from the training dataset
2: Xtrain ← {x(t) ∈ Xtrain : y(t) == f(x(t))}
3: for layer i ∈ {1, ..., L− 1} do
4: for class k ∈ {1, ..., N} do
5: // select corresponding training data
6: Xk ← {x(t) ∈ Xtrain : y(t) == k}
7: // get hidden representations in a specific layer
8: Xk

i ← {fi(x(t)) : x(t) ∈ Xk}
9: // train one-class SVM(i, k)

10: SVMTRAIN(Xk
i)

11: end for
12: end for

high-dimension data.

Algorithm 1 elucidates the procedure for training these one-
class SVMs. In simple terms, we begin by removing training
images misclassified by the model, since they are likely to be
outliers and will harm the training of SVMs. Then in each layer
except for the last one, we get the hidden representations of
all the training images and group them based on their original
labels. Each subset of these points is applied to fit one SVM.
Therefore, we conduct SVM training repeatedly for every class
in every layer. The training procedure SVMTRAIN is based
on the implementation of the algorithm of Schölkopf et al. in
the scikit-learn library [13, 111]. We denote the final distance
function of SVM(i, k), namely, the signed distance of input to its
decision hyperplane, as tki . Here SVM(i, k) is the SVM trained
with hidden features of images from class k in layer i.

Algorithm 2 describes the routine to estimate the discrepancy
of a test image xtest. In order to obtain the discrepancy

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 54

Algorithm 2 Discrepancy Estimation
Require: CNN classifier f , layer number L, and test image xtest
1: y

′ ← f(xtest)
2: for layer i ∈ {1, ..., L− 1} do
3: // compute discrepancy di for layer i
4: di ← DISCREPANCY (y′

, fi(xtest))
5: end for
6: // evaluate joint discrepancy d for the test image
7: d← joint (d1, d2, ..., dL−1)

estimation for the intermediate output fi(xtest) of the test
image in the ith layer, we first obtain its label prediction y

′ to
index the reference SVM (i, y′). Next, we feed fi(xtest) to the
corresponding SVM distance function and directly define the
opposite as the discrepancy value.

Definition 3.3.1. (Discrepancy in the ith layer). The discrep-
ancy DISCREPANCY (y′

, fi(xtest)) of a test image xtest in the
ith layer is defined as follows.

DISCREPANCY (y′
, fi(xtest)) = − tky′ (fi(xtest)). (3.2)

It is because we want to have positive discrepancy values for
outliers and negative ones otherwise. Finally, we define the total
discrepancy d as the unweighted sum of discrepancy estimations
of all layers.

Definition 3.3.2. (Total discrepancy). The total discrepancy
d of a test image xtest is:

d = joint(d1, d2, ..., dL−1) =
L−1∑
i=1

di. (3.3)

This simple joint function turns out to work well. Still, we
can further explore it since a better combination can lead to a

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 55

Table 3.2: Model architecture for SVHN.

Layer Type Parameters
Convolution + ReLU 64 filters (3 × 3)
Convolution + ReLU + Max Pooling(2 × 2) 64 filters (3 × 3)
Convolution + ReLU 128 filters (3 × 3)
Convolution + ReLU + Max Pooling(2 × 2) 128 filters (3 × 3)
Fully Connected + ReLU 256
Fully Connected + ReLU 256
Softmax 10

Table 3.3: Model accuracy on test data.

Dataset Accuracy on Test Data Mean Top-1 Prediction Confidence

MNIST 0.9943 0.9979

CIFAR-10 0.9484 0.9456

SVHN 0.9223 0.9878

more precise estimation.

3.4 Experiments

3.4.1 Experimental Setup

We consider three standard datasets for image classification:
MNIST [76], CIFAR-10 [69], and SVHN [99]. We note that
SVHN is a relatively “noisy” dataset without much data pre-
processing effort in advance. It has two formats, of which we
utilize the one made up of 32-by-32 color images with cropped
digits. We engage the standard training-test partitions of all
these datasets.

We now describe the models in our experiments. We utilize
pre-trained models for MNIST and CIFAR-10 for the sake of
fair comparisons in the following experiments. The MNIST

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 56

Table 3.4: Transformations and search space utilized when synthesizing
corner cases.

Transformation Parameter Parameter Range and Search Step

Brightness 0 through 0.95, step 0.004

Contrast 0 through 5.0, step 0.1

Rotation 1 through 70 , step 1

Shear (0, 0) through (0.5, 0.5), step (0.1, 0.1)

Scale (1, 1) through (0.4, 0.4), step (0.1, 0.1)

Translation (0, 0) through (18, 18), step (1, 1)

Complement maximum pixel value 1.0 -

bias ߚ

gain ߙ

rotation angle 𝜃

shear vector (𝑠ℎ , 𝑠𝑣)

scale vector (𝑠௫ , 𝑠௬)

translation vector (𝑇௫ , 𝑇௬)

° ° °

model is a seven-layer CNN [171], and the CIFAR-10 model is
DenseNet [59,89], which has 40 layers in total. We train a seven-
layer CNN for SVHN, and Table 3.2 summarizes its architecture.
We adopt an Adadelta optimizer [173] during training, with an
initial learning rate of 1.0 and a decay factor of 0.95. We train
the model for 60 epochs with a batch size of 128. We do not
apply any data augmentation during training. Table 3.3 presents
the mean accuracy and prediction confidence of these models on
test datasets. Their performances are all comparable to the
state-of-the-art results [9].

3.4.2 Corner Case Generation

The procedure to generate real-world corner cases is as follows.
We fix a clean seed image set of 200 images for each model. They
are randomly sampled from the corresponding test dataset. We
make sure that all get correctly classified before any modifica-
tion. These seed images are leveraged to synthesize corner cases
according to the strategies introduced in Section 3.3.1. Table 3.4
lists the search range and step size for each transformation.

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 57

Normal Brightness Contrast Rotate Shear Scale Translation Comple-
ment Combined

MNIST

CIFAR-10

SVHN

Figure 3.2: Examples of synthetic corner cases.

We note that we only alter the seed images from MNIST by
complement since the other datasets are all color images.

We search for suitable transformation strength as follows.
At each iteration, we evaluate the accuracy of the target
classifier on synthetic images and define the success rate of
each configuration as 1 − accuracy. As we expect, different
transformations have different destructive power in different
datasets. Some transformations degrade the accuracy of target
classifiers quickly with increasing distortion, while others fail to
convert legitimate samples into error-inducing counterparts until
they become hardly discernible. For individual transformation,
the search stops when it obtains a success rate of about 60%. In
the following experiments, we do not consider transformations
that cannot achieve a success rate of greater than 30% in the
end. Combined transformations are mainly meant to enrich
the corner cases, and therefore we directly utilize the final
parameters above to parametrize component transformations.
We select one transformation combination for each dataset that
results in the smallest deformation because it can preserve the
semantic meaning of images and test the sensitivity of detectors.

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 58

Table 3.5: Success rates of different kinds of corner cases.

Dataset Transformation Configuration Success
Rate

Mean Top-1 Prediction
Confidence

Brightness - - -
Contrast - - -
Rotation 0.62 0.8854

Shear 0.64 0.8491
Scale 0.665 0.9031

Translation 0.625 0.9118
Complement maximum pixel value 1.0 0.53 0.8507

Combined Transformations complement combined with
scale 0.87 0.8645

Brightness 0.625 0.7213
Contrast 0.585 0.7405
Rotation 0.655 0.7782

Shear 0.59 0.7325
Scale 0.585 0.4608

Translation - - -
Complement - - -

Combined Transformations brightness adjustment
combined with scale 0.855 0.3891

Brightness 0.575 0.8315
Contrast - - -
Rotation 0.615 0.9396

Shear 0.605 0.9362
Scale 0.715 0.9524

Translation 0.63 0.9405
Complement - - -

Combined Transformations brightness adjustment
combined with scale 0.865 0.9731

MNIST

CIFAR-10

SVHN

� = 0.49

� = 4

� = 50°
(��	, ��) = (0.2, 0.3)
(��	, ��) = (0.8, 0.8)
(��	, ��) = (4, 3)

� = 44°
(��	, ��) = (0.3, 0)
(��	, ��) = (0.7, 0.7)
(��	, ��) = (5, 5)

� = 0.51� = 40°
(��	, ��) = (0.5, 0.4)
(�� 	, ��) = (0.6, 0.6)

Table 3.5 lists the success rates of all settings along with
the final parameters we employ. Figure 3.2 illustrates some
examples of resultant corner cases. No images are given for
transformations with less than a 30% success rate. Although
our target models obtain exceptional accuracy on clean test
data, they are susceptible to these unusual corner cases and
undesirably show high confidence in their wrong predictions. It
once again reveals the serious threat real-world corner cases can
pose.

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 59

3.4.3 One-class SVM Training

The training of one-class SVMs proceeds as follows. We note
that training one-class SVMs merely utilizes the clean training
data introduced in Section 3.4.1. To facilitate selecting SVM
parameters, we leave out 1000 examples as validation data from
each training dataset. We apply the same training parameter
for all the SVMs within the same layer (i.e., SVM(i, k) : k ∈
{1, ..., N}). Nevertheless, they vary from layer to layer since
the intermediate outputs from different layers are usually of
substantially different dimensions.

We note that the overhead of the proposed framework is low,
because it is much cheaper to train one-class SVMs than to
train DNNs. As the hidden representations of input images are
already available when running DNN systems, querying SVMs
also incurs negligible costs. Besides, the training and validation
pipeline can be parallelized based on our design.

We make some adjustments on CIFAR-10 when implementing
our framework. The target model for CIFAR-10, DenseNet,
contains 40 layers. Therefore it takes much more time if we
train SVMs for all layers. Thanks to the dense inter-connections
between layers, it is convenient for the latter layers to receive
the outputs from the former ones directly. Accordingly, errors
that happen in the early layers can also smoothly propagate
to the latter ones, which means that it may be enough to
validate the inputs of the rear layers. Based on this observation,
Deep Validation only works on the last six layers of DenseNet.
However, we envisage that validating internal inputs of all layers
can make further improvements.

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 60

−1 0 1 2 3
0

25

50

75

100

d

N
u

m
b

er
 o

f
E

x
am

p
le

s

Legitimate

Invalid

(a) MNIST

−1 0 1 2
0

50

100

150

200

d

Invalid

Legitimate

(b) CIFAR-10

−2 −1 0 1 2

25

50

75

100

d

Invalid

Legitimate

(c) SVHN

Figure 3.3: Discrepancy distributions of legitimate images and invalid ones
(successful corner cases). Each plot is based on 200 histogram bins and fitted
over discrepancy estimations for the corresponding evaluation dataset.

3.4.4 Corner Case Detection

Evaluation Dataset

We curate the evaluation dataset as follows. As shown in
Table 3.5, we have six kinds of successful corner cases for
each dataset. Therefore, for each target classifier, there are
1200 synthetic corner cases. We sample the same number of
images from the corresponding clean test dataset. They together
compose the evaluation dataset. According to whether these
corner cases get misclassified or not, we further group them into
successful corner cases (SCCs) and failed corner cases (FCCs).

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 61

Ta
bl
e
3.
6:

RO
C
-A

U
C

sc
or
es

of
D
ee
p
Va

lid
at
io
n.

V
al

id
at

o
r

L
ay

er
 N

o
.

B
ri

g
h

tn
es

s
C

o
n
tr

as
t

R
o
ta

ti
o

n
S

h
ea

r
S

ca
le

T
ra

n
sl

at
io

n
C

o
m

p
le

m
en

t
C

o
m

b
in

ed
 T

ra
n

sf
o

rm
at

io
n

s

1
 -

 -

0

.8
7

6
0

0
.9

9
8
7

0
.8

8
2
7

0
.8

9
5

2
1
.0
0
0
0

1
.0
0
0
0

0
.9

4
4

0

2
 -

 -

0

.9
2

0
0

0
.9

7
1
9

0
.8

0
4
8

0
.8

8
9

3
1
.0
0
0
0

0
.9

9
9

6
0
.9

3
2

4

3
 -

 -

0

.9
7

4
1

0
.9

7
9
7

0
.9

5
9
1

0
.9

7
2

8
0

.9
8

5
0

0
.9

1
9

7
0
.9

6
1

8

4
 -

 -

0

.9
7

4
0

0
.9

8
2
3

0
.9

2
2
4

0
.9

6
5

7
0

.9
8

7
6

0
.9

6
7

0
0
.9

6
5

7

5
 -

 -

0

.9
7

3
2

0
.9

7
8
8

0
.9

0
5
3

0
.9

6
0

2
0

.9
8

6
1

0
.9

6
3

0
0
.9

6
0

1

6
 -

 -

0

.9
6

5
9

0
.9

8
8
9

0
.9

2
3
7

0
.9

6
2

0
0

.9
8

7
1

0
.9

7
8

6
0
.9

6
7

6

 -

 -

0
.9

7
4
1

0
.9

9
8

7
0

.9
5

9
1

0
.9

7
2

8
1
.0
0
0
0

1
.0
0
0
0

0
.9

6
7
6

 -

 -

0
.9
8
9
1

0
.9
9
9
1
0
.9
8
8
1

0
.9
8
4
4

1
.0
0
0
0

1
.0
0
0
0

0
.9
9
3
7

O
v
er

al
l

R
O

C
-A

U
C

 S
co

re
C

o
n

fi
g
u

ra
ti

o
n

B
es

t
T

ra
n

sf
o

rm
at

io
n

-s
p

ec
if

ic

S
in

g
le

 V
al

id
at

o
r

Jo
in

t
V

al
id

at
o

r

S
in

g
le

 V
al

id
at

o
r

T
ra

n
sf

o
rm

at
io

n
 M

et
h

o
d
 U

se
d

 t
o

 S
y
n

th
es

iz
e

C
o

rn
er

 C
as

es

(a
)
M
N
IS
T

V
al

id
at

o
r

L
ay

er
 N

o
.

B
ri

g
h
tn

es
s

C
o
n
tr

as
t

R
o
ta

ti
o
n

S
h
ea

r
S

ca
le

T
ra

n
sl

at
io

n
C

o
m

p
le

m
en

t
C

o
m

b
in

ed
 T

ra
n
sf

o
rm

at
io

n
s

3
4

0
.7

6
1
5

0
.7

5
7
9

0
.8

1
5
4

0
.8

8
2
8

0
.9

6
7
0

 -

 -

0
.9

7
5
2

0
.8

6
6
9

3
5

0
.5

1
1
9

0
.8

7
4
9

0
.9

1
7
5

0
.8

7
6
5

0
.9

3
3
9

 -

 -

0
.9

0
9
9

0
.8

4
1
2

3
6

0
.7

1
1
1

0
.8

2
3
0

0
.8

8
2
1

0
.8

5
5
7

0
.9

7
2
2

 -

 -

0
.9

4
9
7

0
.8

7
0
6

3
7

0
.8

9
5
8

0
.9

6
6
4

0
.9

1
0
9

0
.9

3
1
5

0
.9

9
8
8

 -

 -

0
.9

9
9
3

0
.9

5
2
8

3
8

0
.9
6
7
4

0
.9

7
8
8

0
.9

2
7
2

0
.9

3
5
1

0
.9

9
8
8

 -

 -

0
.9

9
9
2

0
.9

6
9
2

3
9

0
.9

3
2
1

0
.9

5
6
6

0
.9

2
4
5

0
.9

3
5
3
1
.0
0
0
0

 -

 -

1
.0
0
0
0

0
.9

6
0
3

0
.9
6
7
4

0
.9

7
8
8

0
.9

2
7
2

0
.9

3
5
3
1
.0
0
0
0

 -

 -

1
.0
0
0
0

0
.9

6
9
2

0
.9

5
5
0

0
.9
8
8
2

0
.9
5
6
1

0
.9
7
8
7
1
.0
0
0
0

 -

 -

1
.0
0
0
0

0
.9
8
0
5

O
v
er

al
l

R
O

C
-A

U
C

 S
co

re

S
in

g
le

 V
al

id
at

o
r

B
es

t
T

ra
n
sf

o
rm

at
io

n
-s

p
ec

if
ic

S
in

g
le

 V
al

id
at

o
r

Jo
in

t
V

al
id

at
o
r

C
o
n
fi

g
u
ra

ti
o
n

T
ra

n
sf

o
rm

at
io

n
 M

et
h
o
d
 U

se
d
 t

o
 S

y
n
th

es
iz

e
C

o
rn

er
 C

as
es

(b
)
C
IF
A
R
-1
0

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 62

Ta
bl
e
3.
6:

(C
on

tin
ue
d)

RO
C
-A

U
C

sc
or
es

of
D
ee
p
Va

lid
at
io
n.

V
al

id
at

o
r

L
ay

er
 N

o
.

B
ri

g
h

tn
es

s
C

o
n

tr
as

t
R

o
ta

ti
o

n
S

h
ea

r
S

ca
le

T
ra

n
sl

at
io

n
C

o
m

p
le

m
en

t
C

o
m

b
in

ed
 T

ra
n

sf
o

rm
at

io
n

s

1
0
.9
8
8
7

 -

0
.8

3
6

7
0

.7
2

0
0

0
.9

8
2

4
0

.9
3

0
7

 -
0

.9
9

9
2

0
.9

1
6

8

2
0

.8
8

8
0

 -

0
.9

0
0

6
0

.7
9

8
8
0
.9
9
3
4

0
.9
6
6
4

 -
0
.9
9
9
4

0
.9

3
1

7

3
0

.8
1

8
6

 -

0
.8

7
1

4
0

.7
3

8
5

0
.9

1
4

1
0

.8
9

9
3

 -
0

.9
9

8
0

0
.8

8
3

1

4
0

.7
6

9
6

 -

0
.8

6
5

0
0

.8
5

9
6

0
.9

0
5

7
0

.8
9

5
8

 -
0

.9
8

5
8

0
.8

8
8

7

5
0

.8
9

2
3

 -

0
.8

7
5

9
0
.8
9
3
0

0
.9

3
1

4
0

.9
1

2
4

 -
0

.9
9

4
0

0
.9

2
2

0

6
0

.9
6

0
2

 -

0
.8

6
3

1
0

.8
0

7
5

0
.7

7
8

4
0

.8
7

3
7

 -
0

.9
0

0
7

0
.8

6
3

3

0
.9
8
8
7

 -

0
.9

0
0

6
0
.8
9
3
0
0
.9
9
3
4

0
.9
6
6
4

 -
0
.9
9
9
4

0
.9

3
1

7

0
.9

6
3

8
 -

0
.9
1
8
1

0
.8

7
2

9
0

.9
7

5
7

0
.9

5
1

0
 -

0
.9

9
7

9
0
.9
5
0
6

O
v
er

al
l

R
O

C
-A

U
C

 S
co

re

S
in

g
le

 V
al

id
at

o
r

B
es

t
T

ra
n

sf
o

rm
at

io
n

-s
p

ec
if

ic

S
in

g
le

 V
al

id
at

o
r

Jo
in

t
V

al
id

at
o

r

C
o

n
fi

g
u

ra
ti

o
n

T
ra

n
sf

o
rm

at
io

n
 M

et
h

o
d

 U
se

d
 t

o
 S

y
n

th
es

iz
e

C
o

rn
er

 C
as

es

(c
)
SV

H
N

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 63

Evaluation Metric

We adopt the ROC-AUC score as the evaluation metric. The
ROC-AUC score is a widely recognized metric to assess an
anomaly detection method in similar tasks [17, 33]. It takes
both the false positive rate (FPR) and the true positive rate
(TPR) into consideration. Since some corner cases fail to fool
the target model, how to define true positives is the first problem
we need to address. Although detectors should also label failed
corner cases as true positives under some application-specific
requirements, we follow the practice in adversarial machine
learning to put aside failed corner cases first [171]. We defer
further discussions to Section 3.4.4. Consequently, the true
positive rate means the proportion of detected SCCs in all
SCCs present. Because taking clean samples for true positives
is undesired in most cases, we define the false positive rate as
the percentage of normal instances mislabeled by the detectors.

Detection Results

Figure 3.3 describes the distributions of the normalized discrep-
ancy estimation d in three datasets. As we expected, almost
all legitimate images have negative discrepancy values, while
the opposite holds for SCCs. One can set the center of both
distribution centroids as the discrepancy threshold ε. It is a
reasonable trade-off between achieving high true positive rates
and remaining relatively low false positive rates.

We report ROC-AUC scores of Deep Validation in Table 3.6.
We call the whole set of SVMs in the ith layer as the ith

single validator. The “Single Validator” row indicates the

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 64

detection result when we only exploit the discrepancy estimation
from the specific single validator. We show the best result
for each transformation among these single validators in the
“Best Transformation-specific Single Validator” row. It depicts
the best results single validators can achieve when they are
allowed to adapt to different settings by choosing corresponding
top performers. A joint validator represents the actual Deep
Validation system we deploy, and the last row of every dataset
shows its performance.

