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Recent work by Becker and Hinton (1992) shows a promising mecha-
nism, based on maximizing mutual information assuming spatial co-
herence, by which a system can self-organize to learn visual abilities
such as binocular stereo. We introduce a more general criterion, based
on Bayesian probability theory, and thereby demonstrate a connection
to Bayesian theories of visual perception and to other organization
principles for early vision (Atick and Redlich 1990). Methods for im-
plementation using variants of stochastic learning are described.

1 Introduction

The input intensity patterns received by the human visual system are
typically complicated functions of the object surfaces and light sources in
the world. It seems probable, however, that humans perceive the world
in terms of surfaces and objects (Nakayama and Shimojo 1987). Thus
the visual system must be able to extract information from the input
intensities that is relatively independent of the actual intensity values.
Such abilities may not be present at birth and hence must be learned. It
seems, for example, that binocular stereo develops at about the age of 2
to 3 months (Held 1987).

Becker and Hinton (1992) describe an interesting mechanism for self-
organizing a system to achieve this. The basic idea is to assume spatial
coherence of the structure to be extracted and to train a neural network
by maximizing the mutual information between neurons with spatially
disjoint receptive fields (see Fig. 1). For binocular stereo, for example,
the surface being viewed is assumed flat (see Becker and Hinton 1992,
for generalizations of this assumption) and hence has spatially constant
disparity. The intensity patterns, however, do not have any simple spatial
behavior. Adjusting the synaptic strengths of the network to maximize
the mutual information between neurons with nonoverlapping receptive
fields, for an ensemble of images, causes the neurons to extract features
that are spatially coherent, thereby obtaining the disparity.
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Figure 1: In Hinton and Becker’s initial scheme, maximization of mutual infor-
mation between neurons with spatially disjoint receptive fields leads to disparity
tuning, provided they train on spatially coherent patterns (i.e., those for which
disparity changes slowly with spatial position).

We argue that this approach has three key ingredients:

1. It uses strong prior knowledge about the output variables, i.e., it as-
sumes that the disparities are spatially constant. If this assumption
is not valid then the performance of the system will degrade.

2. It represents the desired outputs as functions of the inputs by a
multilayer perceptron with adjustable weights.

3. It proposes a criterion, mutual information maximization, moti-
vated by the prior knowledge (see point 1) to determine the weights.

The approach relies heavily on prior assumptions about the form of
the outputs. This is similar to Bayesian theories of visual perception that
also rely (Clark and Yuille 1990) on prior assumptions about properties of
the world, such as binocular disparities. Such priors are needed because
of the ill-posed nature of vision (Poggio et al. 1985) and can be thought
of as natural constraints (Marr 1982).

This similarity motivates the following questions. Can we reformulate
Becker and Hinton’s theory so that it can be applied directly to learning
Bayesian theories of vision? More precisely, assuming a prior of the type
commonly used in vision, can we find an optimization criterion and
learning algorithm such that we can learn the corresponding Bayesian
theory?



582 A. L. Yuille, S. M. Smirnakis, and L. Xu

This note shows that it is indeed possible to reformulate Becker and
Hinton to make it compatible with Bayesian theories. In particular, their
algorithm for stereo corresponds to one of the standard priors used for
Bayesian stereo theories (see Section 3). The key idea is to force the
activity distribution of the outputs, S, to be close to a prespecified prior
distribution P,(S). Our approach is general and is related to the work
performed by Atick and Redlich (1990) for modeling the early visual
system. In previous work (Yuille et al. 1993) we proved that applying
our approach to linear filtering problems leads to a solution that is the
square root of the Wiener filter in Fourier space. A similar result has been
derived (Redlich, private communication) from the principles described
in Atick and Redlich (1990).

We should clarify what we mean by “learning a Bayesian theory.”
A Bayesian theory for estimating a scene property S from input D con-
sists of three elements: (1) a prior for the property Pp(S), (2) a likeli-
hood function P;(D | S), and (3) an algorithm for estimating S*(D) =
arg maxs P1(D | S)P,(S).! Because we assume that the prior is known we
are essentially learning the likelihood function and the algorithm. Our
approach, after training, will yield a neural net, or some other function
approximation scheme, that computes S$*(D). In related work (Smirnakis
and Yuille 1994) we assume that both prior and likelihood are known
and train a network to learn the algorithm.

