FEFXKE

The Chinese University of Hong Kong

CENG3420
Lecture 08: Cache

Bej Yu

: " i‘\\ "{%‘—'@a‘ ~ éﬁ'h .

mailto:byu@cse.cuhk.edu.hk

Overview

2/40

Introduction

Direct Mapping

Associative Mapping

Replacement

Conclusion

Overview

Introduction

3/40

Memory Hierarchy

» Aim: to produce fast, big
and cheap memory

> L1, L2 cache are usually
SRAM

» Main memory is DRAM

Relies on locality of
reference

3/40

Increasing
latency

Increasing
size

Processor

Registers

Primary]
cache

Secondary 2
cache

Main
memory

Magnetic disk
secondary
memory

Increasing
speed

Increasing
cost per bit

[

@ﬂfm:é:;

Cache-Main Memory Mapping

» A way to record which part of the Main Memory is now in cache

» Synonym: Cache line == Cache block

> Design concerns:
» Be Efficient: fast determination of cache hits/ misses

» Be Effective: make full use of the cache; increase probability of cache hits
Two questions to answer (in hardware)

Q1 How do we know if a data item is in the cache?
Q2 Ifitis, how do we find it?

4/40

Imagine: Trivial Conceptual Case

» Cache size == Main Memory size

» Trivial one-to-one mapping

» Do we need Main Memory any more?

5/40

Reality: Cache Block / Cache Line

» Cache size is much smaller than the Main

. Cache
Memory size g —
. . . tag Block 1
» A block in the Main Memory maps to a block in
the Cache
=

P> Many-to-One Mapping

6/40

Main
Memory

Block 0

Block 1

= -

1st Block 127

Block 128

Block 129

<= |)i

Block 256

Block 257

Overview

Direct Mapping

7/40

Direct Mapping

Main

Memory
Block 0
Block 1
Cache Cache Byte Address
tag Block No within block (4-bit)
| 5 | 7 | 4 | 16-bit Main Memory address Cache qst [Block 127
fag Block 0] boek 128
12-bit Main Memory) Block 129
Block number/ address | | <=]
92 Block 127 ond || Block 255
o Block 256
> 2% = 16 bytes in a block Hock 257
> 27 = 128 Cache blocks
» 20745 = 4096 main memory blocks agna[secins]

7/40

Direct Mapping |

Block 0

Block 1

Cache Cache Byte Address
tag Block No within block (4-bit)

| 5 | 7 | 4 | 16-bit Main Memory address -~ o e
tag Block 0 o Block 128)
12-bit Main Memory S Bock1 Block 129
Block number/ address | <= | |
tag {L_Bock 127 | 2nd | Boacoss |
Block 256
» 2% = 16 bytes in a block bock 257
» 27 = 128 Cache blocks
» 20745 = 4096 main memory blocks agna[mesis]

» Block j of main memory maps to block (j mod 128) of Cache (same colour in figure)
» Cache hit occurs if tag matches desired address Q@

7/40

Direct Mapping

Memory address divided into 3 fields

» Main Memory Block number determines position of block in cache

> Tag used to keep track of which block is in cache (as many MM blocks can map to
same position in cache)

» The last bits in the address selects target word in the block

Example: given an address (t,b,w) (16-bit)
1. See ifitis already in cache by comparing t with the tag in block b
2. If not, cache miss! Replace the current block at b with a new one from memory block
(t,b) (12-bit)

8/40

Direct Mapping Example 1

Cache Cache Byte Address
tag Block No within block (4-bit)

5 7 4 16-bit Main Memory address

—~

12-bit Main Memory
Block number/ address

. CPU is looking for [A7B4] MAR = 1010011110110100
. Go to cache block 1111011, see if the tag is 10100

. If YES, cache hit!