We draw the following observations. For the MNIST model,
the best single validators against specific transformations all lie
in the first three layers. The first and third single validators each
can resist one-half transformations most effectively. Because
the target model never sees the synthesized corner cases during
training, these corner cases may cause great discrepancy once
entering the system, which renders the former validators to
be immediately aware of them. However, the last validator
possesses the most balanced detection capacity, which makes
it stand out in the fight against all corner cases. We suspect
the reason is that SCCs are pushed so far away from the normal
distribution that during inference, they cannot return to the
valid input region of the last layer. Therefore, the last validator
gets a chance to spot them.

As for CIFAR-10, now each of the last two validators per-
forms best under one-half transformations respectively. The
penultimate validator is the best candidate that can handle all
transformations when working alone. It supports our design in
Section 3.4.3 to focus on the validation of rear layers. Finally,
for single validators in the SVHN model, the best players

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 65

return to the first two layers except for shear transformation,
where the penultimate validator outperforms the others. The
accumulation of small discrepancies throughout former layers
may explicate why the penultimate validator can observe larger
discrepancy values.

Notably, the last single validators in the SVHN model are less
capable of distinguishing SCCs from clean images, which leads
to deteriorated detection performance of the joint validator,
especially for scale. It may imply that some corner cases have
been transferred into “safe” regions by former layers mistakenly,
where normal samples may concentrate as well. As a result,
the last layer thinks that these are the legitimate inputs it has
seen before and is confident about its predictions. As shown in
Table 3.5, the relatively high confidence of the SVHN model on
its wrong predictions corroborates our reasoning.

Since different single validators are capable of coping with
different transformations, it inspires us to build up a versatile de-
tector through listening to all their opinions. Also, when dealing
with invalid inputs, layers are working in unhealthy conditions,
which can cause the shift of these samples towards legitimate
ones of latter layers by mistake. As such, the performance of
single validators can fluctuate. Therefore, combining them as a
joint validator can improve and stabilize the performance.

The fact that joint validators obtain the best ROC-AUC
scores under most settings evidences the idea. In MNIST and
CIFAR-10, joint validators always outperform single validators
except for brightness adjustment in CIFAR-10. It may result
from the unsatisfactory performance of the second validator.
Nevertheless, this is compensated by the latter layers as the

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 66

discrepancies can propagate along inter-connections. Therefore
the degradation of the joint validator in this configuration is
negligible. As for SVHN, the joint validator precedes the best
single validators in addressing rotated images, while in the other
scenarios, it lags slightly behind the best single validators. We
suppose the unstable performance of single validators is the main
reason. However, it can be improved via carefully assigning
different weights to different single validators when computing
joint discrepancy values, rather than adopting equal importance
here.

We note that joint validators achieve the best overall ROC-
AUC scores across three datasets, which again corroborates
their effectiveness in detecting a variety of invalid inputs (i.e.,
SCCs). When constraining the overall false positive rate to be
around 3%, 7%, and 11% on MNIST, CIFAR-10, and SVHN,
respectively, joint validators can achieve a respective overall true
positive rate (i.e., detection rate) over 96%, 94%, and 90%.

Comparison with Adversarial Image Detection Methods

We now compare our methods with adversarial image detection
approaches. The reasons are as follows. Adversarial images
can fool a DNN classifier by attaching imperceptible additive
perturbations to clean ones after acquiring white-box access.
Methods that succeed in filtering out these samples are sup-
posed to capture the intrinsic properties of normal images. In
contrast, real-world corner cases seem to introduce much larger
distortions. Hence one may think such detection mechanisms
can also identify real-world corner cases with ease.

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 67

Table 3.7: Comparisons with feature squeezing and kernel density estimation
in detecting real-world corner cases.

Dataset Method Overall ROC-AUC Score (SCCs)

Deep Validation 0.9937

Feature Squeezing 0.9784

Kernel Density Estimation 0.1436

Deep Validation 0.9805

Feature Squeezing 0.8796

Kernel Density Estimation 0.1254

Deep Validation 0.9506

Feature Squeezing 0.6870

Kernel Density Estimation 0.2543

MNIST

CIFAR-10

SVHN

In order to verify this conjecture, we examine two representa-
tive detection methods, feature squeezing [171] and kernel den-
sity estimation [33], that both report state-of-the-art detection
results on a crowd of adversarial images. We directly adopt
their original implementations and deploy them according to the
descriptions in their work. For feature squeezing, they exploit
the same MNIST and CIFAR-10 models we experiment with, so
we employ the same squeezer (i.e., detector) configurations as
they suggested. Since they do not consider the SVHN dataset,
we try out the best squeezer combination they offered. For
kernel density estimation, we train and fine-tune their detectors
on the same data we leverage.

The comparison between Deep Validation and these two
benchmark approaches, however, provides a surprising counter-
example, as shown in Table 3.7. In short, despite their
tremendous success against numerous white-box attacks, both
detection methods disappoint us in the face of real-world corner
cases. Our Deep Validation, on the contrary, overwhelmingly

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 68

dominates the competition.

We take a close look at these baselines and make the following
observations. For kernel density estimation, it can hardly
mitigate real-world corner cases, as its ROC-AUC scores are
below 0.26 across all three datasets. We suspect the reason is
that, unlike our method, they rely on only one layer and mix all
the clean images from different classes together. It is therefore
difficult to precisely depict the complicated distribution.

As for feature squeezing, it surpasses kernel density esti-
mation in all experiments. However, its performance is still
consistently inferior to ours. As introduced before, even the
clean images in the SVHN dataset are a little noisy, which
makes it hard to characterize their distribution. Consequently,
it is remarkable that we prevail by a significant margin in the
SVHN dataset. There is enough reason to doubt whether feature
squeezing indeed captures the very nature of the normal data.

The severe degradation of the detection performance of both
benchmark techniques also demonstrates that real-world corner
cases may embrace distinct properties, compared to artificially
generated adversarial samples. It would be an interesting
problem for future study.

Use Case in Defending against White-box Attacks

Since our Deep Validation is designed to be oblivious to applica-
tion scenarios, we expect that it can alleviate white-box attacks
as well. We set up experiments to validate this statement as fol-
lows. We only compare Deep Validation with feature squeezing
here because it has been tested under more attacks. We conduct

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 69

Table 3.8: Comparison with feature squeezing in the face of white-box
attacks. We adopt the same notations in [171], where “Next” and “LL”
mean the next class and least-likely class in reference to the ground-truth
label, respectively. Successful adversarial samples (SAEs) refer to those that
cause wrong predictions regardless of their target labels, while the others are
named failed adversarial samples (FAEs). Adversarial samples (AEs) contain
both of them.

FGSM BIM

Untargeted Untargeted Next LL Next LL Next LL Next LL

0.4300 0.9100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6650 0.5150

Deep

Validation
1.0000 1.0000 0.9992 0.9965 0.9347 0.9758 0.9329 0.9651 0.9851 0.9944 0.9755

Feature

Squeezing
0.9970 0.9972 1.0000 1.0000 0.9993 0.9996 0.9920 0.9920 0.9973 0.9972 0.9971

Deep

Validation
1.0000 1.0000 0.9992 0.9965 0.9347 0.9758 0.9329 0.9651 0.9282 0.8399 0.9572

Feature

Squeezing
0.9441 0.9691 1.0000 1.0000 0.9993 0.9996 0.9920 0.9920 0.8169 0.6870 0.9400

SAEs

AEs

Attack Method CW2 CW0 JSMA Overall

ROC-AUC

Score

Target Label

Success Rate

CW∞

extensive experiments on the MNIST dataset following the same
setting as described in [171]. We explore all the white-box at-
tacks that were covered: fast gradient sign method (FGSM) [42],
basic iterative method (BIM) [72], Jacobian-based saliency map
approach (JSMA) [109], and Carlini/Wagner Attacks (CW2,
CW∞, and CW0) [18]. They are all representative and fierce
attack methods to date. We utilize the same seed and clean
images in the previous evaluation dataset for consistency.

Table 3.8 enumerates all the results. We adopt the same
notations in [171], where “Next” and “LL” mean the next class
and least-likely class in reference to the ground-truth label,
respectively. However, successful adversarial samples (SAEs)
still mean those that cause wrong predictions regardless of their
target labels, which is more reasonable from the perspective
of defenders. The others are named failed adversarial samples
(FAEs). Adversarial samples (AEs) contain both of them.

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 70

Overall, Deep Validation obtains impressive results compara-
ble with feature squeezing. When only counting SAEs as true
positives, Deep Validation slightly falls behind feature squeez-
ing, but the result reverses when also incorporating FAEs as true
positives. As adversarial samples are deliberately synthesized
images that seldom happen in practice, failed attempts are an
apparent sign of intrusion. It is, therefore, commendable that
Deep Validation can outperform feature squeezing in spotting
unsuccessful efforts, which is conducive to alerting people for
upcoming attacks.

The experiments here are just to show one potential use case
of Deep Validation. Since we focus this chapter on real-world
corner cases, we do not conduct similar experiments on other
datasets, which, however, are worthwhile for future work. We
further note that the prominent performance of Deep Validation
observed here is not a guarantee that Deep Validation can be
immune to arbitrary attacks. Instead, the promising results
confirm that it can be combined with other security methods
to make the life of attackers harder.

Detection Rate Variations under Increasing Distortions

Here we propose to monitor the detection rate variations under
increasing distortions. During the search for crafting real-world
corner cases, increasing distortion can lead to more and more
error-inducing samples in most cases. A prominent detector is
supposed to identify all successful corner cases (SCCs), even
those with slight perturbation. Besides, it is generally more
appreciated that detectors should also pay attention to failed
corner cases (FCCs) when there is a significant distortion,

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 71

0 2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1

Scale Ratio

Detection rate on SCCs

Detection rate on FCCs

Success rate of corner cases

(a) Deep Validation

0 2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1

Scale Ratio

Detection rate on SCCs

Detection rate on FCCs

Success rate of corner cases

(b) Feature Squeezing

Figure 3.4: Detection rate with regard to increasing scale ratios in MNIST.
Both methods have the same false positive rate of 0.059 on clean data.

because it means that the system is working at elevated risk
of fatal mistakes. On the other hand, gentle image deformation
can frequently happen in practice, and we do not want to care
about it as the underlying system can adapt to such changes on
its own.

Consequently, we conduct similar experiments as in Sec-
tion 3.4.4 to study how the detection rates of Deep Validation
and feature squeezing vary with increasing distortion. We do

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 72

not consider kernel density estimation here due to its poor
performance reported before. Figure 3.4 shows the results for
scale transformation in MNIST. The results for other settings
show a similar trend and are thus omitted here.

We make the following observations. Deep Validation almost
keeps 100% detection rates on SCCs with various scale ratios.
The drop in scale ratio two is because there are six SCCs in
total, and only one escapes from the detection. Increasing the
scale ratio is likely to push normal images further away from
the distribution they previously stay, which leads to growing
detection rates of Deep Validation on FCCs as well. Notably, the
growth is proportional to the success rate of corner cases, which
is desirable, as stated before. It means that Deep Validation is
aware of the imminent danger.

As for feature squeezing, its performance is unsatisfactory.
Feature squeezing exhibits irregular violent oscillations and a
trend of deterioration in detection rates with increasing defor-
mation. Worse still, it hardly approaches satisfactory detection
rates on SCCs, even when the degradation of model accuracy
has become disastrous. This result further confirms the flaws of
feature squeezing in handling real-world corner cases.

3.5 Summary

In this chapter, we propose to detect real-world corner cases to
elevate the robustness of DNNs against accidental failures. The
blind spots of DNN-based systems are more stealthy and chal-
lenging to fix than traditional programs, rendering them error-
prone under real-world corner cases. Current efforts mostly

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 73

concentrate on developing precaution strategies and neglect the
importance of the fail-safe mechanism. Our Deep Validation
is the first promising solution to automatically monitor and
validate the intermediate input/state of running DNN classifiers.
It can identify error-inducing inputs and actively call for human
intervention when the system works incorrectly.

Extensive investigations of Deep Validation exhibit its excep-
tional performance in addressing a broad spectrum of real-world
corner cases and sensitivity to approaching risks. The com-
parisons with well-recognized detection methods of adversarial
images further showcase its superiority and promise of comple-
menting existing approaches to make DNN-based systems more
safe and dependable.

It is convenient to deploy Deep Validation in real-world
situations, such as the vision systems in self-driving cars. After
obtaining the video input from the car’s cameras, we can
uniformly sample some video frames from the video input at
a pre-defined interval. Then we feed these frames into Deep
Validation and acquire the final validation results by majority
voting. If we observe several invalid sets of video frames, it
implies that the self-driving car is running at risk, for example,
under bad weather conditions. We then remind the driver to
take control of the car to reduce danger.

The limitation of Deep Validation stems from the compu-
tation overhead of validating all components. Fortunately, it
can be mitigated by ad hoc modifications according to network
structures, as we have done for DenseNet before. It is an exciting
direction for future work to offer the flexibility that allows a
trade-off between ultra dependability and high efficiency.

CHAPTER 3. DETECTING REAL-WORLD CORNER CASES 74

2 End of chapter.

Chapter 4

Synthesizing Adversarial
Samples against Undefended
Deep Neural Networks

The widespread deployment of deep models necessitates the
assessment of model vulnerability in practice, especially for
safety- and security-sensitive domains such as autonomous driv-
ing and medical diagnosis. Transfer-based attacks against image
classifiers thus attract mounting interest, where attackers are
required to craft adversarial images based on local proxy models
without the feedback information from remote target ones.
However, under such a challenging but practical setup, the
synthesized adversarial samples often achieve limited success due
to overfitting to the local model employed. In this chapter, we
propose a novel mechanism to alleviate the overfitting issue. It
computes model attention over extracted features to regularize
the search of adversarial examples, which prioritizes the corrup-
tion of critical features that are likely to be adopted by diverse
architectures. Consequently, it can promote the transferability
of resultant adversarial instances. Extensive experiments on

75

CHAPTER 4. ATTACKING UNDEFENDED DNNS 76

ImageNet classifiers confirm the effectiveness of our strategy and
its superiority to state-of-the-art benchmarks in both white-box
and black-box settings.

4.1 Problem and Motivation

Deep neural networks (DNNs) have emerged as a cutting-edge
solution to a broad spectrum of real-world applications, such
as object detection, speech recognition, and machine transla-
tion [117]. Despite the impressive performance of these deep
learning techniques, they are surprisingly vulnerable to the so-
called adversarial samples [147]. For example, by imposing
human-imperceptible noises on legitimate images purposefully,
the resultant adversarial input can incur erroneous predictions
from state-of-the-art image classifiers. It raises growing concerns
over the reliability of these high-performance black boxes and
hinders the deployment of these models in practice, especially
in safety- and security-sensitive domains such as autonomous
driving and medical diagnosis [11].

Attacks thus play an important part in evaluating a model
and revealing its blind spots before deployment. In this chapter,
we center on one of the most fundamental and recognized tasks:
generating adversarial images against undefended DNN image
classifiers [11].

To simulate the threat a DNN image classifier may face,
there are generally two kinds of threat models considered in the
literature [74]. One is white-box settings, where attackers have
full access to the victim model, such as the model architectures
and parameters. The other one is black-box settings, where

CHAPTER 4. ATTACKING UNDEFENDED DNNS 77

attackers only possess query access to the target model, namely,
offering input images and obtaining output predictions.

Corresponding to the threat models that they are tailored
for, there exist two sorts of attacks: white-box attacks and
black-box ones [74]. White-box attacks can exploit the exact
gradient information of the victim model to craft malicious
instances [18, 42, 147]. Black-box attacks can be further di-
vided into two categories according to the mechanism attackers
adopt [29]. One is query-based, and the other one is transfer-
based. Query-based black-box attacks usually require excessive
queries before a successful trial [62]. On the contrary, without
the feedback information from the target model, transfer-based
black-box attacks devise adversarial samples with off-the-shelf
local models (i.e., source models) and directly harness the
resultant example to fool the remote target model (i.e., victim
models) [29,185].

Among these two sorts of black-box attacks, the transfer-
based one has attracted ever-increasing attention recently [29].
In general, only costly query access to deployed models is
available in practice. Therefore, white-box attacks hardly reflect
the possible threat to a model, and query-based attacks have less
practical applicability than the transfer-based counterparts due
to the prohibitive query cost they may incur [29].

Thanks to the observed cross-model transferability of adver-
sarial samples, a popular practice is to freely employ any white-
box attack strategy as transfer-based black-box attacks [81].
Unfortunately, the malicious images synthesized by such a
scheme are prone to overfit to the exclusive blind spots of the
source model [28,29,167,185]. Specifically, although the crafted

CHAPTER 4. ATTACKING UNDEFENDED DNNS 78

Inception V3 VGG 16 ResNet V2

Figure 4.1: The attention heatmaps of three representative models (VGG
16 [135], ResNet V2 [48, 49], and Inception V3 [146]) for a cat prediction.
The visualization is generated with the technique of [130] as detailed
in Section 4.3.2. Redder regions possess higher importance to the model
decision.

adversarial samples can attack the source model with near 100%
success rates, they suffer from limited success against the target
model.

In this chapter, we aim to promote the effectiveness of such
transfer-based attacks against undefended models. It requires
improving the transferability of adversarial samples crafted with
white-box attack strategies. We expect that the crux is to
guide the search of adversarial images towards the common
vulnerable directions of both the source and the target models.
Therefore, it inspires us to seek the common characteristics of
diverse models and exploit such information to ameliorate the
overfitting issue.

We discover that one of the similarities between different
models is the essential features that they attend to. Before
different models arrive at a correct decision, they should first
extract various features and then weigh these features appro-
priately, namely, allocating suitable attention over extracted
features1. Although some models may adopt exclusive feature

1In this chapter, we consistently employ the term “feature” to refer to the hidden

CHAPTER 4. ATTACKING UNDEFENDED DNNS 79

Face

𝛼1

𝛼𝑛

𝛼2

𝛼1 ∗ + 𝛼2 ∗ + + 𝛼𝑛 ∗

Cat

Cat

Gradient

Backpropagation

Attention

Extraction

() 𝛼2 > 𝛼𝑛 > ⋯

Critical Feature

Destruction

()

Figure 4.2: The proposed procedure of model attention extraction and its
application to guide the search of deceptive samples towards critical feature
destruction.

extractors, the most critical features that diverse architectures
employ tend to overlap largely in our numerous observations.
For instance, as demonstrated in Figure 4.1, when different
models recognize a cat image, albeit one of the models (Inception
V3) also looks for features extracted from the cat neck, all
of them tend to pay attention to the face-related features
spontaneously.

The similarity among different models in the employed fea-
representations of images extracted by middle layers of DNNs, rather than the raw image
pixels.

CHAPTER 4. ATTACKING UNDEFENDED DNNS 80

tures inspires us to exploit the model’s attention to guide the
search of adversarial perturbations. Figure 4.2 illustrates the
proposed strategy. In short, we first adopt back-propagated
gradients to approximate the importance of different features
to model decisions (i.e., attention extraction). Then we require
the adversarial manipulation to contaminate attention-weighed
feature outputs. As a result, the synthesized malicious noise can
focus on undermining the most vital image features that the
local source model employs (i.e., critical feature destruction).
Since different models strongly rely on such features, we can
alleviate overfitting to a specific source model and boost the
transferability of resultant adversarial samples.

In summary, we would like to highlight the following contri-
butions of this chapter:

• We propose a novel strategy to boost the transferability
of adversarial images. It features an introduction of model
attention to regularize the search of deceptive noises, which
mitigates overfitting to specific blind spots of the source
model.

• Extensive experiments show that our attention-guided trans-
fer attack (ATA) can severely compromise diverse top-
performance image classifiers. Empirical results also wit-
ness the superior performance of our proposal to state-
of-the-art benchmarks in both white-box and black-box
scenarios.

• We show that our strategy is generally compatible with
other transfer-based attacks and can be conveniently inte-
grated into several state-of-the-art approaches to improve
their performance.

CHAPTER 4. ATTACKING UNDEFENDED DNNS 81

4.2 Preliminaries

We now set up some notations. We represent a DNN image
classifier as a function f(x), which is usually a hierarchical
composition of layers of neurons. It outputs the probability
vector for a given image x, where f(x)[i] denotes the probability
of the image x belonging to class i. We signify the hidden
representation of x in layer k as Ak(x) = fk(x), which consists
of multiple feature maps. We will omit the input x when it is
clear from the context. Therefore, Ac

k is the cth feature map in
layer k, and Ac

k[m,n] is the output of the neuron with the spatial
position [m,n] therein.

