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A new modification of the subspace pattern recognition method, called the dual subspace pattern recognition
(DSPR) method, is proposed, and neural network models combining both constrained Hebbian and anti-Hebbian
learning rules are developed for implementing the DSPR method. An experimental comparison is made by using
our model and a three-layer forward net with backpropagation learning. The results illustrate that our model can
outperform the backpropagation model in suitable applications.

1. Introduction

Principal Component Analysis (PCA) is a powerful
data compression and data analysis tool in multivariate
statistics literature. It has also been widely studied and
used in signal processing and pattern recognition litera-
ture. Oja'! showed in 1982 that a simple linear unit
with a constrained Hebbian learning rule can extract
the first principal component from a set of stationary
input data. Since the recent renaissance of neural
network research, there appears to be an increasing
interest in investigating the connection between neural
networks and PCA. Several new developments have
been made. For example: (1) Neural network models
have been proposed for extracting several principal
components>~> instead of the first principal component
in the earlier work. (2) It has been shown that by
minimizing a quadratic error energy, a linear, three-
layer feedforward net performs PCA.S (3) Neural nets
or PCA have been further extended to perform the
so-called constrained PCA which can avoid the unde-
sirable redundant components and noisy components.’
A good review about PCA nets was recently given by
Baldi and Hornik,® and some convergence analysis
was done by Hornik and Kuan.®

PCA also played a key role in the earlier version of
subspace pattern recognition method (SPRM)!® in
which each pattern class is represented by a subspace
spanned by a group of basis vectors—the orthogonal
components obtained by PCA. SPRM was later de-
veloped further by a number of authors. One important
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development was that nonorthogonal vector bases are
used as the base vectors of subspaces in a method
called the Learning Subspace Method (LSM)!! and its
modified version ALSM.!2 Both PCA and SPRM were
brought into the connections with neural network
literature by Oja and Kohonen.!-!3:14

In both PCA and SPRM, the principal components
(i.e., directions on which the data have large
variances) are regarded as important while those com-
ponents which have small variances, for convenience
we call them minor components, are often regarded as
unimportant or as noise. However, in some cases the
minor components are of the same importance as
principal components. For example, they have been
used in signal processing literature, especially in the
Pisarenko method of spectral estimation.!> Recently,
we have shown that the minor components can play an
important role in a classical statistical problem: curve
or hypersurface fitting.!® The problem is often encoun-
tered in many engineering problems as well as cogni-
tive perception problems (e.g., computer vision). By
using a neural unit with a constrained anti-Hebbian
learning, this fitting problem can be solved with
significantly improved performance compared to that
obtained by the usual least square method. In this
paper, we will further show that pattern classes could
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be well represented not only by its subspace with its
basis vectors being principal components, but also by
its complementary subspace with its basis vectors
being minor components. It is better to represent
pattern classes by both types of subspaces so that much
computing time and storage could be saved. We call
such a representation dual subspace and its pattern
recognition as Dual Subspace Pattern Recognition
(DSPR). The nice thing is that all the techniques
(including LSM) of the conventional subspace method
can be adapted with minor changes to DSPR. Furth-
ermore, we propose two neural-net models for im-
plementing DSPR. Finally we demonstrate through
computer simulations that for some applications one
can obtain better results by using our model than by
using the popular backpropagation approach.

2. Dual Subspace Pattern Representation and
Classification Rule

In pattern recognition, the primary goal is to build an
explicit or implicit model for representing the pattern
classes such that classification error for new data is
minimized, or equivalently, the generalization ability
of the classifier is maximized. In the subspace
methods of pattern recognition,!?~'2-17 the primary
model for class representation is a subspace in the
n-dimensional Euclidean vector space R" with each
pattern object represented as a vector of n real-valued
elements. The classification criterion for a pattern x is
its orthogonal distance from the class subspace, i.e., x
is classified into a class which gives the shortest such
distance.

Any set of p linearly independent vectors
U, ...,Uu, in R" (with p < n) spans a subspace,
say L, which is the set

)4
X= Y au,
i=1

L=L(u1,...,u,,)={x

for some scalars a;, . . ., ap] . 1)

Practically, the common way for storing L in a
computer is to store its basis vectors uy, . . ., u,.
The distance of x from L is defined by

dx, L) = |[%[1*/[Ix|I*, (2a)
X=(l—-P)x, x=%X+%X, £=Px, ¥1X

P=AMAA)T'A, A=[u...u] (2b)

i.e., X is the projection of x on L, and X is the
corresponding orthogonal residual component, and P is
the project matrix of L.