. Otherwise, get the block into cache row 1111011

AW N =

9/40

Direct Mapping Example 2

Main Memory

0000xx
Cache ~0001xx

) <o 110010xx
Index Valid Tag Data T 0011xx
00 0100xx
01 0101xx
o papoonoon SR coooonoon 10110xx
11 T 01 xx
1000xx
1001xx
s 1010xx
o otix
1100xx
1101xx
s 11110xx
111X

10/40

Direct Mapping Example 2

Main Memory

0000xx
Cache ~0001xx

) <o 110010xx
Index Valid Tag Data //;;::: : “l0011xx

00 0100xx
01 0101xx
10 R coo20110xx

11 R S 011 Ixx
\\Qi: 1000xx

1001xx

s o11010xx

s 1011xx
1100xx
1101xx

“[1110xx
s 111X

10/40

Question: Direct Mapping Cache Hit Rate

Consider a 4-block empty Cache, and all blocks initially marked as not valid. Given the
main memory word addresses “0 1 2 3 4 3 4 15”, calculate Cache hit rate.

Cache

Index Valid Tag Data

00
01
10
11

11/40

12/40

0 miss 1 miss 2 miss 3 miss

00 | Mem(0) 00 |[Mem(0) 00 | Mem(0) 00 | Mem(0)
00 |Mem(1) 00 | Mem(1) 00 | Mem(1)

00 | Mem(2) 00 | Mem(2)

00 [Mem(3)

4 miss 3 hit 4 hit 15 miss
00. | Mem(0)/ 01 | Mem(4) 01 | Mem(4) 01 | Mem(4)
00 | Mem(1) 00 | Mem(1) 00 | Mem(1) 00 | Mem(1)
00 | Mem(2) 00 | Mem(2) 00 | Mem(2) 00 | Mem(2)
00 [Mem(3) 00 [Mem(3) 00 | Mem(3) 11\90 Mem()

@ 8 requests, 6 misses

15

Example 3: MIPS

P One word blocks, cache size = 1K words (or 4KB)
» What kind of locality are we taking advantage of?

3130 1312 11 210 Byte
- . offset
[| [4
Hit Tag ~Jeo T~0 Data
Index 1
Index Valid Tag Data
0
1
2
1021
1022
1023
\"\20 ~32
o =

13/40

Example 4: MIPS w. Multiword Block

» Four words/block, cache size = 1K words
> What kind of locality are we taking advantage of?

Byte
H 3130 ... 131211 ... 43210
Hit | T T ,I/offset Data
Tag 0 ~ts | Block offset
Index
IndexValid Tag Data
0
1
2
253
254
255
T=20
[TC:) RN
[

14/40

Question: Multiword Direct Mapping Cache Hit Rate

Consider a 2-block empty Cache, and each block is with 2-words. All blocks initially marked
as not valid. Given the main memory word addresses “0 1 2 3 4 3 4 15”, calculate
Cache hit rate.

Cache

Index Tag Data
00
01

15/40

16/40

0 miss 1 hit 2 miss
00 |Mem(1) | Mem(0Q) 00 |Mem(1) | Mem(0) 00 |Mem(1) | Mem(0)
00 |Mem(3) | Mem(2)
3 hit 4 miss 3hit
041 = #
00 [Mem(1) | Mem(©)| [0 |MemttY | Mem 01 |Mem(5) | Mem(4)
00 |Mem(3) | Mem(2) 00 |Mem(3) | Mem(2) 00 |Mem(3) | Mem(2)
4 hit 15 miss
01 _|Mem(5) | Mem(4) 14101 Mem(5)|, Mem(4)14
00 [Mem(3) | Mem(2) 00 |[Mem3) T Mem

@ 8 requests, 4 misses

MIPS Cache Field Sizes

The number of bits includes both the storage for data and for the tags
» For a direct mapped cache with 2" blocks, n bits are used for the index
» For a block size of 2" words (212 bytes), m bits are used to address the word within
the block
» 2 bits are used to address the byte within the word

17/40

@ﬂfm:é:;