Given a model f , an adversarial counterpart x′ of the clean
image x with ground truth label t should satisfy the following
two conditions:

argmax f(x′) 6= t, (4.1)

and
||x′ − x||p ≤ ε. (4.2)

The first condition formulates the attack object, namely, mis-
leading the target model to a wrong prediction with the ma-
licious instance x′. The second condition ensures that the
induced distortion to the original image x is imperceptible,
since ε is usually a fairly small number. We adopt the l∞-
norm in this chapter, as it is the most widely advocated in the
community [42]. We also note that our method is generally
applicable to other norm choices.

Prevailing methods to generate adversarial samples work as
follows. Let l(f(x), t) signify the loss function to guide the
training of model f . Attackers can harness the training loss

CHAPTER 4. ATTACKING UNDEFENDED DNNS 82

function as a surrogate for the attack object in Eq. (4.1) and
formulate the generation of an adversarial image x′ as the
optimization problem below:

maximize l(f(x′), t),
subject to ||x′ − x||p ≤ ε. (4.3)

4.3 Methodology

Unfortunately, such white-box attacks have some disadvantages.
Under the setup of transfer-based black-box attacks, attackers
can only exploit off-the-shelf local models to manufacture decep-
tive samples. However, the solution to the above optimization
problem of Eq. (4.3) usually exhibits limited transferability due
to overfitting to the source model.

To overcome the pitfall, we propose to augment the vanilla
training loss function with an attention-based regularization
term in Eq. (4.3). It encourages the search toward harmful di-
rections common to different deep architectures when updating
the deceptive perturbations.

Our methodology proceeds as follows. As illustrated in Fig-
ure 4.2, we will first approximate model attention over ex-
tracted features with corresponding back-propagated gradients
(Section 4.3.1). Then we formulate the destruction of attention-
weighed combinations of feature maps as a regularization term
to Eq. (4.3) (Section 4.3.3). Finally, we explain the algorithm
we employ to solve the reformulated optimization problem for

CHAPTER 4. ATTACKING UNDEFENDED DNNS 83

adversarial sample generation (Section 4.3.4).

4.3.1 Attention Extraction

We suppose that transfer-based attackers can benefit from
explicitly attacking hidden feature detectors within DNN image
classifiers. Unlike traditional image classification approaches
that count on hand-designed features, deep learning-based image
classifiers are renowned for their competence to automatically
extract discriminative features from images [54]. We can thus
separate a DNN image classifier into two parts: a hierarchical
feature extraction module and a softmax classifier. The learned
feature extractors of a DNN image classifier are often so generic
that they can adapt to different domains and tasks [131].
Inspired by the fact, we expect that lots of feature descriptors
are shared among different architectures for the same task, for
example, the edge detector for face recognition. Therefore, if
the synthesized adversarial noise can not only fool the final
prediction of a target model, but also severely contaminate the
extracted intermediate features, it is more likely to transfer
across different models. However, polluting the intermediate
features under a restricted perturbation budget may still suffer
from overfitting to a specific model, since there are some feature
filters exclusive to the source model.

To address the issue, we ask the deceptive noise to focus
on undermining critical features for the model prediction. We
assume that although different models may seek distinct feature
evidence to arrive at the final decision, the most crucial features
one model pays attention to are frequently shared among various
architectures. For example, for a cat image, it is very likely

CHAPTER 4. ATTACKING UNDEFENDED DNNS 84

that different models all need to exploit the face-related features
when making a correct prediction (Figure 4.1).

Consequently, we need to derive the importance of diverse
features to model decisions, namely, the model’s attention. We
regard one whole feature map as the basis feature detectors.
Therefore, we approximate the importance of feature map Ac

k

(i.e., the c-th feature map in layer k) to class t with spatially
pooled gradients as follows.

Definition 4.3.1. (The importance of feature map Ac
k). Let

αck[t] denote the importance of feature map Ac
k. Then

αck[t] = 1
Z

∑
m

∑
n

∂f(x)[t]
∂Ac

k[m,n] . (4.4)

Here Z is a normalizing constant such that αck[i] ∈ [−1, 1]. We
name αk[t] the attention weight of the model to various features
extracted in layer k regarding class t.

4.3.2 Attention Visualization

Built upon the deduced attention weights, we propose to visu-
alize the attention maps of various models with the technique
of [130]. Such visualization aims to explore what the model
attention looks like and examine whether distinct models show-
case similar attentions for the same correctly classified image.
Therefore, it serves as a proof of concept for our idea.

We now detail how to obtain the visualization of attention
maps. Specifically, we first scale different feature maps with
corresponding model attention weights αck[t]. Then we perform
a channel-wise summation of all feature maps in the same layer.

CHAPTER 4. ATTACKING UNDEFENDED DNNS 85

After that, we proceed with a ReLU operation to derive the
attention map for the label prediction t as follows.

Definition 4.3.2. (The attention map for the label prediction
t). Let H t

k denote the attention map for the label prediction t.
Then

H t
k = ReLU(

∑
c
αck[t] · Ac

k). (4.5)

We apply the ReLU operation here to remove negative pixels
in the attention map so that we can focus on supportive features,
which have a positive influence on the class of interest. Negative
pixels probably stand for features from other classes. We note
that H t

k is of the same spatial resolution as the feature maps
in layer k. Since the size of the feature maps varies across
different layers and models, we finally bilinearly interpolate the
attention map to the same resolution as the input image for
better comparison.

For the same cat image, Figure 4.1 displays the attention
heatmaps of various ImageNet classifiers regarding the cat
prediction. We note that all these models correctly classify the
cat image. It corroborates our assumption that diverse models
exhibit similar attention when making a correct prediction.

4.3.3 Critical Feature Destruction

After obtaining the model attention, we can now ask the
adversarial samples to not only mislead the final decision of the
target model, but also destroy the vital intermediate features.
We combine both goals as a novel surrogate attack object

CHAPTER 4. ATTACKING UNDEFENDED DNNS 86

function for Eq. (4.1):

maximize J(x,x′, t, f),
where J(x,x′, t, f) = l(f(x′), t)+

λ
∑
k

||H t
k(x′)−H t

k(x)||2. (4.6)

Here the first term in J is the vanilla training loss (i.e., the cross-
entropy loss), and we maximize it to achieve the first goal. The
second term measures the distance between attention-weighed
combinations of original feature outputs and the corrupted
counterparts. It corresponds to preferring great alterations to
features with large attention weight and thus accounts for the
second goal. λ is a tunable weight to control the regularization
effect of the second term.

4.3.4 Optimization Algorithm

After substituting the proposed attack object function (Eq. (4.6))
for that in Eq. (4.3), we can now reformulate the manufacture
of transferable adversarial samples as the following optimization
problem:

maximize J(x,x′, t, f),
where J(x,x′, t, f) = l(f(x′), t)+

λ
∑
k

||H t
k(x′)−H t

k(x)||2,

subject to ||x′ − x||p ≤ ε. (4.7)

Therefore, we can freely apply different backbone optimiza-
tion algorithms to acquire a solution. For fair comparisons, the

CHAPTER 4. ATTACKING UNDEFENDED DNNS 87

Algorithm 3 Attention-guided Transfer Attack (ATA)
Require: A classifier f , attack object function J (Eq. (4.6)), a clean image

x, and its ground-truth label t
Require: The perturbation budget ε, iteration number K
Ensure: ||x′ − x||∞ ≤ ε

1: ε′ = ε

K
2: x′0 = x
3: for k = 0 to K − 1 do
4: x′k+1 = clipx,ε{x′k + ε′ sign(∂J(x,x′k, t, f)

∂x
)}

5: end for
6: return x′ = x′K

optimization strategy we apply in this chapter is the same as the
white-box benchmark (BIM), which is an iterative refinement
of FGSM. Concretely speaking, BIM extends FGSM into an
iterative procedure with a smaller step size ε′ in each run:

x′k+1 = clipx,ε{x′k + ε′ sign(∂l(f(x′k), t)
∂x

)}, (4.8)

where x′0 = x, and clipx,ε{x′} conducts pixel-wise clipping for
the resultant image x′. Accordingly, it guarantees that x′ stays
within the l∞ ε-neighborhood of the seed image x.

Algorithm 3 summarizes our algorithm to craft transferable
adversarial samples. In short, it features an introduction of
the attention-based regularization term to the optimization
procedure of BIM.

4.4 Experiments

This section is organized as follows. We first elucidate the
experimental setup in Section 4.4.1. Then we report the

CHAPTER 4. ATTACKING UNDEFENDED DNNS 88

results of our attack against diverse top-performance models and
make comparisons with numerous state-of-the-art benchmark
approaches in Section 4.4.2. Subsequently, we investigate the
effect of hyper-parameters on our attack success rates in Sec-
tion 4.4.3. Finally, we verify the complementing effect of our
strategy on compatible algorithms in Section 4.4.4.

4.4.1 Experimental Setup

We focus on attacking image classifiers trained on ImageNet [124],
which is the most broadly recognized benchmark task for
transfer-based black-box attacks [16,74]. We follow the protocol
of the baseline method [185] to curate experimental datasets and
target models for fair comparisons.

Dataset. We need two sorts of datasets to develop and
assess our attacks, respectively. The development dataset is
the ILSVRC 2012 validation dataset [124], where we fine-
tune our hyper-parameters. The test data adopted to assess
our technique is the ImageNet-compatible dataset released by
the NeurIPS 2017 adversarial competition [74]. This test set
contains 1000 images that are not included in the original
ImageNet dataset. Therefore, it satisfies the requirement of
evaluating the generalization capability of attack algorithms in
practice.

Target model. We examine our technique with both
undefended and defended models. As for undefended models, we
employ numerous top-performance models with diverse architec-
tures, including ResNet V2 [48,49], Inception V3 [146], Inception

CHAPTER 4. ATTACKING UNDEFENDED DNNS 89

V4 [143], and Inception-ResNet V2 [143]2. We also attack the
corresponding ensemble model (referred to as Ensemble), whose
prediction is the average probability output of all the above
models.

When it comes to the defended models, we adopt mul-
tiple state-of-the-art adversarially trained models as remote
targets [73,153], since adversarial training is arguably the most
promising and effective defense to date [88]. These adversari-
ally trained models include adversarially trained Inception V3
(Adv-Inc-v3), adversarially trained Inception-ResNet V2 (Adv-
IncRes-v2), adversarially trained Inception V3 with deceptive
samples from an ensemble of three models (Ens3-Adv-Inc-v3)
and four models (Ens4-Adv-Inc-v3), respectively3.

Baseline. We compare the performance of our attack with
three kinds of benchmark techniques. As a naive baseline attack,
we attach Gaussian noise under the same norm constraint to
clean images, which is denoted as the Random Noise attack.
More importantly, we compare our strategies with diverse state-
of-the-art white-box attacks, including FGSM [42], BIM [72],
C&W [18], and JSMA [109], to showcase the effectiveness of our
algorithm in alleviating the overfitting issue and improving the
transferability of white-box attacks. Since the original C&W
implementation cannot strictly meet the l∞ budget, we employ
the modified l∞ version of C&W as introduced by [185], which
can explicitly satisfy the l∞ norm constraint. Similar to our
strategy, TAP [185] boosts adversarial transferability through

2These pre-trained models are all publicly available at https://github.com/Cadene/
pretrained-models.pytorch.

3These models are all publicly available at https://github.com/tensorflow/models/
tree/master/research/adv_imagenet_models.

CHAPTER 4. ATTACKING UNDEFENDED DNNS 90

two regularization terms and is the state-of-the-art approach
under this category. Therefore, we also include TAP in the
competing benchmarks.

Metric. We compare different attacks via the top-1 accuracy
of target models. Accordingly, lower accuracy of victim models
on the synthesized adversarial samples represents better attack
performance.

Parameter. We only include the last convolutional layer
of the source model in our regularization term based on our
preliminary experiments. For fair comparisons, we adopt default
parameters as recommended in benchmark approaches and
Foolbox [119,185]. The random noise is sampled from a clipped
normal distribution with mean 0 and variance 1. Following [185],
we fix the perturbation budget ε to 16 for all methods. We
conduct a grid search on the development dataset to settle the
best hyper-parameter for our algorithm. In all our experiments,
the attack iteration number K is set to 5. The regularization
weight λ roughly balances the contribution of each term in the
loss function J (Eq. (4.6)).

4.4.2 Transferability of Attacks

Here we study the performance of our attack against both
undefended and defended models. Specifically, we first fix a
source model and run our algorithm on the model to produce
adversarial samples. The resultant samples are then directly fed
to the source and other models to simulate the white-box and
black-box setups, respectively.

We first attack undefended models, and Table 4.1 reports

CHAPTER 4. ATTACKING UNDEFENDED DNNS 91
Ta

bl
e
4.
1:

A
cc
ur
ac
y
of

un
de
fe
nd

ed
m
od

el
s
un

de
r
at
ta
ck
s.

T
he

fir
st

co
lu
m
n
sh
ow

s
th
e
so
ur
ce

m
od

el
em

pl
oy
ed
,w

hi
le

th
e
fir
st

ro
w

st
at
es

th
e
re
m
ot
e
ta
rg
et

m
od

el
s.

A
tt
ac
k

R
es
N
et

V
2

In
ce
pt
io
n
V
3

In
ce
pt
io
n
V
4

In
ce
pt
io
n-
R
es
N
et

V
2

En
se
m
bl
e

N
o
Pe

rt
ur
ba

tio
n

89
.6
%

96
.4
%

97
.6
%

10
0%

99
.8
%

R
an

do
m

N
oi
se

84
.5
%

91
.7
%

94
.6
%

97
.8
%

98
.1
%

R
es
N
et

V
2

FG
SM

14
.6
%

56
.3
%

64
.8
%

66
.8
%

63
.1
%

BI
M

4.
4%

53
.2
%

62
.0
%

63
.8
%

54
.3
%

C
&
W

37
.7
%

94
.5
%

96
.4
%

98
.5
%

98
.5
%

JS
M
A

27
.2
%

59
.3
%

65
.2
%

62
.1
%

64
.4
%

TA
P

9.
5%

51
.2
%

60
.1
%

55
.5
%

50
.3
%

AT
A

8.
7%

52
.9
%

58
.3
%

55
.1
%

49
.4
%

In
ce
pt
io
n
V
3

FG
SM

65
.7
%

27
.2
%

70
.2
%

72
.9
%

76
.2
%

BI
M

76
.8
%

0.
01
%

67
.7
%

70
.2
%

73
.6
%

C
&
W

86
.9
%

24
.5
%

93
.5
%

96
.2
%

96
.0
%

JS
M
A

66
.4
%

22
.4
%

57
.2
%

60
.3
%

68
.9
%

TA
P

48
.2
%

0.
1%

24
.5
%

26
.3
%

34
.2
%

AT
A

47
.2
%

0.
1%

22
.1
%

25
.7
%

31
.9
%

In
ce
pt
io
n
V
4

FG
SM

68
.3
%

67
.1
%

50
.3
%

72
.8
%

76
.4
%

BI
M

62
.1
%

40
.9
%

0.
9%

69
.1
%

55
.5
%

C
&
W

86
.7
%

91
.7
%

49
.5
%

93
.2
%

92
.9
%

JS
M
A

70
.7
%

68
.9
%

30
.0
%

65
.2
%

68
.9
%

TA
P

58
.4
%

27
.3
%

1.
8%

24
.2
%

51
.7
%

AT
A

59
.9
%

24
.8
%

0.
9%

22
.1
%

50
.3
%

In
ce
pt
io
n-
R
es
N
et

V
2

FG
SM

71
.7
%

69
.0
%

76
.5
%

57
.2
%

78
.7
%

BI
M

60
.4
%

41
.5
%

51
.5
%

1.
2%

54
.5
%

C
&
W

85
.6
%

91
.7
%

92
.4
%

49
.0
%

93
.5
%

JS
M
A

55
.4
%

62
.7
%

66
.8
%

50
.3
%

64
.9
%

TA
P

53
.3
%

25
.9
%

33
.2
%

4.
8%

48
.2
%

AT
A

49
.8
%

22
.1
%

30
.1
%

1.
2%

45
.3
%

CHAPTER 4. ATTACKING UNDEFENDED DNNS 92

Table 4.2: Accuracy of adversarially trained models under attacks. The
first column shows the source model employed, while the first row states the
remote target models.

Attack Adv-Inc-v3 Adv-IncRes-v2 Ens3-Adv-Inc-v3 Ens4-Adv-Inc-v3
FGSM 62.1% 85.7% 77.4% 77.8%
BIM 64.7% 82.6% 72.3% 74.7%

ResNet C&W 94.0% 96.3% 92.8% 90.5%
V2 JSMA 58.2% 80.3% 75.2% 75.9%

TAP 49.2% 66.5% 59.1% 56.0%
ATA 49.2% 60.3% 57.8% 58.2%
FGSM 72.1% 93.6% 85.1% 86.4%
BIM 82.4% 93.9% 88.2% 88.5%

Inception C&W 93.0% 96.4% 92.3% 90.0%
V3 JSMA 81.4% 93.6% 89.5% 87.4%

TAP 55.8% 68.8% 61.3% 60.6%
ATA 54.1% 61.3% 60.2% 60.2%
FGSM 74.8% 93.8% 88.1% 86.9%
BIM 71.9% 92.9% 85.3% 85.3%

Inception C&W 92.8% 94.8% 91.9% 90.0%
V4 JSMA 70.6% 91.7% 87.9% 88.4%

TAP 65.3% 90.4% 83.2% 87.3%
ATA 69.1% 89.8% 80.9% 82.9%
FGSM 73.9% 92.7% 86.9% 87.3%

Inception- BIM 70.8% 92.9% 84.8% 86.9%
ResNet C&W 91.8% 94.9% 91.9% 89.3%
V2 JSMA 72.1% 94.9% 83.3% 84.6%

TAP 60.5% 87.8% 81.2% 84.3%
ATA 58.9% 85.9% 80.9% 81.4%

the results. We make the following observations. First, all these
models possess impressive clean accuracy and appear resistant
to random noise. Models with higher capacity usually exhibit
better performance. Second, under white-box setups, BIM is the
winning attack. Our algorithm achieves matching results to BIM
and significantly outperforms the others. Third, under black-
box settings, our attack significantly boosts the transferability of
BIM. For example, when employing Inception V3 as the source
model, our attack witnesses an average gain of 40.4% on attack
success rates compared to BIM.

CHAPTER 4. ATTACKING UNDEFENDED DNNS 93

(a) Clean (b) ATA

Figure 4.3: A clean source image and the corresponding adversarial image
crafted with the proposed ATA. The target model is Inception V3. Although
the perturbation is imperceptible to humans, it can successfully fool top-
performance models.

Moreover, we defeat all the other benchmark methods with
a significant margin, except for two cases, where we only lag a
little behind TAP. We note that TAP employs two regularization
terms, one for maximizing internal feature distances and the
other for smoothing resultant perturbations. Contrarily, by
applying only one regularization term to maximize attention-
weighed internal feature distances, our method outperforms
TAP in almost all cases.

As reported in Table 4.1, our average improvement of ad-
versarial transferability over TAP is 1.6%. We note that
this is a significant performance gain, since the progress of
the state-of-the-art classification accuracy on the ImageNet
dataset has been only 0.6% over the last three years (2019-
2021) [115,151,152,161,168,172,175]. It means that our attack
can significantly degrade the advance in ImageNet classification.

We next attack models defended by adversarial training. For
fair comparisons with the baseline approach [185], we stick to
employing undefended models as local source models. Therefore,

CHAPTER 4. ATTACKING UNDEFENDED DNNS 94

we explore a more challenging black-box scenario where the
source and target models possess more distinct properties.

We present the results in Table 4.2. We draw the following
conclusions. First, we consistently improve the transferability
of BIM to a great extent. For example, we increase the
attack success rate of BIM by 29.3% on average, when applying
Inception V3 as the source model. Second, our ATA remarkably
outperforms all the other benchmarks except for two cases,
where we only slightly lag behind TAP.

Figure 4.3 displays one generated adversarial image against
Inception V3 with our attack. We note that the deduced
manipulations to the clean image are hardly visible. It confirms
that our attack is stealthy.

4.4.3 Effect of Hyper-parameters on Attack Success
Rates

The regularization weight λ is the dominant hyper-parameter
in our algorithm, and here we explore its effect on our attack
success rates. Specifically, we vary λ while keeping the other
parameters fixed to synthesize adversarial samples. Similar to
previous experiments, we report the top-1 accuracy of target
models on the resultant malicious examples to measure the
attack success rates.