This can be contrasted to alternative ways for learning Bayesian the-
ories. Hidden Markov models (Paul 1990) (see Section 5) learn both the
priors and the likelihood functions. A general purpose optimization algo-
rithm, dynamic programming, is then used to compute the MAP, or some
alternative, estimator. This approach can be highly effective, though dy-
namic programming is efficient only for one-dimensional problems and
functional forms for the prior and likelihood are required. Kersten ef al.
(1987) describe Bayesian learning with a teacher that yields the algorithm
S*(D) = argmaxs Py(D | S)P,(S). But as Becker and Hinton have shown,
a teacher is not always necessary.

We will take the viewpoint that the prior P,(S) is assumed known
in advance by the visual system (perhaps by being specified genetically)
and will act as a self-organizing principle. Later we will discuss ways
that this might be relaxed.

2 Theory

We assume that the input D is a function F(n, o) of a signal « that the
system wants to determine and a distractor n. These quantities are vectors
indexed by spatial location (see Fig. 2). For example, a might correspond
to the disparities of a pair of binocular stereo images and n to the intensity

1This corfgéponds to the commonly used maximum a posteriori (MAP) estimator
Other estimators may be preferable, but we will consider only MAP in this paper.
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Figure 2: Note that the vectors I, and Ig represent the intensities falling on
the left and right retinas respectively, and are indexed by spatial location. S
represents the vector of the disparities to be extracted. That is, the output §; of
output unit / represents the disparity at spatial location i. By setting some of
the synapses to zero we obtain the disjoint receptive fields of the Becker and
Hinton paradigm (Fig. 1).

patterns. The variables have distributions P,(n) and Pp(a), respectively.
Note that D and P,(a) are assumed to be known but Pn(n) and the
functional form of F(n. &) are unknown.

The input distribution is given by

Pp(D) = / / 6[D — F(n, )Py (n)Py(cx) [ dex][dn]

and can be observed by the system.

Let the output of the system be S = G(D,~y) where G is a function
of a set of parameters v to be determined. For example, the function
G(D, ) could be represented by a multilayer perceptron with ~ being
the synaptic weights. By approximation theory, it can be shown that
a large variety of neural networks can approximate any input-output
function arbitrarily well given enough hidden nodes (Hornik et al. 1991).
We can combine these formulas to give

S = G[F(n, a),] (2.1)
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Figure 3: The parameters v are adjusted to minimize the Kullback-Leibler dis-
tance between the prior (Pp) distribution of the true signal (£) and the derived
distribution (Ppp) of the network output (S).

The aim of self-organizing the network is to ensure that the param-
eters ~ are chosen so that the outputs S are as close to the a (or some
simple transformation of the as) as possible. We claim that this can be
achieved by adjusting the parameters -y so as to make the derived distri-
bution of the outputs Ppp(S : v) = [§[S — G(D, ~)]Pp(D)[dD] as close as
possible to Py(S).

This can be seen to be a consistency condition for a Bayesian theory.
From Bayes’s formula we obtain the condition:

/ P(S | D)Pp(D)[dD] = / P(D | $)P,(S)dD] = Py(S) 2.2)

This is equivalent to our condition provided we identify P(S | D) with

To make this more precise we must define a measure of similarity be-
tween the two distributions Pp,(S) and Ppp(S : ). An attractive measure
is the Kullback—Leibler distance (the entropy of Ppp relative to Pp):

Ppp(S:7)

7 & 14S) 2.3)

KL(%) = [ Pon(S: 7)log

Thus our theory (see Fig. 3) corresponds to adjusting the param-
eters v to minimize the Kullback-Leibler distance between Pp(S) and
Pop(S : ). This measure can be divided into two parts: (1) — [Ppp(S:
~v)log P,(S)[dS] and (2) [ Ppp(S : v)log Poo(S : v)[dS]. As we now show
both terms have very intuitive interpretations.