MIPS Cache Field Sizes

The number of bits includes both the storage for data and for the tags
» For a direct mapped cache with 2" blocks, n bits are used for the index
» For a block size of 2" words (212 bytes), m bits are used to address the word within
the block
» 2 bits are used to address the byte within the word

Size of the tag field?
32— (n+m+2)

17/40

L;‘sﬂfm’—%@g

MIPS Cache Field Sizes

The number of bits includes both the storage for data and for the tags
» For a direct mapped cache with 2" blocks, n bits are used for the index
» For a block size of 2" words (212 bytes), m bits are used to address the word within
the block
» 2 bits are used to address the byte within the word

Size of the tag field?
32— (n+m+2)

Total number of bits in a direct-mapped cache
2" x (block size + tag field size + valid field size)

17/40

Question: Bit number in a Cache

How many total bits are required for a direct mapped cache with 16KB of data and 4-word
blocks assuming a 32-bit address?

18/40

Overview

Associative Mapping

19/40

Associative Mapping

Main Memory

Block 0

Block 1

Cache

1
28 Block 0

tag

Tag Byte Block 1

12 | 4 | 1 <

16-bit Main Memory address

Block i

tag
Block 127

Block 4095

» An MM block can be in arbitrary Cache block location

P In this example, all 128 tag entries must be compared with the address Tag in parallel
(by hardware)

19/40

Associative Mapping Example

Tag Byte
12 4

16-bit Main Memory address

. CPU is looking for [A7B4] MAR = 1010011110110100

. Seeif the tag 101001111011 matches one of the 128 cache tags
. If YES, cache hit!

. Otherwise, get the block into BINGO cache row

AW N =

20/40

Set Associative Mapping

Set
Tag Number Byte
6 6 4

16-bit Main Memory address

» Combination of direct and associative
P (j mod 64) derives the Set Number

Cache
tag
Block
Setl}{ ock 0
ta
i Block 1
tag N
Set 1 { Block 2
ta
s Block 3

fa
Set 63 { [e] Block 126

ta
g Block 127

Main Memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

Block 129

Block 4095

Example: 2-way set associative

» A cache with k-blocks per set is called a k-way set associative cache.

21/40

Set Associative Mapping Example 1

Set
Tag Number Byte
6 6 4

16-bit Main Memory address

E.g. 2-Way Set Associative:

1. CPU is looking for [A7B4] MAR = 1010011110110100
2. Go tocache Set 111011 (591¢)

> Block 1110110 (118)
> Block 1110111 (1194¢)

3. See if ONE of the TWO tags in the Set 111011 is 101001
4. If YES, cache hit!
5. Get the block into BINGO cache row

22/40

Set Associative Mapping Example 2

Main Memory
. 0000xx
©:0001xx
~-|0010xx
~-0011xx
0100xx
CIIII0101xx
o ~0110xx
L0 11xx

Cache

Way Set V' Tag Data

0

0
1
0
Ty

“T111xx

23/40

24/40

Question: Direct Mapping v.s. 2-Way Set Associate

Consider the following two empty caches, calculate Cache hit rates for the reference word
addresses: ‘04040404

Cache Cache
Index Valid Tag Data
00
01
10
1

Set Tag Data

-0 =0

(@) (b)

(a) Direct Mapping; (b) 2-Way Set Associative.

Set Associative Mapping Example 3: MIPS

» 28 = 256 sets each with four ways (each with one block).
P four tags in the set are compared in parallel.