Figure 4.4 illustrates the effect of λ on attack success rates
against all undefended and defended models, where the source
model is Inception V3. We vary λ from 1 × 10−4 to 1 with a
step size of 1 on the log scale. We observe similar trends when
employing other source models and thus omit such results. We

CHAPTER 4. ATTACKING UNDEFENDED DNNS 95

Attack ResNet Inception Inception Inception Ensemble Adv- Adv- Ens3-Adv- Ens4-Adv-
V2 V3 V4 ResNet V2 Inc-v3 IncRes-v2 Inc-v3 Inc-v3

TAP 58.4% 27.3% 1.8% 24.2% 51.7% 65.3% 90.4% 83.2% 87.3%
TAP+ATA 53.6% 22.7% 0.8% 19.8% 48.1% 57.9% 85.3% 73.2% 72.9%

TI 57.1% 30.9% 2.1% 26.9% 58.3% 62.7% 91.4% 81.9% 83.5%
TI+ATA 56.2% 24.9% 0.7% 24.2% 50.1% 57.9% 88.2% 76.9% 77.6%

Table 3: Accuracy of models under attacks combining the proposed ATA and compatible algorithms.

10−4 10−3 10−2 10−1 100

0

20

40

60

80

100

λ

Te
st

A
cc

ur
ac

y
(%

)

ResNet V2 Inception V3 Inception V4
Inception-ResNet V2 Ensemble Adv-Inc-v3

Adv-IncRes-v2 Ens3-Adv-Inc-v3 Ens4-Adv-Inc-v3

Figure 4: The effect of hyper-parameter λ on attack success
rates.

tently improve the transferability of BIM to a great extent.
For example, we increase the attack success rate of BIM
by 29.3% on average when applying Inception V3 as the
source model. Second, our ATA remarkably outperforms all
the other benchmarks except for two cases where we only
slightly lag behind TAP.

Figure 3 displays one generated adversarial image against
Inception V3 with our attack. We note that the deduced ma-
nipulations to the clean image are hardly visible. It confirms
that our attack is stealthy.

5.3 Effect of Hyper-parameters on Attack
Success Rates

There is a dominant hyper-parameter in our algorithm: the
regularization weight λ. We employ the development dataset
to explore the effect of this hyper-parameter on attack suc-
cess rates. Specifically, we vary the hyper-parameter under
investigation while keeping the others fixed to synthesize ad-
versarial samples. The regularization weight λ ranges from
1 × 10−4 to 1 with a step size of 1 in log scale. Similar to
previous experiments, we report the top-1 accuracy of target
models on the resultant malicious examples to measure the
attack success rates.

Figure 4 illustrates the effect of λ on attack success rates
against all undefended and defended models, where the
source model is Inception V3. We observe similar trends
when employing other source models and thus omit such re-
sults. We note that there is generally a trade-off between the
two terms in J (Eq. (6)). Because under a restricted pertur-
bation budget, it is crucial to balance the contribution from

each term to alleviate overfitting.

5.4 Complementing Effect of the Proposed
Strategy

Our strategy is in principle compatible with other transfer-
based black-box attacks. Therefore, we can conveniently in-
tegrate the proposed technique with such algorithms. We
select two sorts of cutting-edge transfer-based attacks to
corroborate the complementing effect introduced by our
strategy. One is the ensemble-based translation-invariant at-
tack (TI) developed by Dong et al., and the other one is
the regularization-based transferable adversarial perturba-
tion (TAP) proposed by Zhou et al.. With these integrated
attacks, we conduct experiments similar to Section 5.2.

Specifically, the combination of TI and ATA will only
modify the update rule of Algorithm 1 as:

x′k+1 = clipx,ε{x′k + ε′ sign(W ∗ ∂J(x,x
′
k, t, f)

∂x
)},
(10)

where W is a pre-defined kernel and ∗ signifies convolution
operation. The integration of TAP and ATA will only add the
following term into the attack object function J (Eq. (6)):

η||S ∗ (x′ − x)||1, (11)
where S is a pre-defined convolution filter. We abandon the
other term in TAP for simplicity because we do not have the
issue of vanishing gradients.

Table 3 showcases the results with Inception V4 as the
source model. Our strategy can promote the average at-
tack success rate of TAP and TI by 6.14% and 4.23%, re-
spectively. It confirms that our technique can impressively
improve such transfer-based attacks in both white-box and
black-box settings.

6 Conclusion
In this work, we introduce an attention-guided transfer at-
tack to synthesize adversarial samples against black-box
DNNs without any feedback information from the target
model. The proposed strategy exploits the attention of the
source model to regularize the search direction. Conse-
quently, it can focus on undermining critical features that
different models count on and manifest remarkable trans-
ferability. We conduct extensive experiments to validate the
effectiveness of our approach. Our attack outperforms the
other state-of-the-art approaches in nearly all cases. Our
mechanism can also be conveniently combined with other
transfer-based attacks to further promote their performance.
Therefore, our attack can more faithfully expose the vulnera-
bility of deployed deep learning models and serve as a strong
benchmark when examining defenses.

Figure 4.4: The effect of hyper-parameter λ on our attack success rates.

note that there is generally a trade-off between the two terms in
J (Eq. (4.6)). Because under a restricted perturbation budget, it
is crucial to balance the contribution from each term to alleviate
overfitting.

4.4.4 Complementary Effect of the Proposed Strategy

In principle, our strategy is compatible with other transfer-based
black-box attacks. Therefore, we can conveniently integrate the
proposed technique with such algorithms. We select two sorts of
cutting-edge transfer-based attacks to corroborate the comple-
mentary effect introduced by our strategy. One is the ensemble-
based translation-invariant attack (TI) developed by [29], and
the other is the regularization-based transferable adversarial

CHAPTER 4. ATTACKING UNDEFENDED DNNS 96

Ta
bl
e
4.
3:

A
cc
ur
ac
y
of

m
od

el
s
un

de
r
at
ta
ck
s
th
at

co
m
bi
ne

th
e
pr
op

os
ed

AT
A

an
d
co
m
pa

tib
le

al
go
rit

hm
s.

A
tt
ac
k

R
es
N
et

In
ce
pt
io
n

In
ce
pt
io
n

In
ce
pt
io
n-

En
se
m
bl
e

A
dv

-
A
dv

-
En

s3
-A

dv
-

En
s4
-A

dv
-

V
2

V
3

V
4

R
es
N
et

V
2

In
c-
v3

In
cR

es
-v
2

In
c-
v3

In
c-
v3

TA
P

58
.4
%

27
.3
%

1.
8%

24
.2
%

51
.7
%

65
.3
%

90
.4
%

83
.2
%

87
.3
%

TA
P+

AT
A

53
.6
%

22
.7
%

0.
8%

19
.8
%

48
.1
%

57
.9
%

85
.3
%

73
.2
%

72
.9
%

T
I

57
.1
%

30
.9
%

2.
1%

26
.9
%

58
.3
%

62
.7
%

91
.4
%

81
.9
%

83
.5
%

T
I+

AT
A

56
.2
%

24
.9
%

0.
7%

24
.2
%

50
.1
%

57
.9
%

88
.2
%

76
.9
%

77
.6
%

CHAPTER 4. ATTACKING UNDEFENDED DNNS 97

perturbation (TAP) proposed by [185]. With the integrated
attacks, we conduct experiments similar to Section 4.4.2.

We detail how to combine these attacks. Specifically, the
combination of TI and ATA will only modify the update rule
of Algorithm 3 as:

x′k+1 = clipx,ε{x′k + ε′ sign(W ∗ ∂J(x,x′k, t, f)
∂x

)}, (4.9)

where W is a pre-defined kernel, and ∗ signifies convolution
operation. The integration of TAP and ATA only adds the
following term into the attack object function J (Eq. (4.6)):

η||S ∗ (x′ − x)||1, (4.10)

where S is a pre-defined convolution filter. We abandon the
other term in TAP for simplicity because we do not have the
issue of vanishing gradients.

Table 4.3 shows the results with Inception V4 as the source
model. In black-box settings, our strategy promotes the av-
erage attack success rate of TAP and TI by 6.8% and 4.6%,
respectively. In white-box settings, our strategy can also further
improve their attack success rates. Therefore, it corroborates
the complementing effect of our technique to existing efforts.

4.5 Summary

In this chapter, we introduce an attention-guided transfer at-
tack to synthesize adversarial samples against black-box DNNs
without any feedback information from the target model. The
proposed strategy exploits the attention of the source model to

CHAPTER 4. ATTACKING UNDEFENDED DNNS 98

regularize the search direction for adversarial samples. Conse-
quently, it can focus on undermining critical features that dif-
ferent models count on and manifest remarkable transferability.
We conduct extensive experiments to validate the effectiveness
of our approach and confirm its superiority to state-of-the-art
baselines. Therefore, our attack can more faithfully expose the
vulnerability of deep models and serve as a strong benchmark
when examining their robustness.

The pitfall of our method lies in the limited success against
succeeding defended DNNs [22, 82]. We note that in our
experiments, we also attack adversarially trained models to
examine the general applicability of our method. However, our
method is not tailored for attacking defended DNNs, as they
may possess different characteristics than their normally trained
counterparts [155]. Besides, except for adversarial training,
many new defenses have emerged, especially the transformation-
based defenses [22]. Existing attacks, including our ATA,
are shown to be less effective against such defenses [22, 82].
Therefore, it calls for new attack methods to better evaluate
the robustness of defended DNNs against adversarial samples.

2 End of chapter.

Chapter 5

Synthesizing Adversarial
Samples against Defended Deep
Neural Networks

With the development of adversarial attacks, more and more
defenses have emerged. It thus requires us to evaluate the
robustness of different defenses against adversarial attacks. In
this chapter, we also consider transfer-based attacks due to
their high threat in practice. However, existing transfer-based
attacks frequently suffer from low success rates when defenses
are present. To boost the transferability of adversarial samples
against defended DNNs, we propose to improve the effectiveness
of synthesized adversarial samples via adversarial transforma-
tions. Specifically, we employ an adversarial transformation
network to model the most harmful distortions that can destroy
adversarial noises and require the synthesized adversarial sam-
ples to become resistant to such adversarial transformations.
Extensive experiments on the ImageNet benchmark showcase
the superiority of our method to state-of-the-art baselines in
attacking both undefended and defended models.

99

CHAPTER 5. ATTACKING DEFENDED DNNS 100

5.1 Problem and Motivation

There is an arms race between attacks and defenses regarding
the robustness of DNNs against adversarial samples. With
the development of transfer-based attacks [28, 162], more and
more defenses have also emerged to counteract transfer-based
attacks, especially the transformation-based defenses [22]. How-
ever, existing transfer-based attacks frequently manifest limited
transferability against defended DNNs [82, 166]. Concretely,
although the generated adversarial samples can fool the source
model with high success rates, they can hardly remain malicious
to a defended model.

Inspired by the data augmentation strategy [49,70,135], prior
efforts propose to enhance the transferability of adversarial
samples against defenses by training them to remain effective
against common image transformations, such as resizing [167],
translation [29], and scaling [78]. Unfortunately, these works
explicitly model the applied image distortions by employing only
individual image transformations or their simple combinations
under a fixed distortion magnitude. Therefore, it makes the
generated adversarial samples overfit to the applied image trans-
formations and hardly resist unknown distortions [22], leading
to inferior transferability.

To mitigate poor transferability caused by employing a fixed
image transformation, a naive idea is to identify a rich collection
of representative image transformations and then carefully tune
a combination of them for each image. However, such a
strategy can incur prohibitive computational costs. Therefore,
we propose to exploit an adversarial transformation network to

CHAPTER 5. ATTACKING DEFENDED DNNS 101

Figure 5.1: From left to right: An example of the clean image, the
resultant image distorted by our adversarial transformation network, and
the corresponding adversarial image generated by our method.

automate this distortion tuning process. Figure 5.1 illustrates an
image manipulated by our adversarial transformation network.

Figure 5.2 depicts the diagram of our Adversarial Transformation-
enhanced Transfer Attack (ATTA). Specifically, motivated by
the recent advance in applying convolutional neural networks
(CNNs) to conduct diverse image manipulation tasks, like
digital watermarking [85,187] and style transfer [36], we propose
to train a CNN as the adversarial transformation network
by adversarial learning, which can capture the most harmful
deformations to adversarial noises. After finishing the learning
of the adversarial transformation network, we require the crafted
adversarial samples to resist the distortions introduced by the
adversarial transformation network. As such, we can make the
generated adversarial samples more effective and improve their
transferability against defended DNNs.

In summary, we would like to highlight the following contri-
butions of this chapter:

• We propose a novel technique to improve the transferability
of adversarial samples against defended DNNs with adver-

CHAPTER 5. ATTACKING DEFENDED DNNS 102

Adversarial Transformation

Network
Target Model

Update

Figure 5.2: The diagram of our attack strategy. We proceed by first train-
ing an adversarial transformation network that can characterize the most
harmful image transformations to adversarial noises. We then manufacture
adversarial samples by additionally requiring them to remain effective against
the adversarial transformation network.

sarial transformations.
• We conduct extensive experiments on the ImageNet bench-

mark to evaluate our approach. Experimental results
confirm the superiority of our method over state-of-the-
art baselines in attacking both undefended and defended
models.

• We show that our technology generally complements other
state-of-the-art schemes, suggesting it as a general strategy
to boost adversarial transferability.

5.2 Methodology

In this section, we detail our attack technique, and the orga-
nization is as follows. We first introduce the task of crafting
adversarial samples in Section 5.2.1. Then in Section 5.2.2, we

CHAPTER 5. ATTACKING DEFENDED DNNS 103

elaborate on the proposed adversarial transformation network.
Finally, we present our algorithm to generate adversarial sam-
ples in Section 5.2.3.

5.2.1 Problem Description

We set up some notations. Let x denote a clean image with
ground-truth label y. We can regard a deep image classifier as
a function f(x), which returns a probability vector, indicating
the probabilities of the input belonging to each class.

Given a target model f and a clean image x, the task
of attackers is to find an adversarial counterpart xadv, which
satisfies the following two conditions:

arg max f(xadv) 6= y, (5.1)

and
||xadv − x||p ≤ ε. (5.2)

Here the first requirement reflects the attacker’s goal of mis-
leading the target model into wrong predictions. The second
condition constrains the admissible perturbation budget for the
attacker. In practice, the perturbation budget ε is usually a
fairly small number, which ensures that the alteration to the
clean image is human-imperceptible. In this chapter, we exploit
the l∞ norm to define the visibility of adversarial perturbations,
since it is the most widely advocated measurement in the
community [42, 78]. Nevertheless, our approach is generally
applicable to other norm choices with simple modifications.

Prevailing attacks usually work as follows. We employ

CHAPTER 5. ATTACKING DEFENDED DNNS 104

J(f(x), y) to signify the training loss function of the classifier
f . Then attackers can reformulate the task of generating an
adversarial sample xadv as the following optimization problem:

max
xadv

J(f(xadv), y),

s.t. ||xadv − x||∞ ≤ ε. (5.3)

Here the attackers apply the training loss function J(f(x), y) as
a surrogate for the original attack object function (Eq. (5.1)).

In this chapter, we endeavor to develop a transfer-based
attack, which works by attacking a local white-box model and
harnessing the crafted adversarial samples to fool the black-box
victim. In other words, we aim to improve the transferability
of adversarial samples. By escalating the transferability of
adversarial samples, we can attack the target black-box model
with high success rates.

5.2.2 Adversarial Transformation Network

We attempt to improve the transferability of adversarial samples
by the data augmentation methodology [135]. It works by asking
the adversarial samples to remain effective against various
image transformations, which may eliminate adversarial noises
while still preserve the semantic meaning of the image [167].
Since only adopting a fixed transformation may lead to poor
generalization to unknown ones, we endeavor to address the
issue of explicitly modeling the applied image transformations
by figuring out the most harmful image transformations to each
adversarial image. We expect that if the generated adversarial
samples can resist the toughest image deformations, they can

CHAPTER 5. ATTACKING DEFENDED DNNS 105

also survive under other weaker distortions [88].

We formulate our idea as follows. Specifically, letH signify an
image transformation function with parameter θH , which can be
a composition of multiple simple image transformations, such as
blurring and coloring. H(x) thus denotes the transformed image
given an input sample x. As per Eq. (5.3), we can formulate the
task of searching for the most harmful image transformations to
an adversarial image xadv as the following min-max problem:

min
θH

max
xadv

J(f(H(xadv)), y),

s.t. ||xadv − x||∞ ≤ ε,

arg max f(H(x)) = y. (5.4)

Recall that y is the ground-truth label of the legitimate image
x. Here the inner maximization problem corresponds to finding
an adversarial image xadv. In contrast, the outer minimization
problem accounts for optimizing the transformation parameters
to rectify the adversarial image, so that they become no longer
malicious. The second constraint ensures that the learned image
transformations can maintain the content of the clean image.

Unfortunately, it is non-trivial to solve the above optimiza-
tion problem. A straightforward way to solve the optimization
problem of Eq. (5.4) involves first spotting all candidate image
transformations, and then tuning their combinations and dis-
tortion strengths for each adversarial image. However, such a
process can incur prohibitive computational costs.

Motivated by the recent success of deep learning-based im-
age manipulation techniques [85, 187], we propose to train a
CNN-based adversarial transformation network to automate the

CHAPTER 5. ATTACKING DEFENDED DNNS 106

(a) blur (b) color & blur (c) sharpen

Figure 5.3: Illustrations of the output images from our adversarial transfor-
mation network T . The top row shows the clean input images, while the
bottom row enumerates the corresponding images transformed by T . We
discover that the learned adversarial transformation network can perform a
diverse set of image manipulations, such as blurring and a combination of
multiple simple transformations. Best viewed zoomed-in on-screen.

CHAPTER 5. ATTACKING DEFENDED DNNS 107

process of tuning the most harmful image transformations to
each adversarial image. Specifically, we approximately solve the
optimization problem of Eq. (5.4) by restricting the hypothesis
space of the transformation function H to be some class of
convolutional neural networks T (x; θT) parameterized with θT .
Therefore, the optimization problem of Eq. (5.4) now reduces to
the task as follows.

min
θT

max
xadv

J(f(T (xadv)), y),

s.t. ||xadv − x||∞ ≤ ε,

arg max f(T (x)) = y. (5.5)

Employing CNN to model the applied transformations affords
two-fold merits. The first one is that CNNs possess the capacity
to generate a cornucopia of image distortions, as demonstrated
in Figure 5.3. It ensures that although we have reduced
the hypothesis space of the transformation function H to be
some class of convolutional neural networks, the constrained
hypothesis space of the transformation function H is still large
enough. Therefore, the solution to the optimization problem
of Eq. (5.5) is fairly close to the optimal of the original task
of Eq. (5.4). The second virtue is that we can learn the CNN
function in an end-to-end fashion, which automates the tuning
of the exploited transformations for each adversarial image.
Therefore, it is faster and more convenient by circumventing
the prohibitive overhead of manually tuning.

To train the CNN-based adversarial transformation network,
we resort to the adversarial learning scheme [41,42] to solve the
optimization problem of Eq. (5.5). Specifically, we first define

CHAPTER 5. ATTACKING DEFENDED DNNS 108

the outer training loss function of Eq. (5.5) as follows.

Definition 5.2.1. (The outer training loss function of Eq. (5.5)).
Let LT denote the outer training loss function of Eq. (5.5), which
is the training loss function of the adversarial transformation
network T . Then

LT =J(f(T (xadv)), y) + α1J(f(T (x)), y)
+α2||xadv − T (xadv)||2. (5.6)

Specifically, the first term of LT reflects the adversarial
transformation network’s pursuit of counteracting the adversar-
ial noises, namely, rendering the adversarial sample no longer
destructive to the target image classifier after the pre-processing
of the adversarial transformation network. In contrast, the
second term requires the adversarial transformation network to
retain the content of the clean image, so that it will not incur
misclassification of the target model on distorted legitimate
images. The last term constrains the distortion strength intro-
duced by the adversarial transformation network. It serves as a
regularizer to alleviate the overfitting issue during the training
of the adversarial transformation network. In this chapter, we
employ the l2 norm to formulate the transformation magnitude
for simplicity. Nonetheless, we can also adopt other semantic
measurements, like the distance calculated on the feature space
of a pre-trained deep model [135]. α1 and α2 are the scalar
weights to balance the contributions of each term in Eq. (5.6).

For the inner maximization problem of Eq. (5.5), we define
the inner training loss function as follows.

Definition 5.2.2. (The inner training loss function of Eq. (5.5)).