Specifically, when, u,, . . ., u, are orthonormal,
since P = zf;, u;u;, we have

X=x—-X=x— (x'u;)u; . (2¢)

M

i=1

In this case, the computation could be simplified
considerably. For this reason, when u,, . . ., u, are
nonorthonormal, they are usually normalized by the
Gram—Schmidt orthonormalization method.

Assume that there are K pattern classes o, . . .,
wg, each of which is represented by its own class
subspace and basis vectors

Ly=L@P, ... ,uf), k=1,...,K

k

or equivalently by the corresponding projection mat-
rices Py, ..., P;. From Eq. (2a), the classification
rule for a new pattern x is then

if d(x, L;) <d(x, L;), for all j# i,
then classify x to w; . (3a)

Furthermore, from Egs. (2b) and (2c), the rule could
be simplified into the following form:

if 8;(x) > ;(x), for all j # i,

then classify x to o, . (3b)
x'Px, when u{?, . . ., u(pf;_) are
5.(x) nonorthonormal;
4 P xu? when u{, . . ., u(’{j) are
orthonormal.
(30

So we see that a subspace classifier is quite simple
and the key problem for training such a classifier is
how to get the basis vectors u{”, . . ., u’ for each
class ;.

The above describes the conventional form of sub-
space pattern recognition method. In the following, we
further extend this form into a more general form
which is based on what we call the dual subspace
representations. In this new form, on one hand, some
classes are represented by the subspaces which are the
same as those described above, i.e., a class is repre-



sented by the basis vectors which span the same
subspace as that spanned by the sample pattern vectors
of the class. For clarity, we call such a subspace the
own subspace of the class, or in short the own
subspace. On the other hand, some classes are repre-
sented by the orthogonal complementary subspaces of
their own subspace of the corresponding class (i.e., a
class is represented by the basis vectors which are
orthogonal to the sample pattern vectors of the class).
We call such a subspace the complementary subspace
of the class, or in short the complementary subspace.

Let us observe an example. We consider a simple

hyperplane:

a1X; +azx, + ¢ - + a,x, = 0. (4)
Suppose that there is a pattern class and all the
samples of the class are located on this hyperplane;
then with the conventional form of subspace repre-
sentation, the dimension of its own subspace is n — 1,

e., it needs at least n — 1 basis vectors to span the
subspace for representing the class. This is obviously
not an economical way for the class representation.
From hyperplane fitting point of view, only one vector
a=[a,a,,...,a,)" is enough to represent the
hyperplane, and thus the pattern class located on this
hyperplane. This a, being orthogonal to all the sam-
ples of the class, spans a subspace a = {x|x = ca,
where « is a real scalar} which is just the orthogonal
complementary subspace of its own subspace. From
this example, we could see that it would be better to
solve the basis vectors of the complementary subspace
than to solve the basis vectors of the own subspace for
representing some pattern classes, since it needs less
storage and computations for pattern classification [see
Eq. (30)].

In fact, for any pattern class w;, we always have
two choices for representing the class. One is to use
the p; basis vectors u{’, . . ., ug? of the own sub-
space L;; the other is to use the g; = n — p; basis
vectors v{¥, . . ., v of the complementary subspace
L;, where, L; L L;, L;+ L;=R". If we denote
P; = BiB:B)" "B}, B; = [v{" . . . v¥], we have

£=Px=(I-P)x, x=Px=(1-P)x, XLX
dx, L) =1—dx, L) = [x|*/||x]| . (52

Thus, it is not difficult to see that the following
discriminant rule gives the equivalent effects as rule
Eq. (3b) gives
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if 8,(x) < §;(x), for all j # i,

then classify x t0 w; - (5b)
x'Px, when v{?, . v(f_)pj are
500 nonorthonormal,
.| x = . o
J SV (x'v)? when v, .. ., vf,’lpj are
orthonormal.
(50)
where v{, . .., v{?  are basis vectors of the com-

n=p;
plementary subspaoe L; of class w;.