Suppose that P,(S) can be expressed as a Markov random field [i.c..
the spatial distribution of Pp(S) has a local neighborhood structure, &
is commonly assumed in Bayesian models of vision]. Then, by thc
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Hammersely—Chfford theorem, we can write P,(S) = ¢ ) /7 where
Ey(S) is an energy function with local connectlons [for example, E(S) =
Z,(Si — Si11)?], B is an inverse temperature, and Z is a normahzatlon

constant.
Then the first term can be written as

~ [ Pon(S : 7) log Py (S)[dS)
- / / 5[S — G(D,~)|Pp(D)BE,(S)[dD][dS] + log Z

= / PE,[G(D,7)Pp(D)(dD] + log Z
= B(Ep[G(D,~)])p +log Z (2.4)

We can ignore the log Z term since it is a constant (independent of ).
Minimizing the first term with respect to « will therefore try to minimize
the energy of the outputs averaged over the inputs—(E,[G(D,~)])p—
which is highly desirable [since it has a close connection to the minimal
energy principles in Poggio et al. (1985), and Clark and Yuille (1990)]. It
is important, however, to avoid the trivial solution G(D,~) = constant or
solutions where G(D, «) is very small for most inputs. Fortunately these
solutions will be discouraged by the second term.

The second term [ Ppp(D, ) log Ppp(D, v)[dD] can be interpreted as
the negative of the entropy of the derived distribution of the output.
Minimizing it with respect to v is a maximum entropy principle that
will encourage variability in the outputs G(D,~) and hence prevent the
trivial solutions.

The two terms combine to determine the « so that the energy of the
output variables is minimized while maximizing their variability. This
is closely related to Becker and Hinton’s method of maximizing the mu-
tual information between pairs of output variables—essentially assum-
Ing a spatially constant prior distribution for S. At the same time it is
reminiscent of other organizational principles for early vision based on
information theory (Atick and Redlich 1990).

How can one guarantee that the optimal solution to our criteria will
indeed extract the signal? This will depend on a number of factors:
(1) the forms of the functions F and G, (2) the forms of the probability
distributions P,(n) and Py(a), and (3) whether the prior P, is indeed
correct or not.

It is straightforward to write down the conditions for the derived
distribution to be equal to the prior distribution (assuming that the prior
is correct). This is a stronger condition than requiring the Kullback-
Leibler distance to be minimal (though, if equality is possible, minimizing
Kullback-Leibler would lead to it). It is

S) = / | /o‘ {S = G[F(n, &), ]} Pa(n)P,(cx) der][dn] 2.5)

If one could find v* so that G[F(n, ), ¥*] = ¢, Vn, a then the equation
could be solved exactly. The condition G[F(n, &), v*] = «, however, is
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too strong. It requires that the function G, which can be thought of as a
nonlinear filter, is able to completely eliminate the dependence on n.

We have assumed that the correct prior is known by the system, per-
haps by being specified genetically. An alternative possibility is that the
prior itself is learned by a method reminiscent of Occam’s razor: the
goodness of the prior is evaluated based on the Kullback-Leibler dis-
tance after self-organization, and a more complex prior is chosen if this
distance is large (see also Mumford 1992).

3 Connection to Becker and Hinton

In this section, we show that the case of disparity extraction implemented
by Becker and Hinton based on their principle of mutual information
maximization arises as a special case of our formalism, by choosing a
particular prior. The Becker and Hinton method (Becker and Hinton
1992) for extracting the disparity involves maximizing the mutual infor-
mation between two network output units S, S, with spatially disjoint
receptive fields, under the assumption that disparity is spatially coher-
ent. S; and S, denote the scalar values of two units in the output layer of
a neural network, indexed by spatial location. The mutual information
between S, S, is given by

1(51,557) = —(logPpp(S1;7)) — (log Pop(52;7))
+ (log Pop(S1,52;7))
= H(Sy;~) —H(S1|S27) (3.1

From this equation we see that we want to maximize the entropy, H(51; v¥),
of S; while minimizing the conditional entropy, H (51 | S2;7), of S; given
S,, which forces S; to be a deterministic function of S, (alternatively, by
symmetry, we can interchange the roles of 5; and S;). For the discussion
below we will use our criterion to reproduce the case in which this last
term forces S; = S,.

By contrast, in our version (see Fig. 4) we propose to minimize the
expression (log Ppp(S1,52;7)) — [ log Py (51,52)Ppp(S1. Sy;7v)[dS]. If we en-
sure that the prior P,(51,5;) o e~7(51=52 then, for large 7, our second
term will force S; ~ S, and our first term will maximize the entropy
of the joint distribution of S;,5,. We argue that this is effectively the
same as Becker and Hinton (1992), since maximizing the joint entropy
of $;,S, with S; constrained to equal S, is equivalent to maximizing the
individual entropies of S; and S, with the same constraint.