CHAPTER 5. ATTACKING DEFENDED DNNS 109

Algorithm 4 Adversarial Transformation Network Training
Require: The fooling object function Lfool, the training loss function LT of

the adversarial transformation network, and a clean image x
Require: The perturbation budget ε, the iteration numbers Kouter and

Kinner

1: Initialize xadv = x
2: Randomly initialize θT
3: for kouter = 1 to Kouter do
4: for kinner = 1 to Kinner do
5: Update xadv = xadv − Adam(Lfool)
6: Clip xadv = Clipεx{xadv}
7: end for
8: Update θT = θT − Adam(LT)
9: end for

10: return the parameter θT of the learned adversarial transformation
network

Let Lfool signify the inner training loss function of Eq. (5.5),
which is the fooling object function to search for an adversarial
instance xadv. Then

Lfool = −J(f(T (xadv)), y)− βJ(f(xadv), y). (5.7)

Specifically, the second term of Lfool exploits the training
loss function of the target model as the surrogate to seek an
adversarial example xadv. Moreover, the first term takes into
account the deformation induced by the adversarial transforma-
tion network, and endeavors to make the adversarial example
remain malicious under the adversarial transformation network.
β is the scalar weight to control the strength of each term in
Eq. (5.7).

The above definitions of the outer and inner training loss
functions lead us to an end-to-end training algorithm of the
adversarial transformation network, which is detailed in Al-

CHAPTER 5. ATTACKING DEFENDED DNNS 110

Algorithm 5 Adversarial Sample Generation
Require: A classifier f , the attack object function Lattack, the adversarial

transformation network T , a clean image x, and its ground-truth label y
Require: The perturbation budget ε and iteration number K
Ensure: ||xadv − x||∞ ≤ ε

1: ε′ = ε

K
2: xadv0 = x
3: for k = 0 to K − 1 do
4: xadvk+1 = Clipεx{xadvk + ε′ sign(∂Lattack

∂x
)}

5: end for
6: return xadv = xadvK

gorithm 4. In short, we alternate the searching for the ad-
versarial example and the training of the adversarial trans-
formation network, which amount to the optimization of the
inner maximization problem and the outer minimization task of
Eq. (5.5), respectively. Here we employ an Adam optimizer [67]
to compute the updating value (Adam(·)) in each iteration.
Additionally, we apply the function Clipεx to clip the resultant
adversarial sample to be within the ε-neighborhood of the source
image x in the l∞ space. Therefore, we can satisfy the norm
constraint for the adversarial sample in Eq. (5.5).

5.2.3 Adversarial Sample Generation

We employ the trained adversarial transformation network to
generate adversarial samples. Specifically, after finishing the
training of the adversarial transformation network, we can
view the learned adversarial transformation network as a pre-
processing module, and attach it to the target image classifi-
cation model, as depicted in Figure 5.2. As a result, we can
regard the cascaded adversarial transformation network and

CHAPTER 5. ATTACKING DEFENDED DNNS 111

image classifier as another victim model to attack. We define
the following attack object function for the attackers:

Lattack = J(f(xadv), y) + γJ(f(T (xadv)), y), (5.8)

where γ is the scalar weight to trade-off the contributions of
each term in Eq. (5.8).

To resolve the optimization problem of Eq. (5.8), we can
now turn to any backbone optimization algorithm to find an
approximate solution. In this chapter, we apply the basic
iterative method [72], since it is simple and efficient. Algorithm 5
elaborates on our procedure to synthesize adversarial samples.

5.3 Experiments

In this section, we conduct experiments to evaluate the effec-
tiveness of our approach, and the organization is as follows.
We first state the experimental setup in Section 5.3.1. Then
in Section 5.3.2, we offer the results of our attacks against both
cutting-edge undefended and defended models. We follow by
an in-depth investigation of our approach in Section 5.3.3. We
finally verify the complementary effect of our strategy on other
compatible state-of-the-art approaches in Section 5.3.4.

5.3.1 Experimental Setup

We center on attacking image classifiers trained on the ImageNet
dataset [124], which is the most widely recognized benchmark
task for transfer-based attacks [16, 29]. We follow the protocol

CHAPTER 5. ATTACKING DEFENDED DNNS 112

of the state-of-the-art baseline [78] to set up the experiments,
which we detail as follows.

Dataset. We employ the ILSVRC 2012 training parti-
tion [124] as the development set to develop our attack, where
we train the adversarial transformation network and fine-tune
the hyper-parameters. For the test data adopted to evaluate our
method, we randomly sample 1000 images of different categories
from the ILSVRC 2012 validation set [124]. We also ensure that
nearly all selected test images can be correctly classified by every
model exploited in this chapter.

Target model. We attack both undefended and defended
models. For undefended models, we consider multiple top-
performance models with diversified architectures, incorporat-
ing ResNet v2 (Res-v2) [48, 49], Inception v3 (Inc-v3) [146],
Inception v4 (Inc-v4) [143], and Inception-ResNet v2 (IncRes-
v2) [143].

For defended models, we focus on several cutting-edge adver-
sarially trained models, since adversarial training is arguably the
most effective and promising defense to date [88]. Specifically,
we explore adversarially trained Inception-ResNet v2 (IncRes-
v2adv), adversarially trained Inception v3 with deceptive samples
from an ensemble of three models (Inc-v3ens3) and four models
(Inc-v3ens4), respectively [73,153].

Furthermore, we study another line of state-of-the-art de-
fenses that aims to rectify adversarial samples. These defenses
cover high-level representation guided denoiser (HGD) [77],
random resizing and padding (R&P) [166], NIPS-r31, feature
distillation (FD) [82], compression defense (ComDefend) [63],

1https://github.com/anlthms/nips-2017/tree/master/mmd

CHAPTER 5. ATTACKING DEFENDED DNNS 113

and randomized smoothing (RS) [22].

Baseline. We compare our approach with two sorts of
baselines. The first one represents top-performance white-box
attacks that manifest greater transferability than the other
white-box techniques [29], including Fast Gradient Sign Method
(FGSM) [42] and Basic Iterative Method (BIM) [72]. The second
category incorporates state-of-the-art transfer-based attacks,
embracing Diverse Input Method (DIM) [167], Translation-
Invariant Method (TIM) [29], Scale-Invariant Method (SIM) [78],
Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [28],
and Nesterov Iterative Fast Gradient Sign Method (NI-FGSM) [78].
Similar to us, they also seek to boost the transferability of
adversarial samples from the perspective of optimization and
generalization, either by employing more advanced optimizers
or by data augmentation.

Parameter. For the adversarial transformation network,
we adopt a two-layer CNN: T (x) = Conv3×3 ◦ Leaky ReLU ◦
Conv16×3(x), where Conv indicates a convolutional layer with
the denotation of Convkernel size×number. For benchmark attacks,
we employ the recommended parameters in their original im-
plementation for fair comparisons. Following [28, 78], we set
the perturbation budget ε = 16 for all attacks. The iteration
numbers K, Kouter, and Kinner are set to 10. We determine the
best hyper-parameters of our algorithm with grid search on the
development set. The weight parameters are 1.0, 10, 1.0, and
1.0 for α1, α2, β, and γ, respectively.

CHAPTER 5. ATTACKING DEFENDED DNNS 114

Table 5.1: Success rates (%) of different attacks against seven models. The
first column lists the source model adopted to craft adversarial samples, while
the first row shows the target model.

Attack Res-v2 Inc-v3 Inc-v4 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2adv

Res-v2

FGSM 85.4 43.7 35.2 33.2 22.6 22.2 14.3
BIM 95.6 46.8 38.0 36.2 27.6 25.3 17.4
DIM 97.9 66.3 57.2 55.6 30.5 29.6 20.8
TIM 98.8 65.2 59.8 57.4 35.6 31.7 25.8
SIM 98.8 67.3 57.4 57.4 38.1 30.1 26.7

MI-FGSM 98.2 57.9 53.9 49.4 33.0 29.2 21.8
NI-FGSM 98.6 62.2 55.5 53.3 33.1 28.9 21.1

ATTA (Ours) 99.8 64.3 61.8 59.2 42.1 38.9 29.1

Inc-v3

FGSM 34.3 72.8 29.8 27.1 14.9 13.6 17.9
BIM 33.2 99.9 32.3 29.8 11.8 11.5 17.6
DIM 39.2 100 39.2 37.6 23.2 24.3 14.0
TIM 39.2 100 44.3 45.8 23.2 24.9 16.4
SIM 40.1 100 42.9 46.4 22.8 24.3 16.9

MI-FGSM 36.2 100 44.4 42.7 22.5 22.4 16.5
NI-FGSM 38.0 100 47.4 46.4 23.2 22.4 16.4

ATTA (Ours) 44.8 100 52.9 53.2 25.1 27.9 18.8

Inc-v4

FGSM 31.7 32.9 49.7 28.2 11.9 13.1 6.2
BIM 37.9 59.1 99.1 30.9 14.7 14.7 7.1
DIM 40.8 64.3 99.6 39.4 24.6 24.8 15.2
TIM 41.4 64.3 99.6 48.2 25.7 25.2 16.9
SIM 41.4 61.9 99.6 49.7 27.9 25.2 17.4

MI-FGSM 40.1 58.8 99.6 44.4 27.0 25.1 18.1
NI-FGSM 42.9 62.4 99.6 51.8 25.4 24.1 17.6

ATTA (Ours) 43.8 66.8 99.6 59.2 32.1 29.2 20.8

IncRes-v2

FGSM 29.3 31.0 23.5 42.8 13.1 12.7 7.3
BIM 39.6 58.5 23.5 42.8 15.2 13.1 7.1
DIM 41.3 63.4 58.3 97.7 30.7 29.2 19.8
TIM 43.1 62.9 55.4 98.9 31.8 29.2 20.6
SIM 42.1 60.9 52.7 98.9 29.6 29.2 20.9

MI-FGSM 39.9 56.8 48.6 97.7 19.6 26.0 21.7
NI-FGSM 39.7 59.1 51.2 98.9 25.6 25.2 20.6

ATTA (Ours) 44.8 68.9 65.2 98.9 33.0 31.9 24.3

5.3.2 Attacking Results

Here we assess the performance of our attacks against both
undefended and defended models. Specifically, for a given source
model, we mount attacks on it and directly apply the result
adversarial samples to fool the other different models, which
amounts to the black-box setting. We also test the attacking
results on the source model itself, which corresponds to the
white-box setting.

CHAPTER 5. ATTACKING DEFENDED DNNS 115

Table 5.2: Success rates (%) of different attacks against advanced defense
methods.

Attack HGD R&P NIPS-r3 FD ComDefend RS Average
FGSM 8.9 16.8 23.1 19.2 13.4 6.8 14.7
BIM 12.1 19.3 23.8 21.8 17.2 8.9 17.2
DIM 79.5 74.7 81.9 76.4 72.3 42.3 71.2
TIM 73.3 69.8 79.4 78.2 69.2 36.2 67.7
SIM 76.2 77.7 84.2 79.8 75.4 39.3 72.1

MI-FGSM 33.4 27.2 42.1 47.3 42.8 29.9 37.1
NI-FGSM 35.2 30.3 40.8 49.2 44.9 32.3 38.8

ATTA (Ours) 85.9 83.2 89.5 84.4 79.9 47.4 78.4

Table 5.1 reports the attacking performance of different meth-
ods against both undefended and adversarially trained models.
Our attack achieves nearly 100% success rates under the white-
box scenarios. More importantly, we can see that under the
black-box settings, our technique can drastically improve the
transferability of BIM. For instance, when applying Inc-v3 as the
source model, our attacking performance exceeds BIM by over
14.4% on average. Besides, our attack consistently outperforms
all state-of-the-art baselines by a significant margin under the
black-box settings, which further corroborates the superiority of
our strategy on synthesizing transferable adversarial samples.

We also evaluate the success rates of different attacks against
other advanced defenses. Table 5.2 shows the results when
adopting Inc-v3 as the source model to attack other models
defended with different mechanisms. Our attacks achieve an
average success rate of 78.4%, defeating all state-of-the-art
attacks by a significant margin of over 6.3%. It further
evidences the effectiveness of our attacks against both top-
performance undefended and defended models, and raises a new
security concern for developing more robust defenses.

CHAPTER 5. ATTACKING DEFENDED DNNS 116

Table 5.3: Success rates (%) of our attack when varying the complexity of the
adversarial transformation network. The first row shows the target model.

Structure Res-v2 Inc-v3 Inc-v4 IncRes-v2 Inc-v3ens3 Inc-v3ens4 IncRes-v2adv
Conv (4, 3) 39.7 100 42.8 44.9 19.3 19.5 16.2
Conv (16, 3) 44.8 100 52.9 53.2 25.1 27.9 18.8
Conv (32, 3) 34.8 100 31.6 32.2 15.9 13.6 16.6

Conv (32, 32, 3) 33.8 100 34.1 31.3 12.3 11.9 17.9

5.3.3 Further Analysis

We first analyze the contribution of the proposed adversarial
transformation network. As shown in Algorithm 5, our attack
is built upon BIM by augmenting an adversarial transformation
network. Therefore, comparing the performance of BIM and
our method in Table 5.1 and Table 5.2 constitutes an ablation
study. The remarkable advance of our attack over BIM verifies
the contribution of the proposed adversarial transformation
network.

We then analyze the effect of the complexity of the adversarial
transformation network. Specifically, we adjust the structures
of the adversarial transformation network and perform attacks
as in Section 5.3.2. We present the results when exploiting
Inc-v3 as the source model in Table 5.3. We indicate the
architecture of the adversarial transformation network in the
format of Conv (a, b, ...), where we specify the kernel size of
each convolutional layer in parentheses. The number of kernels
is three across all convolutional layers. From Table 5.3, we
can observe that over simple or sophisticated structures can
deteriorate our attack performance, since the former hardly
owns enough representation capacity, while the latter can make
the adversarial transformation network overfit to the backbone
attack algorithm.

CHAPTER 5. ATTACKING DEFENDED DNNS 117

5.3.4 Complementary Effect of Our Technique

In principle, our strategy is compatible with other state-of-
the-art transfer-based attacks. Therefore, we can conveniently
combine our technique with these attacks.

To validate the complementary effect of our technology, we
experiment with the state-of-the-art integrated transfer-based
attack (SI-NI-TI-DIM) [78], which is a composition of SIM, NI-
FGSM, TIM, and DIM. Specifically, to integrate our strategy
with SI-NI-TI-DIM, we just need to first regard the cascaded
adversarial transformation network and image classifier as an-
other victim model. Then we attack both the cascaded network
and the original classifier with SI-NI-TI-DIM. We denote the
combination of our ATTA and SI-NI-TI-DIM as AT-SI-NI-TI-
DIM.

We conduct similar experiments as in Section 5.3.2, and Ta-
ble 5.4 states the results. We make the following observations.
First, our attack (AT-SI-NI-TI-DIM) can attain almost 100%
success rates under the white-box context. Second, our method
can consistently promote the success rates of the state-of-the-
art baseline by a considerable margin, under all black-box cases.
Therefore, it affirms the complementary effect of our technique.

5.4 Summary

In this chapter, we introduce a novel technique, Adversarial
Transformation-enhanced Transfer Attack (ATTA), to boost the
transferability of adversarial samples against defended models.
Inspired by the data augmentation methodology, it features

CHAPTER 5. ATTACKING DEFENDED DNNS 118

Ta
bl
e
5.
4:

A
tt
ac
k
su
cc
es
s
ra
te
s
(%

)w
he
n
co
m
bi
ni
ng

ou
rs

tr
at
eg
y
w
ith

co
m
pa

tib
le

al
go
rit

hm
s.

T
he

fir
st

co
lu
m
n
lis
ts

th
e
so
ur
ce

m
od

el
ad

op
te
d
to

cr
af
t
ad

ve
rs
ar
ia
ls

am
pl
es
,w

hi
le

th
e
fir
st

ro
w

sh
ow

s
th
e
ta
rg
et

m
od

el
.

A
tt
ac
k

R
es
-v
2

In
c-
v3

In
c-
v4

In
cR

es
-v
2

In
c-
v3

en
s3

In
c-
v3

en
s4

In
cR

es
-v
2 a

dv

R
es
-v
2

SI
-N

I-T
I-D

IM
99
.8

78
.3

70
.2

71
.8

34
.9

35
.9

30
.2

AT
-S
I-N

I-T
I-D

IM
(O

ur
s)

99
.8

80
.1

74
.9

74
.9

36
.8

37
.3

33
.2

In
c-
v3

SI
-N

I-T
I-D

IM
48
.3

10
0

54
.3

56
.2

27
.8

28
.1

24
.5

AT
-S
I-N

I-T
I-D

IM
(O

ur
s)

49
.1

10
0

55
.9

57
.1

27
.8

28
.6

24
.9

In
c-
v4

SI
-N

I-T
I-D

IM
49
.5

72
.1

99
.6

60
.3

33
.2

31
.8

26
.9

AT
-S
I-N

I-T
I-D

IM
(O

ur
s)

50
.4

75
.2

99
.6

62
.8

33
.9

32
.3

27
.6

In
cR

es
-v
2

SI
-N

I-T
I-D

IM
50
.1

72
.9

69
.6

98
.9

34
.5

32
.7

27
.4

AT
-S
I-N

I-T
I-D

IM
(O

ur
s)

55
.3

77
.8

74
.2

98
.9

36
.5

34
.9

29
.1

CHAPTER 5. ATTACKING DEFENDED DNNS 119

training a CNN-based adversarial transformation network by
adversarial learning, and requiring the generated adversarial
samples to withstand the adversarial transformation network.
Moreover, our strategy can be conveniently combined with
other transfer-based attacks to further promote their perfor-
mance. Extensive experiments corroborate the superiority of
our approach on synthesizing transferable adversarial samples
against both state-of-the-art undefended and defended models.
Therefore, our attack can serve as a strong benchmark to
evaluate future defenses.

2 End of chapter.

Chapter 6

Global Explanations of Deep
Neural Networks with Concept
Attribution

With the growing prevalence of convolutional neural networks
(CNNs), there is an urgent demand to explain their behav-
iors. Global explanations contribute to understanding model
predictions on a whole category of samples, and thus have
attracted increasing interest recently. However, existing meth-
ods overwhelmingly conduct separate input attribution or rely
on local approximations of models, making them fail to of-
fer faithful global explanations of CNNs. To overcome such
drawbacks, we propose a novel two-stage framework, Attacking
for Interpretability (AfI), which explains model decisions in
terms of the importance of user-defined concepts. AfI first
conducts a feature occlusion analysis, which resembles a process
of attacking models to derive the category-wide importance of
different features. We then map the feature importance to con-
cept importance through ad-hoc semantic tasks. Experimental
results confirm the effectiveness of AfI and its superiority in

120

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 121

providing more accurate estimations of concept importance than
existing proposals.

6.1 Problem and Motivation

Convolutional neural networks (CNNs) have emerged as a
cutting-edge solution to a broad spectrum of real-world applica-
tions, such as object recognition [70], audio processing [53], and
natural language analysis [180]. Despite the startling advance of
these powerful computational architectures, their inner decision
operations remain a mystery. Interpreting and understanding
the behaviors of CNNs have become an increasingly crucial topic
of research. It can not only justify the decisions of CNNs to
promote model trustworthiness, but also spot their latent defects
to inspire the development of better models [37,43,50,165].

Among diverse explanation techniques, attribution endeavors
to succinctly summarize how CNNs arrive at their final deci-
sions [38,105]. Under the context of image classification, the con-
vention is to measure the importance of human-understandable
units to model predictions, such as pixels (i.e., input attribu-
tion) and concepts (i.e., concept attribution) [66]. Concept
attribution can overcome the ambiguity of input attribution and
thus has attracted growing attention recently [38,66,184].

There are two explanation interfaces of concept attribution
studied in the literature: local explanations [184] and global
ones [66]. We focus on the latter in this chapter, which is
imperative but under-explored. Local explanations investigate
the rationale of model predictions on individual data points,
which are helpful when we only care about a specific instance. In

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 122

contrast, global explanations center on mining generic decision
modes that apply to an entire class of examples. For instance,
global explanations can answer to what extent the banded
texture is related to a zebra class in model cognition. Therefore,
such global explanations are conducive to summarize the model
knowledge succinctly and understand the model as a whole [66].

In general, existing concept attribution methods implicitly
follow a two-stage procedure [38, 66, 184]. First, since the
model decisions are built upon a cornucopia of feature detectors,
they conduct feature attribution to quantify the importance
of individual feature detectors to model predictions1. In this
step, current attempts simply employ backpropagated gradi-
ents as the estimation of feature importance. Second, they
achieve concept attribution by translating feature importance
into concept importance. Most first settle the embedding of a
concept in the model feature space (i.e., the concept vector),
and then measure the alignment between this concept vector
and the vector of feature importance. As for works that focus
on global explanations, they just analyze individual predictions
in isolation with the above procedure and then return summary
statistics [38, 66].

It is doubtful whether such a strategy to obtain global
explanations indeed sees “globally”. The deficiency primarily
originates from the process of feature attribution with back-
propagated gradients, which implicitly builds upon a local linear
approximation of CNNs. Unfortunately, such an approximation
holds merely when we deal with the proximity of individual

1To avoid confusion, we consistently use the term “feature” to refer to the visual
patterns detected by feature filters of CNNs (e.g., the banded texture), rather than the
input pixels.