313 ... 11109 ... 210 s Byte offset
Tag +22 s
Index
ndex V Tag Data V Tag Data V Tag Data V Tag Data

0 0 0 0

1 V.Y NAaY 1 V.Y N 1 b, o 1 Wb, o

2 A\ AU y J 2 LA y T vV y = 2 A\ A4 y J
253 253 253 253
254 254 254 254
255 255 255 255

N Y Y Y

A A A A

~32

U
i [o
| | —— 4x1 select

, !
Hit Data

25/40

Range of Set Associative Caches

For a fixed size cache:

Used for tag compare Selects the set Selects the word in the block
| Ta'g | Index | Block offset |Byte |offset

. o Increasing associativit
Decreasing associativity —'—' 9 y
I

Fully associative
Direct mapped }‘7 | (only one set)

(only one way) Tag is all the bits except
Smaller tags, only a block and byte offset

single comparator

26/40

Overview

Replacement

27/40

Handling Cache Read

» Isand DS
» Read hit: what we want!

> Read miss: stall the pipeline, fetch the block from the next level in the memory
hierarchy, install it in the cache and send the requested word to the processor, then let

the pipeline resume.

27/40

Handling Cache Write Hits

Only DS
Case 1: Write-Through

» Cache and memory to be consistent

P always write the data into both the cache block and the next level in the memory
hierarchy

» Speed-up: use write buffer and stall only when buffer is full

Case 2: Write-Back

» Write the data only into the cache block
» Write to memory hierarchy when that cache block is “evicted”
> Need a dirty bit for each data cache block

28/40

@aﬂfmiés

Handling Cache Write Misses
Case 1: Write-Through caches with a write buffer

» No-write allocatex

» skip cache write (but must invalidate that cache block since it now holds stale data)
P just write the word to the write buffer (and eventually to the next memory level)

» no need to stall if the write buffer isn’t full

Case 2: Write-Back caches

» Write allocate }

» Just write the word into the cache updating both the tag and data
» no need to check for cache hit

» no need to stall

*The block is modified in the main memory and not loaded into the cache.
1The block is loaded on a write miss, followed by the write-hit action.

29/40

30/40

Write-Through Cache with No-Write Allocation

?

Read

Request Write
type
.

Cachehity Y&

—

Cachehity 2

Read data from
ower memory int

Write-Back Cache with Write Allocation

?

31/40

Read Request
- type
.
Cachehizp Y2
No
Locate a cache
Isitdity? 2

1»70

Read data from
W

ower memory into

Mark the cache

Write

Cache hit?

1,70

[—
Locate a cache

Is it dirty’?

F

Read data from
lower memory into

| Write the new

Yes

Write its previous

e

Replacement Algorithms

Direct Mapping
» Position of each block fixed

» Whenever replacement is needed (i.e. cache miss — new block to load), the choice is
obvious and thus no “replacement algorithm” is needed

Associative and Set Associative
» Need to decide which block to replace

» Keep/retain ones likely to be used in near future again

32/40

Associative & Set Associative Replacement

Strategy 1: Least Recently Used (LRU)

> e.g. for a 4-block/set cache, use a log, 4 = 2 bit counter for each block
P> Reset the counter to 0 whenever the block is accessed

» counters of other blocks in the same set should be incremented

» On cache miss, replace/ uncache a block with counter reaching 3

33/40

Associative & Set Associative Replacement

Strategy 1: Least Recently Used (LRU)

> e.g. for a 4-block/set cache, use a log, 4 = 2 bit counter for each block
P> Reset the counter to 0 whenever the block is accessed

» counters of other blocks in the same set should be incremented

» On cache miss, replace/ uncache a block with counter reaching 3

Strategy 2: Random Replacement

» Choose random block
> ©Easier to implement at high speed

33/40

Cache Example

short A[10][4];

int sum = 0;

int 3, i;

double mean;

// forward loop

for (j = 0; j <= 9; j++)
sum += A[Jj][0];

mean = sum / 10.0;

// backward loop

for (i = 9; i >= 0; i--)
A[i][0] = A[i][0]/mean;

34/40

vV v.v. v VY

Assume separate instruction and data caches

So we consider only the data

Cache has space for 8 blocks

A block contains one word (byte)

A[10][4] is an array of words located at
7A00-7A27 in row-major order

@ﬂfm:é:;