To be more concrete, we consider Becker and Hinton’s implementation
of the mutual information maximization principle in the case of units
with continuous outputs. They assume that the outputs of units 1,2 arc
gaussian’ and perform steepest descent to maximize the symmetrized

2We assume for simplicity that these gaussians have zero mean.
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Figure 4: Comparing our theory with Becker and Hinton’s. Observe that setting
Pp(S1,52) o e7T(51752)" forces S & S, for large 7, implementing their assumption
that the disparity is spatially coherent.

form of the mutual information between S; and S,:

_ V(S1) _V(S)
1(51,S,) = log V(% = ) +log TG = %)
= logV(51) +1logV(S2) —2log V(S; — S,) (3.2)

where V(-) stands for variance over the set of inputs. They assume that
the difference between the two outputs can be expressed as uncorrelated
additive noise, S; = S, + N. Therefore, their criterion amounts to maxi-
mizing

Epu[V(S2), V(N)] =1og{V(S;)+ V(N)} +logV(S,) —2logV(N)  (3.3)

For our scheme we make similar assumptions about the distributions
of 51 and S;. We then see that, up to additive constants independent of ~,
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(log Ppp(S1,52)) = —1/210g{(S1)(S3) ~ ($152)*} = —1/210g{V(5)V(N)}
[since (51S,) = ((S2 + N)S2) = V(Sy) and (53) = V(S,) + V(N)]. We now
observe that if we choose the prior distribution Pp(S;, S2) oc e~ 175 our
criterion corresponds to minimizing Eysx[V(S2), V(N)] where

Eysx[V(S2), V(N)] = —log V(S,) — log V(N) + 7V(N) (3.4)

It is easy to see that maximizing Epn[V(S2), V(N)] will try to make
V(S,) as large as possible and force V(N) to zero [recall that, by definition,
V(N) > 0]. On the other hand, minimizing our energy will try to make
V(S,) as large as possible and will force V(N) to 1/7. Since 7 appears as
the inverse of the variance of the gaussian prior for S = (51, 5,), making
7 large will force the prior distribution to approach 6(S; — S3). Thus, in
the case of large 7, our method has the same effect as the Becker and
Hinton algorithm. :,

For this to be true, it is important to choose a network architecture
satisfying the requirement that the output units representing disparity
have spatially disjoint receptive fields (see Fig. 4). If this were not the
case, the output units would run the risk of getting entrained on the re-
ceptive field overlap, provided it has the right probability structure. Even
though we did not pursue this issue in the above analysis, it is, in prin-
ciple, possible to implement such architectural constraints by defining a
prior distribution on the weights of the network.

Note that, in principle, maximizing the mutual information between
S1,S, can only determine the network output up to transformations that
Jeave the mutual information invariant. Which solution the network will
settle at depends on the specifics of the implementation and on initial
conditions. For instance, in the Becker and Hinton example the network
sometimes settles so that S; ~ S,, and sometimes so that S; = —S,. This
may not be always desirable. In this context, the ability to choose a prior
affords a natural way to restrict the possible space of solutions.

4 Reformulating for Implementation in a General Setting

Our proposal requires us to minimize the Kullback-Leibler distance (equa-
tion 2.3) with respect to «y. In the previous section, we showed that Becker
and Hinton’s implementation of the mutual information maximization
principle for disparity extraction arose as a special case of our formal-
ism, for a particular prior. Therefore, their simulation already represents
a concrete example of how our scheme can be implemented. In the
present section, we endeavor to expand further by outlining two general
implementation strategies based on variants of stochastic learning:

First observe that by substituting the form of the derived distribution,
Pop(S:v) = [ 6]S—G(D.~)]Pp(D)[dD], into equation 2.3 and integrating
out the S variable we obtain

- ‘ PDD[G(Dv'Y) : 7]
KL(~) = [ Po(D)log PG D) 4.
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This is the form of the Kullback-Liebler distance that we assume in the
implementation strategies we describe below:

1. Assuming a representative sample {D* : . ¢ A} of inputs we can
approximate KL(v) by 3,1 log{Ppp[G(D*,~) : 7]/P,[G(D*,v)]}. We can
now, in principle, perform stochastic learning using backpropa-
gation: pick inputs D* at random and update the weights v using
log{Ppp|[G(D*,~) : 4]/P,|G(D*,~)]} as the error function.