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 123

Feature

Attribution

•••

O

(0.8, 0, -0.1)

•••

•••

Concept

Attribution

•••

𝑓𝑙
′

P

•••

Feature Occlusion

1

2

Class

Impression

Concept

Importance

= 𝑎𝑟𝑔𝑚𝑎𝑥 𝑓𝑙
′

𝑓𝑙
′

𝑓𝑙
′

𝑓𝑙
′

𝑓𝑙
′

Feature Importance

Figure 6.1: The workflow of our framework: Attacking for Interpretability
(AfI).

instances or the last linear layer of CNNs. Worse still, inspect-
ing individual predictions separately with respective gradients
ignores the connections among examples of the same class. It
may not be able to capture the generic properties of the class
embedded in model knowledge.

To surmount the pitfalls of existing proposals, we propose
a novel concept attribution framework for global explanations
of CNNs. It explicitly builds upon the two-stage prototype of
prior efforts. As such, we systematize the process to model
explanations in that we make each step grounded and propose
to evaluate intermediate results. More crucially, we thoughtfully
extend the methodology of input occlusion to feature occlusion,
which enables learning a global explanation and delving into
model internals for layer-wise inspections (Section 6.3.4).

Figure 6.1 outlines the workflow of our framework: Attacking
for Interpretability (AfI). In the first stage, we conduct feature
attribution through a thoughtful feature occlusion analysis.
Based on an opposite view of attribution, and the fact that
feature detectors in CNNs can be depressed by structured
patterns [126], we proceed by learning such a feature occluder

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 124

in the input space for an entire category of images. The feature
occluder is applied to undermine critical feature filters of the
class so that models will deviate from their original predictions.
Such a feature occlusion procedure coincides with that of
attacking CNNs to fool their decisions (attacking). We then
record the resultant activation alterations of feature detectors,
and score the importance of different features accordingly.

In the second stage, we accomplish concept attribution via
directly anchoring feature importance to concept importance
(interpretability). We first directly combine feature detectors
as per their importance scores to obtain a class-specific meta-
detector, and then run semantic tests for a concept of interest.
As such, higher performance of the meta-detector in the seman-
tic test implies greater importance of the investigated concept
to the class.

In summary, the main contributions of this chapter are:

• We propose a novel concept attribution framework for
global explanations of CNNs. Our framework explicitly
builds upon a two-stage procedure and employs a novel fea-
ture occlusion methodology to learn a global interpretation.
As such, we systematize the process to model explanations,
and overcome the deficiencies of most existing global ex-
planation techniques that bank on a local approximation
of CNNs.

• We conduct extensive experiments on the ImageNet dataset
with three representative models. Experimental results
validate the effectiveness of our approach and showcase its
superiority to previous efforts.

• With the global explanations our framework affords, we

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 125

demonstrate its use cases in providing insights into CNNs,
like grounding model decisions and revealing biases in
model cognition.

6.2 Methodology

In this section, we will detail the design of our framework. As
illustrated in Figure 6.1, our two-stage approach proceeds by
tackling the following tasks sequentially: (a) how to learn a
feature occluder to perform feature occlusion (Section 6.2.1),
(b) how to complete feature attribution with feature occluders
(Section 6.2.1), and (c) how to achieve concept attribution
via aligning feature importance with concept importance (Sec-
tion 6.2.2).

We first set up some notations. We regard an input image as a
vector x ∈ Rn with label prediction y ∈ Y, where Y := {1, ..., K}
is a categorical set of interest. By convention, images will be
normalized such that x stays within the range of [−1, 1]n with
zero mean before feeding into models. In a CNN classifier with L
layers, the lth layer withm neurons learns a mapping from inputs
to hidden representations fl : Rn → Rm. In particular, the final
layer computes a logit vector Z(x) ∈ RK and then yields a
probability vector fL(x) after softmax normalization. The yth
entry fL(x)[y] corresponds to the probability of x belonging to
class y. A CNN classifier will output label predictions in the
end, and thus its decision function is f : Rn → Y.

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 126

6.2.1 Feature Attribution

For feature attribution, we propose to extend the method-
ology of input occlusion to feature occlusion. The general
procedure of input occlusion is to occlude some input pixels
and regard the resultant alterations of model output as their
importance score [174]. Unfortunately, a straightforward adap-
tation scarcely applies to feature occlusion. In modern CNN
architectures, there are innumerous neurons that work in close
collaboration [34]. Therefore, separately occluding individual
neurons ignores their intensive interconnections, while exhaust-
ing all possible combinations is prohibitively expensive.

We circumvent this difficulty via an opposite view of attribu-
tion via occlusion. Given an image x and its prediction y, the
fundamental problem in attribution is to explain how a model
discriminates class y from all the others. Furthermore, in the
form of feature attribution, we can summarize the reasoning
process of a model in this binary classification task as:

the features of class y in image x are more prominent
⇐⇒ the label prediction for image x is y. (6.1)

Consequently, it reduces to spot supporting features for
model decisions. To this end, we first transform the forward
reasoning of (6.1) into its logic equivalence:

the label prediction for image x is not y −→
the features of class y in image x are less prominent. (6.2)

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 127

Then by combining with the backward reasoning of (6.1):

the label prediction for image x is y −→
the features of class y in image x are more prominent, (6.3)

it leads us to an opposite procedure for attribution with occlu-
sion. Specifically, we can conservatively undermine the feature
filters of a model until it is forced to abandon its original
decisions. As such, the resultant variations of neuron activations
represent their importance to model predictions.

Moreover, since feature filters of CNNs are susceptible to
structured noise [126], such an opposite view empowers us to
perform feature occlusion from the input space. Specifically,
we can first learn such a malicious perturbation to “subtract”
minimal image features, which suffice to flip model predictions.
We name such perturbations feature occluders, which effectively
work by disturbing responsible feature detectors [5,126]. There-
fore, feature occluders need not destroy images in a human-
recognizable manner, or align with actual regions where filters
extract features. Then we examine the change of neuron outputs
to rate their importance.

Global Feature Occluder

As we seek a global explanation of samples under the same
category, we start by crafting a global feature occluder for them.
Formally, let D denote a distance function. t signifies an image
transformation function, like random noising. Given a collection
of images {xi : i = 1, . . . , N} with identical classification y,
we define their global feature occluder δ∗ as follows.

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 128

Definition 6.2.1. (Global feature occluder). The global feature
occluder δ∗ for a set of images with the same label y solves the
following optimization problem:

δ∗ = argmin D(δ)
such that f(xi − δ) 6= y

f(t(xi − δ)) 6= y i = 1, . . . , N
f(t(xi)) = f(xi) = y

xi − δ ∈ [−1, 1]n. (6.4)

We elucidate the definition as follows. In the object function
of (6.4), distance function D measures the magnitude of δ. As
such, we aim to search for minimal perturbations, which reflects
the appeal of disturbing minimal feature filters so that we can
identify the most critical features of the class. In light of the
sliding-window scheme in CNNs [40], we implement D via l1
distance.

The first condition of (6.4) further requires that a global
feature occluder is the minimal noise needed to flip the model
predictions on all the given instances simultaneously. Therefore,
it will prefer to impede decisive feature detectors common to
images of the same class, which takes into account the relations
among samples embedded in model memory. In this sense, our
approach conducts a sort of reverse engineering of the model
training process, which is conducive to expose a more global
picture of model logic.

The second condition of (6.4) conducts regularization. We
suppose that purely learning deceptive distortion may end up
spoiling some fragile filters less relevant to essential image fea-

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 129

tures. To eliminate such artifacts, we additionally require that
a global feature occluder should remain effective when applied
to the transformed versions of original images. We expect that
the outputs of supporting feature filters can maintain relatively
unchanged compared to the others when inputting transformed
images. Consequently, such a requirement can make feature
occluders focus on dimming critical features rather than arrive
at the cheapest structure.

As for the last two conditions, the third condition of (6.4)
constrains t to constitute an effective regularization. Specifi-
cally, we ensure that t will not harm the judgment of the model
on clean images. The last condition of (6.4) guarantees that
occluded images are still valid inputs for models.

We now need to solve the optimization problem of (6.4).
As CNNs are involved, directly solving (6.4) is intractable.
We instead obtain an approximation by employing Adam opti-
mizer [67] to minimize the following object function iteratively:

1
N

ΣN
i=1(Z(xi − δ)[y]+Z(t(xi − δ))[y]) + λ ·D(δ). (6.5)

Our algorithm terminates once the occluder satisfies all the con-
straints in (6.4), or when we exceed preset maximum iterations.

Feature Importance Score

Now we can calculate feature importance scores with the ob-
tained global feature occluder for class y. Specifically, the
importance score of the feature that the jth neuron in the lth

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 130

layer detects is:

sjl = 1
N

ΣN
i=1(fl(xi)[j]− fl(xi − δ∗)[j]). (6.6)

The sign of the importance score differentiates two sorts of
features related to model decisions. Neurons with positive scores
account for supporting features, while those with negative scores
vote for antagonistic counterparts [130,182].

Similar to conventional practice, we focus on features and
concepts that have positive contributions to model decisions [130,
184]. Therefore, we zero out negative importance scores in sjl to
obtain the final feature importance score (FIS) we adopt:

s
′j
l = max(sjl , 0). (6.7)

6.2.2 Concept Attribution

Some prior proposals communicate feature importance in terms
of the importance of semantic notions readily accessible to
humans by the following procedure. They first examine CNN
units separately to work out their concept labels. They then
read the importance scores of these concepts from the feature
importance scores of corresponding units [105, 178]. However,
such strategies overlook concepts with entangled encodings in
CNNs [7, 34].

To surmount this defect, we propose a two-step procedure.
In a word, we first combine CNN units as per their importance
scores, which leads to a class-specific meta-detector. Then we
estimate the representation capacity of the meta-detector for a
concept of interest through carefully designed semantic tasks,

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 131

where higher representation power signifies greater importance
of the concept to the investigated class.

We now elaborate on our concept attribution technique.
Specifically, in the first step, to acquire a class-specific meta-
detector, we also regard feature maps as basis CNN units like the
prior art [7,34]. We denote the cth feature map in layer l as Ac

l .
Therefore, for class y, we normalize the total importance scores
of neurons within Ac

l as its channel importance score (CIS):

wc
l = 1

B
Σj∈P c

l
s

′j
l . (6.8)

Here P c
l is the index set of neurons in Ac

l , and B is a normalizing
constant such that wc

l ∈ [0, 1]. We view the fully connected lay-
ers with C neurons as C feature maps with a spatial resolution
of 1× 1. Subsequently, we combine feature maps in layer l with
CIS to get the meta-detector:

f
′

l = Σcw
c
l · Ac

l . (6.9)

It encodes the relevance of various concepts to class y in model
cognition.

In the second step, inspired by the work [7, 34, 66, 97, 184],
we propose two kinds of semantic tasks to evaluate the rep-
resentation power of the meta-detector. They are tailored for
qualitative and quantitative concept attribution, respectively.

For qualitative concept attribution, we devise a generation
task. Specifically, we adapt the technology of model visualiza-
tion [97] to synthesize images, which can maximize the total
activation of the meta-detector for class y. The crafted image
corresponds to a class impression. It qualitatively depicts the

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 132

most distinct characteristics of the class concept y in the memory
of the model.

For quantitative concept attribution, we reify it as a con-
cept classification task, where we gauge the capability of the
meta-detector to distinguish different concepts, and rank the
importance of these concepts accordingly. Specifically, we resort
to probe datasets with concept labels as in [38, 66]. For each
probe image, we first obtain the outputs from the meta-detector
as its new representation. Then for a concept of interest,
we compute the discrepancy of its samples to the benchmark
ones with irrelevant concept tags. The discrepancy quantifies
the discriminative power of the meta-detector regarding this
concept. We adopt the Maximum Mean Discrepancy (MMD) as
the discrepancy metric [45]. Therefore, we sum the MMD values
calculated in all the middle layers, and view the normalized
results as the importance score of the corresponding concept.

6.3 Experiments

The organization of this section is as follows. We first report the
intermediate attacking results in Section 6.3.1. Then we evalu-
ate our feature and concept attribution results in Section 6.3.2
and Section 6.3.3, respectively. Finally, we present some quali-
tative and quantitative explanations we obtain in Section 6.3.4
and Section 6.3.5, respectively, which showcase the use cases of
our framework.

We demonstrate the effectiveness of our framework with
three CNNs trained for ImageNet (ILSVRC2012) classification:
ResNet-50, GoogLeNet, and VGG-16 [48, 125, 135, 145]. These

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 133

Table 6.1: Average top-1 accuracy of different models on clean images and
the counterparts perturbed with corresponding global feature occluders.

Model Clean Perturbed

ResNet-50 0.8771 0.0973

GoogLeNet 0.8115 0.0907

VGG-16 0.8095 0.1001

models cover representative sorts of models for image classifi-
cation and have wide application in practice [120]. Therefore,
such a model choice can confirm the general applicability of our
approach.

We focus on the ImageNet dataset. It is a widely recognized
dataset for evaluating explanation techniques [38,134]. Besides,
diverse pre-trained models for ImageNet classification are pub-
licly available. Accordingly, such a dataset choice facilitates fair
comparisons with the existing efforts [38, 66]. We adopt the
training set of ImageNet to learn global feature occluders so
that we can work on the same page as models.

Parameters are settled experimentally. The transformation
function t is a composition of: (1) applying uniform random
noise within [−0.04, 0.04]n and (2) random rotation within
[−5◦, 5◦]. λ is set to balance the contribution of each term in
(6.5).

6.3.1 Attacking Results

We now learn global feature occluders. As experimental demon-
strations, we first randomly select 100 classes from all the 1000
classes in the ImageNet dataset [125], and fix these classes for
our experiments. We then learn one global feature occluder for

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 134

each class.

To examine the attack success rates of the resultant global
feature occluders, we perturb the images with the corresponding
global feature occluders and calculate the average top-1 accuracy
of the model on these samples. Table 6.1 reports the results. We
can see that our global feature occluders can severely undermine
the model performance on perturbed images. Therefore, it is
feasible to learn global feature occluders with our approach.

Based on our preliminary experiments, we note that we can
obtain fairly accurate global attribution results as long as the
attack success rates are high enough (not necessarily 100%).
It may be because that global concept attribution should spot
concepts that are frequently important for a class in model
cognition (e.g., leaves for trees though some trees may not have
leaves at present), and have to pay less attention to unrepresen-
tative samples. On the other hand, if occluders fail to achieve
high success rates, the performance of our global explanation
approach will degenerate. Consequently, we mitigate it by class-
specific fine-tuning in our experiments.

6.3.2 Evaluation of the Feature Attribution Results

To examine our feature attribution results—feature importance
scores, we propose a distillation test similar to that in [71,148].
We regard a model we aim to explain as a teacher model. If, for
class y, the teacher model owns outstanding accuracy, and our
feature importance scores are correct, the derived meta-detector
should also possess high discriminative competence for the class
concept y. In other words, given the activation of the meta-

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 135

detector as inputs, a compact student model can differentiate
class y from the others. Higher performance of the student
model indicates that the feature attribution results are more
precise.

Therefore, we implement the distillation test as binary clas-
sification tasks in ImageNet. For each class, we first randomly
sample a balanced dataset, which consists of the same number
of instances from the class and complement ones. We also
make sure that the teacher model can correctly recognize all
the included images. Then for each sample, we compute the
outputs from the meta-detectors of the teacher model, which
are flattened as the representation of the image. Finally, we
train student models to conduct binary classification on the
resultant data as per the original training-validation partition
of ImageNet.

For comparison, we also conduct the same distillation test
based on the feature attribution results from the state-of-the-
art baseline (TCAV) [38, 66]. Specifically, TCAV proposes to
perform feature attribution for individual samples with back-
propagated gradients. Since TCAV does not acquire a global
feature importance score (FIS) for a class, we average its feature
attribution results over the whole class of examples as the FIS
to test.

Table 6.2 reports the average accuracy of student models
over 100 classes. All the student models we exploit are neural
networks with three fully connected layers, where there are 32,
16, and 2 neurons, respectively. Student models derived from
our method (AfI) can obtain remarkable accuracy, exceeding
the gradient-based baseline (TCAV) by a significant margin. It

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 136

Table 6.2: The average accuracy of student models derived from different
approaches.

Teacher Model
Gradient-

based

AfI

(Without t)
AfI

ResNet-50 0.8899 0.8918 0.9592

GoogLeNet 0.8383 0.8896 0.9826

VGG-16 0.8531 0.8679 0.9468

validates the effectiveness of our feature attribution mechanism
and its superiority to the state-of-the-art benchmark. Moreover,
under our method, student models of GoogLeNet manifest
the best performance compared to the other teacher models.
Since we obtain student models via global explanations of
model decisions, it may indicate that GoogLeNet relies on more
consistent combinations of features to identify samples from
the same class, and thus adopts more category-generic decision
modes than the other models.

We run an ablation study to verify the contribution of the
transformation function t, where we remove it from (6.5) when
learning feature occluders. The performance degradation of the
resultant student models confirms the regularization efficacy of
t.

6.3.3 Evaluation of the Concept Attribution Results

We follow [38] to evaluate our concept attribution results—
concept importance scores, since [38] can conduct extensive
quantitative assessments with high efficiency. Specifically, [38]
regards semantic image segments as concept data. It leads to
two metrics: the smallest sufficient concepts (SSCs) and the
smallest destroying concepts (SDCs). SSCs are the smallest

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 137

set of concepts sufficing for models to predict the target class,
while SDCs are the smallest concept collections whose absence
will incur wrong predictions. More accurate concept importance
scores can lead to a more precise estimation of SSCs and SDCs.

We detail the applied evaluation procedure. Given a class, we
first segment images of the class and cluster similar segments.
Each cluster represents examples for one concept. With these
concept data, we then calculate the importance score of each
concept, and curate the most important concepts as SSCs and
SDCs. Finally, we sequentially add SSCs to a blank image or
remove SDCs from the source image as per their importance
order. We record the change of model accuracy to examine
the concept importance scores we derive. We also test the
state-of-the-art baseline (TCAV) under the same setup for
comparison [38,66].

Figure 6.2 exhibits the average result over 100 classes. It
confirms that our estimation of SSCs and SDCs is remarkably
more accurate than TCAV, as the change of model accuracy
during concept adding/removing is more drastic. Therefore, our
estimated concept importance scores are more precise than the
state-of-the-art benchmark.

6.3.4 Class Concept Visualization

With our qualitative concept attribution strategy, we visualize
class concepts captured by a model. Specifically, for a ran-
dom class, we first separately generate images that can highly
activate the meta-detector in each middle layer. We then
spot the first layer where class concepts emerge through visual

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 138

0
1

2
3

4
5

0204060

N
u
m
b
er

of
A
d
d
ed

C
on

ce
p
ts

PredictionAccuracy

R
es
N
et
-5
0

A
fI

T
C
A
V

R
an

d
om

0
1

2
3

4
5

0204060

N
u
m
b
er

of
A
d
d
ed

C
on

ce
p
ts

PredictionAccuracy

G
o
og
L
eN

et

A
fI

T
C
A
V

R
an

d
om

0
1

2
3

4
5

0204060

N
u
m
b
er

of
A
d
d
ed

C
on

ce
p
ts

PredictionAccuracy

V
G
G
-1
6

A
fI

T
C
A
V

R
an

d
om

(a
)
SS

C

0
1

2
3

4
5

5060708090

N
u
m
b
er

of
D
el
et
ed

C
on

ce
p
ts

PredictionAccuracy

R
es
N
et
-5
0

A
fI

T
C
A
V

R
an

d
om

0
1

2
3

4
5

50607080

N
u
m
b
er

of
D
el
et
ed

C
on

ce
p
ts

PredictionAccuracy

G
o
og
L
eN

et

A
fI

T
C
A
V

R
an

d
om

0
1

2
3

4
5

4050607080

N
u
m
b
er

of
D
el
et
ed

C
on

ce
p
ts

PredictionAccuracy

V
G
G
-1
6

A
fI

T
C
A
V

R
an

d
om

(b
)
SD

C

Fi
gu

re
6.
2:

M
od

el
ac
cu
ra
cy

va
ria

tio
n
w
he
n
we

st
ar
t
ed
iti
ng

th
e
m
os
t
im

po
rt
an

t
SS

C
s/
SD

C
s
es
tim

at
ed

by
di
ffe

re
nt

ap
pr
oa
ch
es
.F

or
ou

rm
et
ho

d
(A

fI)
,t
he

to
p-
5
SS

C
sa

re
en
ou

gh
to

re
co
ve
ro

ve
r7

4%
of

th
e
or
ig
in
al

ac
cu
ra
cy

ac
ro
ss

al
l

m
od

el
s,

w
hi
le

re
m
ov
in
g
th
e
to
p-
5
SD

C
s
ca
n
re
su
lt

in
a
de
gr
ad

at
io
n
of

ov
er

45
%

of
th
e
or
ig
in
al

ac
cu
ra
cy

ac
ro
ss

al
l

m
od

el
s.