It follows from Eq. (3c) and Eq. (5c) that the own
subspace L; is a better choice for representing a class
w; if p; = n/2; otherwise, the complementary sub-
space L; is a better choice. The advantages of using
the complementary subspace for representation become
more obvious when p; goes near n, since it follows
from Eqgs. (3c) and (5c) that considerable storage and
computations could be saved for pattern classification.
To take the advantages of both choices, we divide the
K pattern classes into two groups G, = {w;|with the
correspondent p; < n/2} and G, = {w;|with the cor-
respondent p; > n/2}. Then, for all w; € G;, the
basis vectors u{”, . u(’) of the own subspace are
sought for representmg the class, and for all w; € G,
the basis vectors v{”,..., v, for the com-
plementary subspace are sought for representing the
class. We call this kind of hybrid subspace representa-
tion as the dual subspace representation of pattern
space. Under the dual subspace representation, the
discriminant rule is given by

o, if $i(x) > [x[> = & (x) ;

X is classified into .
wy, otherwise.

©
6;(x) = max 6;(x), Vw, € G,
and

8 = min 8;x), Vw; € G, .
The result is derived from the fact that

§;(x) = x'P;x = x'(I — P)x

= ||x|> — x'P;x = ||x|* — 8;(x) .
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3. Algorithms for Implementing Dual
Subspace Pattern Recognition

As extensively discussed by Oja,'” a number of
algorithms have been developed for implementing the
subspace methods described by Egs. (3). Basically,
they can be grouped into the following two types:
(1) The basis vectors of each class are obtained
from the principal component analysis (PCA) (or
equivalently K—L transform) on the training set of the
class, i.e., the basis vectors of class w; are given by

the first p principal eigenvectors of the class correla- -

tion matrix R; = E [xx'|x € w;] with the p predeter-
mined heuristically or by some criterion, e.g.,

n n
Y= 2 Ai/EA,’SK,
i=1

i=p+1
Ay == A, =0 are eigenvalues of 2,.

where 0 < k < 1 is a threshold. The representative of
the algorithm of this type is CLAFIC proposed by
Watanabe. '©

(2) The Kohonen’s learning subspace method
(LSM)!'! and variants.!? By this method, the initial
estimations of the own subspaces L; and its dimension
p; of each class w;, i =1, ..., K are first roughly
determined by some means (e.g., by using CLAFIC);
then, for each training sample x with a known label o
(i.e., from class w,), find a class w, with

8,(x) = max §,(x), Vw; € {w, ..
(72)

Then, the subspace L, and L, are rotated into
L,+ AL, and L, + AL, by

AL, = a,xx'L, ,
(7b)
AL, = —a,xx'L, ,

where a, and a, are both positive and a, < (x'x)" V.
They are determined to guarantee that

dix, L, + AL,) < d(x, L,)
and
dx,L,+ AL,) > dx, L,) .

Basically speaking, all the existing algorithms of
both types could be adapted to the dual subspace

ot — {w,} .

representation with slight modifications. For algor-
ithms of the first type, the modification is made by
choosing the first p principal eigenvectors of the class
correlation matrix R; when p < n/2 and the last n — p
eigenvectors when p > n/2. For the algorithms of the
second type, the modifications are to replace Eqgs. (7a)
and (7b) by Eqs. (8a) and (8b) given as follows:

8,(x) = max{8{", |x|> — 8{(x)}
8{(x) = max §;(x), Vwi € G, and w; # w,(8a)

8{’(x) = min §,(x), Vwi € G, and w; # o,

and

_ |aoxx'L,,  when p, <n/2
AL, = {—aoxx’Lo, when p, = n/2 ,
(8b)
AL, = {—a,xx’L,, when p, < n/2

a,xx'L,, when p, = n/2 ,

where p, and p, are the dimensions of L, and L,,
respectively.

In the following, we do not intend to discuss the
detailed steps of the above modifications. Instead, we
will propose two neural network models for im-
plementing the dual subspace pattern recognition.

4. Neural Nets for Dual Subspace Pattern
Recognition

Oja and Kohonen suggested!? that the subspace pattern
representation and the learning algorithm are pertinent
to neural networks too. Moreover, Oja recently
proposed'* a subspace network for extracting the basis
vectors of the own subspace of one class, and then
used K such networks as K modules for classification.
In this paper, we further propose two neural network
models (including some versions) for dual subspace
pattern recognition (DSPR), through adaptively ex-
tracting the orthogonal basis vectors to represent a
subspace. One is based on a combination of Oja’s
Stochastic Gradient Ascent (SGA) learning algorithm*
and its anti-Hebbian learning counterpart (here, it is
called ASGA). The other is based on a combination of
Rubner’s asymmetric lateral inhibition algorithm3
(here, simply denoted by ALIA) and its anti-Hebbian
learning counterpart (denoted by AHALIA).