Cache Example

Memory word

address in hex Memory word address in binary Array Contents (40 elements)
(7A00) 01 11101000000000 A[0][0]
(7A01) 01 1 1101000000001 A[0][1]
(7A02) 01 111010000000T10 A[0][2]
(7A03) 01 111010000000 T11 A[0][3]
(7A04) 01 1 1101000000100 A[1][0]
(7A24) 01 1110100010010°0 A[9][0]
(7A25) 01 111010001001 0°1 A[9][1]
(7A26) 01 111010001001 10 A[9][2]
(7A27) 01 111010001001 171 1031

1 A[9][3
Tag for Direct Mapped —-Ic—

8 blocks in cache, 3 bits encodes cachelblgck number

=

Tag for Set-Associative i

4 blocks/ set, 2 cache sets, 1 bit encodes cache set number

a————— Tag for Associative

To simplify discussion: 16-bit word (byte) address; i.e. 1 word = 1 byte. ﬁ

35/40

Direct Mapping

P Least significant 3-bits of address determine location

No replacement algorithm is needed in Direct Mapping
Wheni == 9and i == 8, geta cache hit (2 hits in total)
Only 2 out of the 8 cache positions used

>
>
>
> Very inefficient cache utilization

Content of data cache after loop pass: (time line)

3=0 j=1j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9|i=9 i=8 i=7 i=6 i=5 i=4 i=3 i=2 i=1i=0

ATOJ[OT] A[OJ[OI{A[2][0]| A[2][0[A[4] [01{AL][0]| AO1[0]

OJ{AL4J0]) 60T AL6JIOT| ALSIIOT| ALBIOT ALBIIOT| ALBIIO[ALBIIOJ| ALEIIO]| AT6IIO]A[4](OT| A4II0]| AL2]

Cache
Block
number

A[LI[0J{A[LIOJ| A[3[O]| AIBIIO]|A[STIO|ALS]

O AL7IONAITION ALNOT| ADION ALONOIALTIONALTIIONAISIIOIfALSIOI A0 AIOJ| ALLIOT| A[L][0]

~N NN AW N = O

Tags not shown but are needed. 5@@
Ty

36/40

Associative Mapping

» LRU replacement policy: get cache hits fori =9,8,...,2
> If i loop was a forward one, we would get no hits!

Content of data cache after loop pass: (time line)

j=0 j=1j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9|i=9 i=8 i=7 i=6 i=5 i=4 i=3 i=2 i=1 i=0

0 |ALOI0]{ALOJO]{A[O] OJ|AI8]I01| ABIIO] fAIB]IOT| A[BTIOT{ AISIIOT |A[8][0]| A[0][0]

OJ|ALOJO]{A[OI[OT [A[OJ(O]| AOI[O] fA[OT[OT| A[RTIOT{ AISIIOT| A[8]IO]| AS]IOT [A[8]