W
e
al
so

pl
ot

th
e
eff

ec
t
of

ed
iti
ng

co
nc
ep
ts

in
ra
nd

om
or
de
r
fo
r
co
m
pa

ris
on

.
T
he

co
nc
ep
t
im

po
rt
an

ce
sc
or
es

de
riv

ed
by

ou
rm

et
ho

d
(A

fI)
ar
e
co
ns
ist

en
tly

m
or
e
ac
cu
ra
te

th
an

th
e
be

nc
hm

ar
k
(T

C
AV

),
sin

ce
th
e
ch
an

ge
of

m
od

el
ac
cu
ra
cy

is
m
or
e
dr
as
tic

fo
r
ou

r
ap

pr
oa
ch
.

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 139

Chickadee

Tarantula

ResNet-50 GoogLeNet VGG-16 Example Image

Figure 6.3: Class concepts captured by different models. Example images of
the corresponding class are exhibited for better comparison.

Table 6.3: The layer selected to craft class impressions and its original output
shape (spatial resolution × channel number).

Model Layer Name
Original Output

Shape

ResNet-50 ResBlock_4c 7 x 7 x 2048

GoogLeNet Mixed_5b 7 x 7 x 832

VGG-16 Fc_6 1 x 1 x 4096

investigation. The visualization of class concepts from this layer
is regarded as class impressions. During the generation of class
impressions, except for the total variation penalization, we do
not resort to any other natural image priors, such as a generative
network [100]. Accordingly, it ensures that the class impressions
are only born of the knowledge of the model under inspection.

Figure 6.3 displays some class impressions we obtain, along
with example images of the corresponding classes for better
comparison. It illustrates that CNNs can capture the most
prominent characteristics of image classes, for example, the
texture for the tarantula class. Additionally, ResNet-50 appears
to better capture and exploit the color property of images than
the other models, because the class impressions of ResNet-50

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 140

are more similar to raw images of the corresponding classes in
terms of their color.

Table 6.3 reports the layer we choose to craft class impressions
for each model. We note that in the middle layers, it is non-
trivial to infer the links of copious neurons to image categories.
Because, unlike the last logit layer, their mappings are not
specified during training. Consequently, the competence to
uncover class concept embeddings in the middle layers of CNNs
further verifies the effectiveness of our framework.

6.3.5 User-defined Concept Attribution

With our quantitative concept attribution scheme, we measure
the importance of user-defined concepts to classification. We
center on explaining widely-used ResNet-50, which has been less
covered in the literature. As experimental examples, we gauge
the importance of concepts from three representative groups
(i.e., texture, gender, and race) to three classes, respectively. We
follow [66] to curate probe concept data [7,60,125]. Concretely,
for each pair of the concept type and image class, we first
randomly select the same number of images as the concept data
for each concept. Then we fix a random benchmark set of the
same size. We finally compute concept importance scores with
the probe data.

Figure 6.4 reports the average result over 100 runs. It vali-
dates that CNNs can extract rational grounds for their decisions,
like the banded texture for the zebra. However, consistent
with the findings of [139], we discover that they also sometimes
learn undesirable stereotypes about some classes, such as the

CHAPTER 6. GLOBAL EXPLANATIONS OF DNNS 141

Figure 6.4: Importance scores of different concepts to classification results.
Error bars indicate the standard deviation.

relatively stronger positive connections of women to the apron
and Asians to the ping-pong ball. Therefore, it demonstrates
the use case of our framework in model confirmation and bias
revelation.

6.4 Summary

In this chapter, we propose a novel two-step framework for global
explanations of CNNs. It first derives feature importance via a
novel feature occlusion analysis, and then communicates such in-
formation in terms of the importance of human-comprehensible
concepts. Empirical results corroborate the effectiveness and
superiority of our technique in explaining model behaviors.
More crucially, we demonstrate that we can achieve concept
attribution via two semantic tasks. It showcases the exciting
opportunity to integrate prior feature visualization efforts into
our framework, which is a promising direction for future work.

2 End of chapter.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we examine several facets of the robustness
and interpretability of deep learning models. In terms of the
robustness of DNNs, we cover the detection of real-world corner
cases for DNNs and the generation of adversarial samples against
undefended and defended DNNs. In terms of the interpretability
of DNNs, we work on providing global concept attribution for
DNNs.

In Chapter 3, to promote the robustness of DNNs against
accidental failures, we develop Deep Validation, the first frame-
work to automatically validate the input/state of DNNs during
runtime. It can be employed to detect real-world corner cases
for DNNs to enable fail-safe mechanisms. Moreover, we evaluate
the performance of our framework with extensive experiments,
achieving state-of-the-art detection results under various scenar-
ios.

In Chapter 4, we endeavor to test the robustness of unde-

142

CHAPTER 7. CONCLUSION AND FUTURE WORK 143

fended DNNs when adversaries are present. We present a novel
transfer-based attack to search for adversarial samples that can
fool multiple models simultaneously. Therefore, we can improve
the transferability of the crafted adversarial samples and better
evaluate the robustness of DNNs against various attacks. We
also offer extensive experimental evidence to corroborate the
superiority of our method over state-of-the-art attacks.

In Chapter 5, we turn to test the robustness of defended
DNNs against adversaries. To this end, we propose a novel
solution to enhance the effectiveness of adversarial samples
against defended DNNs via adversarial transformations. We
conduct extensive experiments to compare the performance of
our method with state-of-the-art baselines. Experimental results
confirm that our method can consistently outperform state-of-
the-art baselines by a considerable margin.

In Chapter 6, we work on improving the interpretability of
DNNs with concept attribution. We introduce a novel concept
attribution framework that can provide global explanations of
DNNs. We systematically evaluate our framework both qualita-
tively and quantitatively, which shows that our framework can
provide markedly more accurate explanations of DNNs than the
prior art.

7.2 Future Work

With the deep learning model’s growing prevalence in a broad
spectrum of real-world applications, especially in safety- and
security-sensitive domains, recent years have witnessed an ex-
ploding interest in researching the robustness and interpretabil-

CHAPTER 7. CONCLUSION AND FUTURE WORK 144

ity of deep learning models. Nevertheless, several emergent
research directions are of paramount importance but still under-
explored in the literature, which we detail as follows.

• Synthesizing diverse real-world corner cases

In order to test the robustness of DNNs against accidental
failures, we need to generate diverse real-world corner cases
that can achieve high test adequacy. Unfortunately, to
workaround the test-oracle problem [58], existing proposals
heavily hinge on the metamorphic testing technique [20,
90]. Specifically, they frequently apply semantic-preserving
transformations to seed samples when crafting test cases,
which cannot cover different sorts of real-world scenarios.
Therefore, it is imperative to overcome the excessive re-
liance on the metamorphic testing technique so that we
can generate more diverse test cases. Motivated by the
recent advance in generative models [64,92], we can employ
the conditional Generative Adversarial Network (GAN)
to synthesize abundant test cases by optimizing a well-
designed coverage criterion, which is a promising research
direction to explore.

• Generating adversarial samples without off-the-shelf
local models

Manufacturing adversarial samples serves as a crucial sur-
rogate to evaluate the robustness of DNNs against ad-
versaries, and transfer-based attacks are one exemplar
solution. Transfer-based attacks proceed by synthesizing
adversarial samples with off-the-shelf local models as the
substitute target and directly utilizing the resultant ad-

CHAPTER 7. CONCLUSION AND FUTURE WORK 145

versarial samples to attack the victim model. Although
such attacks are more practical than query-based attacks
that require excessive queries [28, 29], they rely on the
availability of off-the-shelf local models that perform similar
tasks as the target model. Unfortunately, such pre-trained
models may not be accessible to the attackers, for example,
the medical diagnosis models for cataracts [118].
Therefore, under this circumstance, attackers have to gen-
erate adversarial samples without off-the-shelf local models.
Exploring this challenge can identify new security vulner-
abilities for a vast body of DNN-based systems, and spur
better defenses.

• Defending against adaptive adversaries

As revealed by recent studies [121,170], defenders still seem
to lag far behind in the arms race against attackers due
to the reliance on reactive defense methodology. As such,
although some defenses can perform well against existing
attacks, they are often quickly defeated by unforeseen
attacks [2].
Therefore, when we design defense mechanisms, we should
instead consider an adaptive adversary, who is aware of the
defenses that we deploy [23]. If we can develop a defense
approach that functions well in this setup, we can ensure
the robustness of DNNs against novel attacks. Unfortu-
nately, defending against adaptive adversaries remains an
open problem, and is an urgent mission for future works.

• Explainable DNNs by design

An overwhelming majority of efforts have been devoted to

CHAPTER 7. CONCLUSION AND FUTURE WORK 146

producing interpretations of DNNs. However, it is painful
to fix the discovered pitfalls of DNNs when the explanations
show that the DNNs’ predictions are unreasonable, such as
the racial bias in face recognition [19].
It thus calls for attention to develop DNNs that are explain-
able by design [177]. The reasoning process of explainable
DNNs is explicitly encoded. Therefore, at inference, the
model affords both the decision and the corresponding logic
behind its decision. As such, we can more conveniently
comprehend the logic of DNNs and incorporate human
knowledge into models when we identify irrational logic.
These prominent virtues make the development of explain-
able DNNs an imperative and intriguing topic to study in
future work.

2 End of chapter.

Appendix

The publications during my Ph.D. study are listed as follows.

1. Weibin Wu, Yuxin Su, Michael R. Lyu, and Irwin King.
“Improving the Transferability of Adversarial Samples with
Adversarial Transformations.” IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

2. Weibin Wu, Yuxin Su, Xixian Chen, Shenglin Zhao,
Irwin King, Michael R. Lyu, and Yu-Wing Tai. “Boosting
the Transferability of Adversarial Samples via Attention.”
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

3. Weibin Wu, Yuxin Su, Xixian Chen, Shenglin Zhao,
Irwin King, Michael R. Lyu, and Yu-Wing Tai. “To-
wards Global Explanations of Convolutional Neural Net-
works with Concept Attribution (Oral Presentation).”
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

4. Weibin Wu, Hui Xu, Sanqiang Zhong, Michael R. Lyu,
and Irwin King. “Deep Validation: Toward Detecting Real-
world Corner Cases for Deep Neural Networks.” 49th An-
nual IEEE/IFIP International Conference on Dependable

147

APPENDIX 148

Systems and Networks (DSN), 2019.

5. Hui Xu, Zhuangbin Chen, Weibin Wu, Zhi Jin, Sy-
Yen Kuo, and Michael R. Lyu. “NV-DNN: Towards
Fault-Tolerant DNN Systems with N-Version Program-
ming.” 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-
W), 2019.

We note that the first four papers are partially involved in
this thesis.

Bibliography

[1] Ieee standard glossary of software engineering terminology.
IEEE Std 610.12-1990, pages 1–84, 1990.

[2] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradi-
ents give a false sense of security: Circumventing defenses
to adversarial examples. In International Conference on
Machine Learning, pages 274–283. PMLR, 2018.

[3] A. Avizienis, J.-C. Laprie, B. Randell, et al. Fundamental
concepts of dependability. University of Newcastle upon
Tyne, Computing Science, 2001.

[4] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-
R. Müller, and W. Samek. On pixel-wise explanations
for non-linear classifier decisions by layer-wise relevance
propagation. PloS one, 10(7):e0130140, 2015.

[5] R. Balestriero et al. A spline theory of deep networks. In
International Conference on Machine Learning (ICML),
pages 383–392, 2018.

[6] V. R. Basili and D. M. Weiss. A methodology for collecting
valid software engineering data. Technical report, Naval
Research Lab Washington DC, 1983.

149

BIBLIOGRAPHY 150

[7] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Tor-
ralba. Network Dissection: Quantifying interpretability of
deep visual representations. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
6541–6549, 2017.

[8] K. Beaver. Hacking for dummies. John Wiley & Sons,
2007.

[9] R. Benenson. Classification datasets results. Accessed:
July 2018.

[10] A. N. Bhagoji, W. He, B. Li, and D. Song. Practical black-
box attacks on deep neural networks using efficient query
mechanisms. In The European Conference on Computer
Vision (ECCV), pages 158–174. Springer, 2018.

[11] B. Biggio and F. Roli. Wild patterns: Ten years after the
rise of adversarial machine learning. Pattern Recognition,
84:317–331, 2018.

[12] A. Boopathy, S. Liu, G. Zhang, C. Liu, P.-Y. Chen,
S. Chang, and L. Daniel. Proper network interpretability
helps adversarial robustness in classification. In Interna-
tional Conference on Machine Learning, pages 1014–1023.
PMLR, 2020.

[13] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa,
A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer,
A. Gramfort, J. Grobler, R. Layton, J. VanderPlas,
A. Joly, B. Holt, and G. Varoquaux. API design for
machine learning software: experiences from the scikit-
learn project. In ECML PKDD Workshop: Languages for
Data Mining and Machine Learning, pages 108–122, 2013.

BIBLIOGRAPHY 151

[14] M. L. M. L. Bushnell. Essentials of electronic testing for
digital, memory and mixed-signal VLSI circuits. Frontiers
in electronic testing. Kluwer Academic, Boston ; London,
2000.

[15] J. Campos, A. Riboira, A. Perez, and R. Abreu. Gzoltar:
an eclipse plug-in for testing and debugging. In Proceed-
ings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, pages 378–381, 2012.

[16] N. Carlini, A. Athalye, N. Papernot, W. Brendel,
J. Rauber, D. Tsipras, I. Goodfellow, and A. Madry.
On evaluating adversarial robustness. arXiv:1902.06705,
2019.

[17] N. Carlini and D. Wagner. Adversarial examples are
not easily detected: Bypassing ten detection methods.
In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pages 3–14. ACM, 2017.

[18] N. Carlini and D. Wagner. Towards evaluating the
robustness of neural networks. In IEEE Symposium on
Security and Privacy (SP), 2017.

[19] J. G. Cavazos, P. J. Phillips, C. D. Castillo, and A. J.
O’Toole. Accuracy comparison across face recognition
algorithms: Where are we on measuring race bias? IEEE
Transactions on Biometrics, Behavior, and Identity Sci-
ence, 2020.

[20] T. Y. Chen, S. C. Cheung, and S. M. Yiu. Metamorphic
testing: a new approach for generating next test cases.
Technical report, Technical Report HKUST-CS98-01, De-

BIBLIOGRAPHY 152

partment of Computer Science, Hong Kong University of
Science and Technology, Hong Kong, 1998.

[21] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and
accurate deep network learning by exponential linear units
(elus). arXiv preprint arXiv:1511.07289, 2015.

[22] J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversar-
ial robustness via randomized smoothing. In International
Conference on Machine Learning, pages 1310–1320, 2019.

[23] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and
T. Rabin. Efficient multiparty computations secure
against an adaptive adversary. In International Conference
on the Theory and Applications of Cryptographic Tech-
niques, pages 311–326. Springer, 1999.

[24] M. Curphey, D. Endler, W. Hau, S. Taylor, T. Smith,
A. Russell, G. McKenna, R. Parke, K. McLaughlin,
N. Tranter, et al. A guide to building secure web
applications. The Open Web Application Security Project,
1(1), 2002.

[25] P. Dabkowski and Y. Gal. Real time image saliency for
black box classifiers. In Advances in Neural Information
Processing Systems (NIPS), pages 6967–6976, 2017.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805,
2018.

[27] A. Dhurandhar, P.-Y. Chen, R. Luss, C.-C. Tu, P. Ting,
K. Shanmugam, and P. Das. Explanations based on the

BIBLIOGRAPHY 153

missing: Towards contrastive explanations with pertinent
negatives. In Advances in Neural Information Processing
Systems (NIPS), pages 592–603, 2018.

[28] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and
J. Li. Boosting adversarial attacks with momentum. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 9185–9193, 2018.

[29] Y. Dong, T. Pang, H. Su, and J. Zhu. Evading defenses to
transferable adversarial examples by translation-invariant
attacks. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[30] F. F. dos Santos, L. Draghetti, L. Weigel, L. Carro,
P. Navaux, and P. Rech. Evaluation and mitigation of soft-
errors in neural network-based object detection in three
gpu architectures. In Dependable Systems and Networks
Workshop (DSN-W), 2017 47th Annual IEEE/IFIP Inter-
national Conference on, pages 169–176. IEEE, 2017.

[31] A. Dwarakanath, M. Ahuja, S. Sikand, R. M. Rao,
R. Bose, N. Dubash, and S. Podder. Identifying imple-
mentation bugs in machine learning based image classifiers
using metamorphic testing. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 118–128. ACM, 2018.

[32] L. Engstrom, D. Tsipras, L. Schmidt, and A. Madry.
A rotation and a translation suffice: Fooling cnns with
simple transformations. In NIPS Machine Learning and
Computer Security Workshop, 2018.

BIBLIOGRAPHY 154

[33] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gard-
ner. Detecting adversarial samples from artifacts. arXiv
preprint arXiv:1703.00410, 2017.

[34] R. Fong and A. Vedaldi. Net2Vec: Quantifying and
explaining how concepts are encoded by filters in deep
neural networks. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8730–
8738, 2018.

[35] R. C. Fong and A. Vedaldi. Interpretable explanations of
black boxes by meaningful perturbation. In International
Conference on Computer Vision (ICCV), pages 3449–
3457. IEEE, 2017.

[36] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style
transfer using convolutional neural networks. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 2414–2423, 2016.

[37] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A.
Wichmann, and W. Brendel. ImageNet-trained CNNs are
biased towards texture; increasing shape bias improves
accuracy and robustness. In International Conference on
Learning Representations (ICLR), 2019.

[38] A. Gohorbani, J. Wexler, J. Zou, and B. Kim. Towards
automatic concept-based explanations. In Advances in
Neural Information Processing Systems (NIPS), 2019.

[39] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

BIBLIOGRAPHY 155

[40] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[41] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial networks. arXiv preprint
arXiv:1406.2661, 2014.

[42] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representations (ICLR), 2015.

[43] B. Goodman and S. Flaxman. European Union regu-
lations on algorithmic decision-making and a “right to
explanation". ICML Workshop on Human Interpretability
in Machine Learning, 2016.

[44] Y. Goyal, U. Shalit, and B. Kim. Explaining classifiers
with Causal Concept Effect (CaCE). arXiv preprint
arXiv:1907.07165, 2019.

[45] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf,
and A. Smola. A kernel two-sample test. Journal of
Machine Learning Research, 13(Mar):723–773, 2012.

[46] C. Guo, J. Gardner, Y. You, A. G. Wilson, and K. Wein-
berger. Simple black-box adversarial attacks. In Interna-
tional Conference on Machine Learning (ICML), 2019.

[47] H. Hassan, A. Aue, C. Chen, V. Chowdhary, J. Clark,
C. Federmann, X. Huang, M. Junczys-Dowmunt,
W. Lewis, M. Li, et al. Achieving human parity on
automatic chinese to english news translation. arXiv
preprint arXiv:1803.05567, 2018.

BIBLIOGRAPHY 156

[48] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 770–778, 2016.

[49] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings
in deep residual networks. In The European Conference on
Computer Vision (ECCV), pages 630–645. Springer, 2016.

[50] L. A. Hendricks, K. Burns, K. Saenko, T. Darrell, and
A. Rohrbach. Women also snowboard: Overcoming bias
in captioning models. In The European Conference on
Computer Vision (ECCV), pages 793–811. Springer, 2018.

[51] K. L. Heninger. Specifying software requirements for
complex systems: New techniques and their application.
IEEE Transactions on Software Engineering, (1):2–13,
1980.

[52] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt,
W. Kay, M. Suleyman, and P. Blunsom. Teaching ma-
chines to read and comprehend. In Advances in Neural
Information Processing Systems, pages 1693–1701, 2015.

[53] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke,
A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. A.
Saurous, B. Seybold, et al. CNN architectures for large-
scale audio classification. In International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
131–135. IEEE, 2017.

[54] G. E. Hinton. Learning multiple layers of representation.
Trends in cognitive sciences, 11(10):428–434, 2007.

BIBLIOGRAPHY 157

[55] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[56] J. J. Hopfield. Neural networks and physical systems with
emergent collective computational abilities. Proceedings of
the national academy of sciences, 79(8):2554–2558, 1982.

[57] H. Hosseini, B. Xiao, M. Jaiswal, and R. Poovendran.
On the limitation of convolutional neural networks in
recognizing negative images. In Machine Learning and
Applications (ICMLA), 2017 16th IEEE International
Conference on, pages 352–358. IEEE, 2017.