4.1. Model 1: A Combination of SGA and ASGA

As shown in Fig. 1(a), each of the K subnets is
expected to learn the representation of a class. The



outputs of K subnets are sent to a winner-takes-all
(WTA) subnet consisting of K units with binary
outputs z;, ..., zx. The function of WTA is de-
scribed by
- f1, i 8p(x) = max{8i(x),i=1,...,K},
2= [0, otherwise.
(%a)

The function could be realized in several ways, e.g.,
by lateral inhibition between the K units!®!® and by
competitive activation.!®-2° Here, we do not intend to
discuss it in detail. Instead, we regard WTA subnet in
Fig. 1(a) as a functional box which operates in the
way described by Eq. (9a).

Among the other K subnets in Fig. 1(a), there are
two types. One is called O-subnet as shown in
Fig. 1(b), which is used for learning the representa-
tions of the own subspace of one class. The other is
called C-subnet as shown in Fig. 1(c), which is for
learning the representation of the complementary sub-
space of one class.

As shown in Fig. 1(b), an O-subnet consists of two
layers. Its first layer has p, =< n/2 units. Each unit has
three kinds of input signals. One is n-dimensional data
which is either x©@ =x=[¢§, ..., &) directly
from outside for the first unit or xVV =

[€V7D, ..., &7DY from the (j — 1)th unit for jth
unit. The second is the internal feedback signal —y(")
from the output of itself which results in Eq. (9b)
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through the weights m® = [u®, u®, . .., u®7"
) = xG—D _ (k) (k)
x) = xV 2y;"m;
= (60, EPY — DO, LY
(9b)

0 = = (xU-
yO =xm® or yP =xUVymP . (9c)

The third is a supervise signal y;(w,) which controls
the learning in this subnet and will be discussed later.
Moreover, each unit has two output signals. One is
—y{® for the internal feedback, the other is the U-type
s1gnal y(") for sending the output to the second layer
which is just a unit for summing up the outputs from
the pr =< n/2 first layer units.

The structure of a C-subnet, as shown in Fig. 1(c),
is similar to that of an O-subnet except that there is an
extra unit which sums up the normal ||x||? into the unit
of the second layer, and the output end for sending
signals to the second layer is an inverted U-type. As
will be indicated later, the main difference of the two
types lie in their learning mechanisms.

The whole process of implementing DSPR by the
model given in Figs. 1(a)—(c) consists of the follow-
ing three phases.

4.1.1. The pre-structuring phases

Somewhat similar to backpropagation model in which
the structure of the net as well as the number of

Z Zp Zx0 Zxo+1 ZK0+2 ZK
WTA
subnet

5 () 8.4x) L) ko, (0] Byg.fX) 8y )
O-SUBNET C-SUBNET
subnet subnet subnet - | subnet subnet subnet
1 2 ; KO + 1 k0‘2 K
X X () X Xpla) XX, Jo) X X o+ (@) X Xgos 2Ax) X XK(m)

Fig. 1(a). The architecture of neural net models for DSPR based on adaptively extracting orthogonal basis vectors. It is a
three-layer net. The first two layers consist of K subnets. The outputs of K subnets are sent to the third layer which is a

winner-takes all (WTA) subnet.



174 Lei Xu et al.

2,@)

—

unit

!

!
&

(%)
]

»b—p--F lo—
¥ ;i
-9

vd vP

P VR VIR

A wjt)q o W:)'l

) y(jk) \M

Fig. 1(b). An O-subnet in Model 1. Its first layer consists of p; =< n/2 units. The details of a unit are shown on the right side.
The n-D input signal from the left side is passed to the right side after being subtracted by the internal feedback signal from the
output end of the unit and through the connection weights of the units. The signal from the top is a supervise signal which
controls the learning. The unit has two output ends. One linear end y; is for sending the feedback signal, the other U-type
nonlinear end y} for sending the output to the second layer, which is just a unit for summing the outputs from the p, < n/2 first

layer units.
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Fig. 1(c). A C-subnet in Model 1. Its first layer consists of n — Pr < n/2 units. A unit is quite similar to that in Fig. 1(b) except

that here the output end for sending signals to the second layer is an inverted U-type. Furthermore, the second layer unit has an
additional input |x|]%.