To do this, however, we need expressions for Ppp[G(D*,~) : ¥] and its
derivative with respect to . If the function G(D,~) can be restricted to
being 1-1 (artificially increasing the dimensionality of the output space if
necessary) then we can obtain analytic expressions Ppp|G(D,~) : ] =
Pp(D)/|det(0G/0D)| and {0logPpp[G(D,v) : ~]/0v} = —(0G/0D)"!
(0°G/9D0d~y), where —1 denotes the matrix inverse.

To see this we observe that

Poo(S:7) = [ 488~ G(D,~)|Po(D)D]

Pp(D~)

|det(9G/aD) (D", ~)] (4.2)

where D* = G7!(S, v) and we assume that the function G is 1-1. It follows
directly that

Pp(D)
Ppp[G(D, ) : v] =
oolGI0: 7)) = 4er(3G /D) (D. ]
Substituting back into the K-L measure (equation 4.1) means that we
must minimize with respect to ~ the cost function E[v, D] averaged over
a sample of D (where we have dropped terms that are independent of

v):

(4.3)

oG,
det 56 (D, 4 )

We implement this by stochastic learning. Pick an input D at random,
St Ynew = Yola — C(OE/07) (where ( is the learning rate), and repeat.

This involves calculating OE/0~. After some algebra we find that

Eh’? D] = lOg

+ BE,[G(D,7)] (4.4)

oG [ 9G\ T G

Jk

9 lo
o 8

where —1 denotes the matrix inverse.

The contribution from the second term will simply be B(9E/0G)
(0G/0a).

This analysis has assumed that G is a 1-1 function and requires, as
a necessary condition, that the input and output spaces have the same
dimension. This could often be ensured by adding additional output
units or input units with fixed synaptic strengths.



590 A. L. Yuille, S. M. Smirnakis, and L. Xu

2. Alternatively we can perform additional sampling to estimate
Ppp[G(D,~) : 4] and {0log Ppp|G(D,~) : v]/0~} directly from their in-
tegral representations. [This second approach is similar to Becker and
Hinton (1992), though they are concerned with estimating only the first
and second moments of these distributions.] The Kullback-Leibler mea-
sure corresponds to minimizing KL(v) =%, E (vv,D"), where E(v,D") =
log Ppp[G(D*, ) : 7] + AEp|G(D*, 7))-

Thus calculating the gradient of E(v,D*) requires evaluating the ex-
pression {9Ppp|G(D*,v) : ~]/dv}/Pop[G(D*,) : ~]. To estimate these
quantities we make the approximation:

Ppp|G(D*, 7)1 7] = Y — 1 _,—(1/26)|G(D"Y)-G(D" V)P 4.6)

[\ﬂzw)a]Nz

where {D"} are a representative set of samples from Pp(D) and o is
a constant. This reduces to the previous expression, the first part of
equation 4.2, in the limit as ¢ — 0 and as the size of the sample set tends
to infinity.

A formula for {OPpp|G(D*,~) : ¥]/d~} can be obtained by differenti-
ating (4.6) with respect to . This gives

aPDD[G(D“‘,’Y) : '7]
a
1 1
- EV: [\/EZW)O']N " { 02}

0G;(D*, 0G; (D",
X Z,:{ ((;?ya ) _ (81')711 7)}{Gi(D“f’Y)*Gi(DV")’)}

w o= (1/20)IGD*Y)=G(D* V)P 4.7)

The learning proceeds by picking a sample D* from Pp(D) and then
an additional set of samples {D"} to approximate the integrals 4.6 and
4.7 and hence enable us to calculate the gradient of E(~,D") and update
the weights. Then the process repeats.

Note that this approach has the advantage of circumventing the de-
mand that the dimensions of the input and output spaces be equal, i.e.,
that G be 1-1, and is more generally applicable.