[58] W. E. Howden. Theoretical and empirical studies of
program testing. In Proceedings of the 3rd international
conference on Software engineering, pages 305–311. IEEE
Press, 1978.

[59] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der
Maaten. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, volume 1, page 3, 2017.

[60] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-
Miller. Labeled Faces in the Wild: A database for studying
face recognition in unconstrained environments. Technical
Report 07-49, University of Massachusetts, Amherst, Oc-
tober 2007.

[61] X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun,
E. Thamo, M. Wu, and X. Yi. A survey of safety and
trustworthiness of deep neural networks: Verification, test-
ing, adversarial attack and defence, and interpretability.
Computer Science Review, 37:100270, 2020.

BIBLIOGRAPHY 158

[62] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. Black-
box adversarial attacks with limited queries and informa-
tion. In International Conference on Machine Learning
(ICML), pages 2142–2151, 2018.

[63] X. Jia, X. Wei, X. Cao, and H. Foroosh. ComDefend: An
efficient image compression model to defend adversarial
examples. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June
2019.

[64] M. Kang and J. Park. ContraGAN: Contrastive Learning
for Conditional Image Generation. 2020.

[65] A. Khakzar, S. Albarqouni, and N. Navab. Learning in-
terpretable features via adversarially robust optimization.
In International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention, pages 793–800.
Springer, 2019.

[66] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler,
F. Viegas, et al. Interpretability beyond feature attri-
bution: Quantitative Testing with Concept Activation
Vectors (TCAV). In International Conference on Machine
Learning (ICML), pages 2673–2682. PMLR, 2018.

[67] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015.

[68] V. B. Krishna, M. Rausch, B. E. Ujcich, I. Gupta, and
W. H. Sanders. Remax: Reachability-maximizing p2p
detection of erroneous readings in wireless sensor networks.

BIBLIOGRAPHY 159

In Dependable Systems and Networks (DSN), 2017 47th
Annual IEEE/IFIP International Conference on, pages
321–332. IEEE, 2017.

[69] A. Krizhevsky and G. Hinton. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

[70] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems
(NIPS), pages 1097–1105. Curran Associates, Inc., 2012.

[71] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar.
Attribute and simile classifiers for face verification. In
International Conference on Computer Vision (ICCV),
pages 365–372. IEEE, 2009.

[72] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial
examples in the physical world. In ICLR Workshop, 2017.

[73] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial
machine learning at scale. In International Conference on
Learning Representations (ICLR), 2017.

[74] A. Kurakin, I. Goodfellow, S. Bengio, Y. Dong, F. Liao,
M. Liang, T. Pang, J. Zhu, X. Hu, C. Xie, et al. Adver-
sarial attacks and defences competition. In The NIPS’17
Competition: Building Intelligent Systems, 2018.

[75] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

BIBLIOGRAPHY 160

[76] Y. LeCun, C. Cortes, and C. Burges. Mnist hand-
written digit database. AT&T Labs [Online]. Available:
http://yann. lecun. com/exdb/mnist, 2, 2010.

[77] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and
J. Zhu. Defense against adversarial attacks using high-level
representation guided denoiser. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1778–1787, 2018.

[78] J. Lin, C. Song, K. He, L. Wang, and J. E. Hopcroft.
Nesterov accelerated gradient and scale invariance for ad-
versarial attacks. In International Conference on Learning
Representations, 2020.

[79] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-
to-image translation networks. In Advances in Neural
Information Processing Systems, pages 700–708, 2017.

[80] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song.
Sphereface: Deep hypersphere embedding for face recog-
nition. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), volume 1, page 1, 2017.

[81] Y. Liu, X. Chen, C. Liu, and D. Song. Delving into
transferable adversarial examples and black-box attacks.
In International Conference on Learning Representations
(ICLR), 2017.

[82] Z. Liu, Q. Liu, T. Liu, N. Xu, X. Lin, Y. Wang, and
W. Wen. Feature Distillation: DNN-Oriented JPEG
compression against adversarial examples. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

BIBLIOGRAPHY 161

[83] S.-C. Lo, S.-L. Lou, J.-S. Lin, M. T. Freedman, M. V.
Chien, and S. K. Mun. Artificial convolution neural
network techniques and applications for lung nodule detec-
tion. IEEE Transactions on Medical Imaging, 14(4):711–
718, 1995.

[84] S. M. Lundberg and S.-I. Lee. A unified approach to
interpreting model predictions. In Advances in Neural
Information Processing Systems (NIPS), pages 4765–4774,
2017.

[85] X. Luo, R. Zhan, H. Chang, F. Yang, and P. Milanfar.
Distortion agnostic deep watermarking. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 13548–13557, 2020.

[86] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier
nonlinearities improve neural network acoustic models. In
Proc. icml, volume 30, page 3, 2013.

[87] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[88] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards deep learning models resistant to
adversarial attacks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2018.

[89] S. Majumdar. Densenet, 2017. Accessed: March 2018.

[90] W. M. McKeeman. Differential testing for software. Digital
Technical Journal, 10(1):100–107, 1998.

BIBLIOGRAPHY 162

[91] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Effi-
cient estimation of word representations in vector space.
In International Conference on Learning Representations
(ICLR) Workshop Track, 2013.

[92] M. Mirza and S. Osindero. Conditional generative adver-
sarial nets. arXiv preprint arXiv:1411.1784, 2014.

[93] D. Mishkin and J. Matas. All you need is a good init.
arXiv preprint arXiv:1511.06422, 2015.

[94] C. Molnar. Interpretable machine learning. Lulu. com,
2020.

[95] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and
K.-R. Müller. Explaining nonlinear classification decisions
with deep taylor decomposition. Pattern Recognition,
65:211–222, 2017.

[96] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and
P. Frossard. Universal adversarial perturbations. In
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1765–1773, 2017.

[97] A. Mordvintsev, C. Olah, and M. Tyka. Inceptionism:
Going deeper into neural networks. Google Research Blog,
2015. Retrieved: October 2018.

[98] M. Naseer, S. Khan, M. Hayat, F. S. Khan, and F. Porikli.
On generating transferable targeted perturbations. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021.

[99] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu,
and A. Y. Ng. Reading digits in natural images with

BIBLIOGRAPHY 163

unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011,
page 5, 2011.

[100] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and
J. Clune. Synthesizing the preferred inputs for neurons in
neural networks via deep generator networks. In Advances
in Neural Information Processing Systems (NIPS), pages
3387–3395. Curran Associates, Inc., 2016.

[101] A. Nguyen, J. Yosinski, and J. Clune. Multifaceted feature
visualization: Uncovering the different types of features
learned by each neuron in deep neural networks. ICML
Visualization for Deep Learning Workshop, 2016.

[102] B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann,
E. Smirni, and D. Tiwari. Machine learning models for
gpu error prediction in a large scale hpc system. In
2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 95–106.
IEEE, 2018.

[103] M. A. Nielsen. Neural networks and deep learning. Deter-
mination Press, 2015.

[104] O. Nuriel, S. Benaim, and L. Wolf. Permuted adain:
Reducing the bias towards global statistics in image classi-
fication. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
9482–9491, June 2021.

[105] C. Olah, A. Satyanarayan, I. Johnson, S. Carter,
L. Schubert, K. Ye, and A. Mordvintsev. The

BIBLIOGRAPHY 164

building blocks of interpretability. Distill, 2018.
https://distill.pub/2018/building-blocks.

[106] OWASP Foundation. Open web application security
project: Data validation, 2013. Accessed: September 2018.

[107] N. Papernot and P. McDaniel. Deep k-nearest neighbors:
Towards confident, interpretable and robust deep learning.
arXiv preprint arXiv:1803.04765, 2018.

[108] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B.
Celik, and A. Swami. Practical black-box attacks against
machine learning. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security,
pages 506–519. ACM, 2017.

[109] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, and A. Swami. The limitations of deep learning in
adversarial settings. In The IEEE European Symposium on
Security and Privacy (EuroS&P), pages 372–387, 2016.

[110] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami.
Distillation as a defense to adversarial perturbations
against deep neural networks. In IEEE Symposium on
Security and Privacy (SP), pages 582–597, 2016.

[111] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

BIBLIOGRAPHY 165

[112] K. Pei, Y. Cao, J. Yang, and S. Jana. DeepXplore:
Automated whitebox testing of deep learning systems. In
Proceedings of the 26th Symposium on Operating Systems
Principles, pages 1–18. ACM, 2017.

[113] K. Pei, Y. Cao, J. Yang, and S. Jana. Towards practical
verification of machine learning: The case of computer
vision systems. arXiv preprint arXiv:1712.01785, 2017.

[114] C. Pham, D. Chen, Z. Kalbarczyk, and R. K. Iyer.
Cloudval: A framework for validation of virtualization en-
vironment in cloud infrastructure. In Dependable Systems
& Networks (DSN), 2011 IEEE/IFIP 41st International
Conference on, pages 189–196. IEEE, 2011.

[115] H. Pham, Z. Dai, Q. Xie, and Q. V. Le. Meta pseudo
labels. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
11557–11568, June 2021.

[116] L. L. Pipino, Y. W. Lee, and R. Y. Wang. Data quality
assessment. Communications of the ACM, 45(4):211–218,
2002.

[117] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P.
Reyes, M.-L. Shyu, S.-C. Chen, and S. Iyengar. A
survey on deep learning: Algorithms, techniques, and
applications. ACM Computing Surveys (CSUR), 2018.

[118] T. Pratap and P. Kokil. Computer-aided diagnosis of
cataract using deep transfer learning. Biomedical Signal
Processing and Control, 53:101533, 2019.

BIBLIOGRAPHY 166

[119] J. Rauber, W. Brendel, and M. Bethge. Foolbox: A python
toolbox to benchmark the robustness of machine learning
models. In ICML Workshop, 2017.

[120] W. Rawat and Z. Wang. Deep convolutional neural
networks for image classification: A comprehensive review.
Neural Computation, 29(9):2352–2449, 2017.

[121] K. Ren, T. Zheng, Z. Qin, and X. Liu. Adversarial attacks
and defenses in deep learning. Engineering, 6(3):346–360,
2020.

[122] M. T. Ribeiro, S. Singh, and C. Guestrin. “Why should
I trust you?": Explaining the predictions of any classifier.
In International Conference on Knowledge Discovery and
Data Mining (KDD), pages 1135–1144. ACM, 2016.

[123] M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors:
High-precision model-agnostic explanations. In AAAI
Conference on Artificial Intelligence, 2018.

[124] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision, 2015.

[125] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision, 115(3):211–
252, 2015.

BIBLIOGRAPHY 167

[126] S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet. Adversarial
manipulation of deep representations. In International
Conference on Learning Representations (ICLR), 2016.

[127] S. Sankaranarayanan, A. Alavi, C. D. Castillo, and
R. Chellappa. Triplet probabilistic embedding for face ver-
ification and clustering. In The International Conference
on Biometrics Theory, Applications and Systems (BTAS),
pages 1–8. IEEE, 2016.

[128] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola,
and R. C. Williamson. Estimating the support of a high-
dimensional distribution. Neural computation, 13(7):1443–
1471, 2001.

[129] J. Schrouff, S. Baur, S. Hou, D. Mincu, E. Loreaux,
R. Blanes, J. Wexler, A. Karthikesalingam, and B. Kim.
Best of both worlds: local and global explanations
with human-understandable concepts. arXiv preprint
arXiv:2106.08641, 2021.

[130] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
D. Parikh, and D. Batra. Grad-CAM: Visual explanations
from deep networks via gradient-based localization. In
International Conference on Computer Vision (ICCV),
pages 618–626. IEEE, 2017.

[131] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carls-
son. CNN features off-the-shelf: An astounding baseline
for recognition. In CVPR Workshop, 2014.

[132] Y. Sharma, T.-D. Le, and M. Alzantot. CAAD 2018: Gen-
erating transferable adversarial examples. arXiv preprint
arXiv:1810.01268, 2018.

BIBLIOGRAPHY 168

[133] A. Shrikumar, P. Greenside, and A. Kundaje. Learning
important features through propagating activation differ-
ences. In International Conference on Machine Learning
(ICML), pages 3145–3153. PMLR, 2017.

[134] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside
convolutional networks: Visualising image classification
models and saliency maps. In International Conference
on Learning Representations (ICLR), 2014.

[135] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In Interna-
tional Conference on Learning Representations (ICLR),
2015.

[136] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wat-
tenberg. SmoothGrad: Removing noise by adding noise.
arXiv preprint arXiv:1706.03825, 2017.

[137] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Ried-
miller. Striving for simplicity: The all convolutional net.
In ICLR Workshop, 2015.

[138] J. Stewart. Tesla’s autopilot was involved in another
deadly car crash, March 2018.

[139] P. Stock and M. Cisse. ConvNets and ImageNet beyond ac-
curacy: Understanding mistakes and uncovering biases. In
The European Conference on Computer Vision (ECCV),
pages 498–512, 2018.

[140] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and
R. Ashmore. Deepconcolic: Testing and debugging deep
neural networks. In 2019 IEEE/ACM 41st International

BIBLIOGRAPHY 169

Conference on Software Engineering: Companion Proceed-
ings (ICSE-Companion), pages 111–114. IEEE, 2019.

[141] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic
attribution for deep networks. In International Conference
on Machine Learning (ICML), pages 3319–3328. PMLR,
2017.

[142] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to
sequence learning with neural networks. In Advances in
neural information processing systems, pages 3104–3112,
2014.

[143] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In AAAI, volume 4, page 12,
2017.

[144] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
June 2015.

[145] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 1–9, 2015.

[146] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wo-
jna. Rethinking the inception architecture for computer
vision. In IEEE International Conference on Computer
Vision (ICCV), 2016.

BIBLIOGRAPHY 170

[147] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of
neural networks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2014.

[148] G. Tao, S. Ma, Y. Liu, and X. Zhang. Attacks meet
interpretability: Attribute-steered detection of adversarial
samples. In Advances in Neural Information Processing
Systems (NIPS), pages 7717–7728, 2018.

[149] Y. Tian, P. Luo, X. Wang, and X. Tang. Pedestrian
detection aided by deep learning semantic tasks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5079–5087, 2015.

[150] Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Auto-
mated testing of deep-neural-network-driven autonomous
cars. In Proceedings of the 40th International Conference
on Software Engineering, pages 303–314. ACM, 2018.

[151] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and
H. Jégou. Going deeper with image transformers. arXiv
preprint arXiv:2103.17239, 2021.

[152] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou. Fix-
ing the train-test resolution discrepancy: Fixefficientnet.
arXiv preprint arXiv:2003.08237, 2020.

[153] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow,
D. Boneh, and P. McDaniel. Ensemble adversarial train-
ing: Attacks and defenses. In International Conference on
Learning Representations (ICLR), 2018.

BIBLIOGRAPHY 171

[154] T.S. Why uber’s self-driving car killed a pedestrian, May
2018.

[155] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and
A. Madry. Robustness may be at odds with accuracy.
In International Conference on Learning Representations,
2019.

[156] V. N. Vapnik. Statistical learning theory. Adaptive and
learning systems for signal processing, communications,
and control. John Wiley & Sons, New York, 1998.

[157] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all
you need. In Advances in Neural Information Processing
Systems, pages 5998–6008, 2017.

[158] J. Wang, H. Ding, F. A. Bidgoli, B. Zhou, C. Iribarren,
S. Molloi, and P. Baldi. Detecting cardiovascular disease
from mammograms with deep learning. IEEE Trans. Med.
Imaging, 36(5):1172–1181, 2017.

[159] L. Wang, E. Wong, and D. Xu. A threat model driven
approach for security testing. In Third International
Workshop on Software Engineering for Secure Systems
(SESS’07: ICSE Workshops 2007), pages 10–10. IEEE,
2007.

[160] D. H. Wolpert. The lack of a priori distinctions between
learning algorithms. Neural computation, 8(7):1341–1390,
1996.

BIBLIOGRAPHY 172

[161] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan,
and L. Zhang. Cvt: Introducing convolutions to vision
transformers. arXiv preprint arXiv:2103.15808, 2021.

[162] W. Wu, Y. Su, X. Chen, S. Zhao, I. King, M. R. Lyu,
and Y.-W. Tai. Boosting the transferability of adversarial
samples via attention. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1161–1170, 2020.

[163] W. Wu, Y. Su, X. Chen, S. Zhao, I. King, M. R. Lyu, and
Y.-W. Tai. Towards global explanations of convolutional
neural networks with concept attribution. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8652–8661, 2020.

[164] W. Wu, Y. Su, M. R. Lyu, and I. King. Improving
the transferability of adversarial samples with adversarial
transformations. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
9024–9033, 2021.

[165] W. Wu, H. Xu, S. Zhong, M. R. Lyu, and I. King. Deep
Validation: Toward detecting real-world corner cases for
deep neural networks. In International Conference on
Dependable Systems and Networks (DSN), pages 125–137.
IEEE, 2019.

[166] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille.
Mitigating adversarial effects through randomization. In
International Conference on Learning Representations,
2018.

BIBLIOGRAPHY 173

[167] C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren,
and A. L. Yuille. Improving transferability of adversarial
examples with input diversity. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[168] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le. Self-training
with noisy student improves imagenet classification. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10687–10698, 2020.

[169] H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end learning
of driving models from large-scale video datasets. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2174–2182, 2017.

[170] H. Xu, Y. Ma, H.-C. Liu, D. Deb, H. Liu, J.-L. Tang, and
A. K. Jain. Adversarial attacks and defenses in images,
graphs and text: A review. International Journal of
Automation and Computing, 17(2):151–178, 2020.

[171] W. Xu, D. Evans, and Y. Qi. Feature Squeezing: Detect-
ing Adversarial Examples in Deep Neural Networks. In
Proceedings of the 2018 Network and Distributed Systems
Security Symposium (NDSS), 2018.

[172] L. Yuan, Q. Hou, Z. Jiang, J. Feng, and S. Yan. Volo:
Vision outlooker for visual recognition. arXiv preprint
arXiv:2106.13112, 2021.

[173] M. D. Zeiler. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

BIBLIOGRAPHY 174

[174] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In The European Conference on
Computer Vision (ECCV), pages 818–833. Springer, 2014.

[175] X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer. Scaling
vision transformers. arXiv preprint arXiv:2106.04560,
2021.

[176] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid.
Deeproad: Gan-based metamorphic testing and input
validation framework for autonomous driving systems. In
Proceedings of the 33rd ACM/IEEE International Confer-
ence on Automated Software Engineering, pages 132–142.
ACM, 2018.

[177] Q. Zhang, Y. N. Wu, and S.-C. Zhu. Interpretable
convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 8827–8836, 2018.

[178] Q. Zhang, Y. Yang, H. Ma, and Y. N. Wu. Interpreting
CNNs via decision trees. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
6261–6270, 2019.

[179] X. Zhang, A. Solar-Lezama, and R. Singh. Interpret-
ing neural network judgments via minimal, stable, and
symbolic corrections. In Advances in Neural Information
Processing Systems (NIPS), pages 4874–4885, 2018.

[180] X. Zhang, J. Zhao, and Y. LeCun. Character-level
convolutional networks for text classification. In Advances
in neural information processing systems (NIPS), pages
649–657, 2015.

BIBLIOGRAPHY 175

[181] Z. Zhang, P. Wang, H. Guo, Z. Wang, Y. Zhou, and
Z. Huang. Deepbackground: Metamorphic testing for
deep-learning-driven image recognition systems accompa-
nied by background-relevance. Information and Software
Technology, page 106701, 2021.

[182] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Tor-
ralba. Object detectors emerge in deep scene CNNs.
In International Conference on Learning Representations
(ICLR), 2015.

[183] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Tor-
ralba. Learning deep features for discriminative localiza-
tion. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2921–2929, 2016.

[184] B. Zhou, Y. Sun, D. Bau, and A. Torralba. Interpretable
basis decomposition for visual explanation. In The Eu-
ropean Conference on Computer Vision (ECCV), pages
119–134, 2018.

[185] W. Zhou, X. Hou, Y. Chen, M. Tang, X. Huang, X. Gan,
and Y. Yang. Transferable adversarial perturbations. In
The European Conference on Computer Vision (ECCV),
2018.

[186] H. Zhu, P. A. Hall, and J. H. May. Software unit test
coverage and adequacy. Acm computing surveys (csur),
29(4):366–427, 1997.

[187] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei. Hidden:
Hiding data with deep networks. In Proceedings of the
European conference on computer vision (ECCV), pages
657–672, 2018.

BIBLIOGRAPHY 176

[188] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling.
Visualizing deep neural network decisions: Prediction dif-
ference analysis. In International Conference on Learning
Representations (ICLR), 2017.