1 A[LIOTATIO) ALLIOTfA[TIIOTA[LIO]| A[1I[0] {A[L]IO]| A[LIOT fA[OT[OT| A[9]OT] A[O1[0T [A[9][O]| A[OTIOT fA[OI[OT | A[OTIOT| ALOI[OT (AIOIIOT| A[LI[OT {A[1][0]
2 AL1I0JALZ]I01] AL21[0] fA[2][01| A[2][0]] A[2][0T [A[2][0]] A[21[0] [A[2][0] | A[2]O{ A[2][0T | A[2] 0] A[2][0] fA[2][0] | A[2][O] A[2][0] [A[2]0]] A[2][0]
Cache | 3 A[BJI0]|AIBIOT A[3I[0T [A[3]IO1|A[3NOT{A3I[OT|A[3]OT| A[31[0] [A[3]IO]| A[3]O] {A[3][OT|A[3]IO]| A[3I[0] [A[3][O]| A[3NOT fA[3][OT |A[3](0]
u]ﬂﬁgl;x 4 A[4][0T)A[4TI0]{A[4][0] [A[4]10]] A[4T[0] fA[4][OT| A[4][0]] AT4][0] [A[4][0| A[4][0] {A[4][0] | A[4][0]| A[4[0] [A[4][0]| A[4][0] {A[4][0]
5 AISIOT|ALSIOT[ALSIIOT[ALSTIOTALSIOT ALSIOT| ALSIIOT [ALSIIOT [ALSIIOT[ALSIIOT| ALSHOT| ALSTIOT| ALSTIOT [ALSIIOT{ALSI(O0]
6 A[6][0] {A[6]IO]| A[6]IO]| A[6][OT[AL6]I0]| A[6]IOT [A[6]IOT| AL6]0]| AL6][0] [A[6]IO] | A[6]I0] {AL6][O] | AL6]IOT| AL6][0]
7 ALTII0]|AITIION ALTIOT [A[7IIOT|ALTIIOT AL7IOT|AL7IIO]| A[TI0] fA[7IIOT|A[7IO]{ AL7I[OT [A[7]IO]| A[71[0]

Tags not shown but are needed; LRU Counters not shown but are needed.

37/40

Set Associative Mapping

» Since all accessed blocks have even addresses (7A00, 7A04, 7A08, ...),
only half of the cache is used, i.e. they all map to set 0

> LRU replacement policy: get hits fori=9, 8,7 and 6

» Random replacement would have better average performance

> If i loop was a forward one, we would get no hits!

Content of data cache after loop pass: (time line)

j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=T7 j=8 j=9|i=9 i=8 i=7 i=6 i=5 i=4 i=3 i=2 i=1 i=0

b A[OJI0]|ALOJOT ALO[OT{A[OJ[OT| A4]IOT| AL4[OT A[4] (0] [AT4IIOT| ASTIOT| AIBOT{ A[8]IOT [ALRIIOT| ASIOI A[BIIO] [ALBIIOT| A41[0T| A[4][0] [A[4][OT [A4](OT] A[OT[0]

Set 0 ‘1 A[LI[O]|ALLIONALLIOI{ ALLOT[ALSTIOT) ALSTOI ALSIIO] fALSIIOTATOTIOT| ALONOT| ALOIIO] [ATOIIOT| ALONOI ALSIIOTALSIIOT| ALSIIOT| ALSIIOI{ ALI[OT| ALLI0]

2 ARIOI{ARIO]{AR][O]| AL][0][A[6][0]| AL6]I0T| AL6]I0T| A[6][01| A[6]0]| A[6TO1{ A[6IO]{ A[6][0] [AL6I[0] | ALEI[OT| AL6]IOT| A[2][0]| A[2][01 A[2][0]

(];ellcz; 3 AL31101| AIBTIOT| AL3TIOT| AL3IO| AL71101| ALTIO | ALTIOT| AL7ION ALTOT| AL7IO)| ALTIOT| AL7ION| ALTIOI| A3 T[0T | AL3 10T ALBTIOT| AL3](0]
O -
number| |4
5

Set 1|9

6
7

Tags not shown but are needed; LRU Counters not shown but are needed. 5@@
Ty

38/40

Comments on the Example

39/40

> In this example, Associative is best, then Set-Associative, lastly Direct Mapping.

> What are the advantages and disadvantages of each scheme?

» In practice,
» Low hit rates like in the example is very rare.
P Usually Set-Associative with LRU replacement scheme is used.

» Larger blocks and more blocks greatly improve cache hit rate, i.e. more cache memory

Overview

Conclusion

40/40

Conclusion

» Cache Organizations:
Direct, Associative, Set-Associative

» Cache Replacement Algorithms:
Random, Least Recently Used

» Cache Hit and Miss Penalty

40/40

	Main Talk
	Introduction
	Direct Mapping
	Associative Mapping
	Replacement
	Conclusion