5 Relationship to Hidden Markov Models and Maximum Likelihood
Estimation

It is instructive to contrast our work to alternative learning approaches
and, in particular, to hidden Markov models (HMMs)? (Paul 1990).

3Approaches closely related to HMMs are being used for learning stereo (Geiger,
personal communication).
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HMMs have been very successful in speech processing where models
are trained for each recognizable speech segment. Here, however, we are
considering training only a single HMM.

In an HMM there are hidden states and observables that, in our nota-
tion, correspond to S and D, respectively. An HMM assumes (1) a prior
model P(S | B), where the 3 are parameters to be learned, and (2) an
imaging model P(D | S, ), where the a are parameters to be learned.
Together these generate probabilities P(D | o, 8) = Y5 P(D | S, )P(S | B)
for the observables as functions of the parameters.* Similar expressions
arise in MLE parameter estimation (Ripley 1992).

To learn the priors and likelihood functions we must estimate the
parameters a and 3. This requires a set of data {D*}, indexed by ,
that we assume is a representative sample from the distribution P(D) of
the observables. We then train the system by maximum likelihood es-
timation (MLE). More precisely, we select the parameters a and 3 that
maximize [[, P(D* | «, B) or, equivalently, that maximize 3, log P(D* |
a,3). As the sample size tends to infinity this becomes equivalent
to maximizing Y_p P(D)log[P(D | o, 3) or, equivalently, to maximizing
S p P(D)logP(D | e, B)/P(D)] [since P(D) is independent of c and 3].
Thus, in the infinite sample size limit, we are simply minimizing the
Kullback-Leibler measure (3 P(D)log[P(D)/P(D | a, 3)]) between the
observed distribution P(D) and the distribution P(D | a, 3) derived by
the model.

By contrast, we propose a Kullback-Leibler measure of similarity on
the outputs, or hidden states, S, rather than on the input states. The
MLE justification for this leads to minimizing the Kullback-Leibler dis-
tance Y P(S)log[P(S)/P(S | «v)], where -y represents the parameters of
the network.

HMMs assume a class of prior probabilities, parameterized by 3,
rather than the single model that we have assumed. However, we can
readily generalize our model to deal with this case by replacing Py(S)
by a parameterized family of distributions P,(S | 7). We must now min-
imize the Kullback-Leibler distance between P,(S | 7) and the derived
distribution Ppp(S : ) with respect to 7 and T simultaneously.

6 Conclusion

The goal of this note was to introduce a Bayesian approach to self-
organization using prior assumptions about the signal as an organiz-
ing principle. We argued that it was a natural generalization of the
criterion of maximizing mutual information assuming spatial coherence
(Becker and Hinton 1992). Using our principle it should be possible to

*HMMSs have other important properties that are not directly relevant here. For
example, the functional forms of P(S | 8) and P(D | S, ) are chosen to ensure that
highly efficient algorithms are available to perform these computations (Paul 1990).
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self-organize Bayesian theories of vision, assuming that the priors are
known, the network is capable of representing the appropriate functions,
and the learning algorithm converges. There will also be problems if
the probability distributions of the true signal and the distractor are too
similar.

If the prior is not correct then it may be possible to detect this by
evaluating the goodness of the Kullback-Leibler fit after learning.®> This
suggests a strategy whereby the system increases the complexity of the
priors until the Kullback-Leibler fit is sufficiently good [this is somewhat
similar to an idea proposed by Mumford (1992)]. This is related to the
idea of competitive priors in vision (Clark and Yuille 1990). One way to
implement this would be for the prior probability itself to have a set of
adjustable parameters that would enable it to adapt to different classes
of scenes. :

Our approach differs from standard MLE by acting on the distribu-
tions of the output variables rather than the inputs. Unlike MLE our
approach will directly yield an algorithm for computing the outputs. It
is still unclear, however, for what class of problems our approach is ap-
plicable. For example, it seems unlikely to work if the dimensions of the
outputs is a lot lower than that of the inputs.

We proposed two variants of stochastic learning that are suitable for
implementing our theory. They relate, in particular, to Becker and Hin-
ton’s approach. As a further illustration of our approach we derived
elsewhere (Yuille et al. 1993) the filter that our criterion would give for fil-
tering out additive gaussian noise (possibly the only analytically tractable
case). This turned out to be the square root of the Wiener filter in Fourier
space.
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