hidden units are externally predetermined, the structure
of the model given in Fig. 1(a) also needs to be
predesigned. One needs to know the dimension p; (or
the estimation of its upper bound) of the subspace
spanned by each class. An O-subnet with p; units on
its first layer is allocated for learning the representa-
tions of the class if p; (or the estimation of its upper
bound) is less than or equal to n/2; or, a C-subnet
with n — p, units on its first layer is allocated for
learning the representations of the class if p; (or the
estimation of its upper bound) is larger than n/2.

4.1.2. The learning phase

Each training sample is randomly picked from a
training set of K classes. The class label wy of a
sample x is represented to the net in the form of a
supervise signal denoted as follows:

x(@y) = [x1(0x), X2(0x), - - - xx(@x)] (9d)

where ®w, may be any of the K + 1 labels w,,
®y,...,wx and ¢, and ¢ is a null label which
denotes that the class label of a sample x is unknown.
Each yi(wy) is defined by

1, when wy, =k ;

Xi(wy) = { (9¢)

0, when wy # kor wy = ¢ .

The net adapts to the input sample x by modifying
the weights u{¥’s. Specifically, the weights in each
O-subnet (i.e., when 0 =<k =<ko) are modified
according to the following learning equations [please
refer to Fig. 1(b) as well]:

Am® = @) @)y VD = yPm®)  (10a)

— j—1 k
YO =xm® o y® =@V ymp,

Am® = m® (@ + 1) — mP @) (10b)

where 0 < a; < 1 is the learning rate which can be
appropriately arranged according to the classical results
of Robbins and Monro.?!

Equation (10a) is the same as Oja’s SGA* when
¥ = x'm{® is used in Eq. (10b), since xU=D =
XU — 20 m® = x — 2, yPm® and by
putting this into Eq. (10a) one just gets SGA learning
rule.* As shown in Oja’s recent paper,® SGA is
different from the Generalized Hebbian Algorithm
(GHA)** in that here the term x — 2 >, _; y©Om® is
used instead of using x — ,,_;y¥m® in GHA.
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SGA can adaptively perform the Gram—Schmidt ortho-
normalization (GSO) and has a better behavior for
extracting the less dominant eigenvectors.

When y® = xU"P)m{® is used in Eq. (10b),
Eq. (10a) is not directly SGA but tends to be the same
since (x/~)'m® = x'm® when m®, r=1,...,j
become orthogonal to each other. It follows from
Fig. 1(b) that the latter alternative for y{*) needs less
hard-wirings in the neural net than the former. In fact,
considering xV~D as the input of the jth unit,
Eq. (10a) is just Oja’s constrained Hebbian learning
rule for one unit case.! That is, SGA is one kind of
generalization of Oja’s one-unit rule. As proved by
Oja,” for t — oo, m,‘-"’, j=1,2,...,p: will con-
verge to the eigenvectors of the class correlation
matrix R; = E[xx'|x € w;] corresponding to the p;
largest eigenvalues.

The learning equation for the weights in each
C-subnet (i.e., when ko < k =< K) is given by:

—y _ yom®
Amj(k) = —az,\/k(wx)y,(-k) (X(’_l) - Ilj—m@)jl?) (1)
J

where xU™D is still given by Eq. (9b) and 0 < a, < 1
is the learning rate. The equation is obtained from
Eq. (10a) by two points of changes. The first point is
that the learning in Eq. (10a) is changed into the
opposite direction (i.e., add a minus sign in front of
a;). Thus, it becomes a constrained anti-Hebbian
learning rule. As shown in our recent paper,!® it will
converge in the direction of the minor (i.e., the one
with the smallest eigenvalue) component of input data
xY~D_ However, its magnitude will not converge. To
amend this, the second point of change is needed: an
explicit normalization term |[m{®||* should be put into
Eq. (11a) to guarantee that the magnitude of m{® is
unit. As shown in the paper,”> m{® will converge to
the minor component of input data xY~1. As a result,
m$® will converge to the minor component of input
data x. m$ will converge to the minor component of
input data X = x — y ®m{®, which is the novel part
of x and is orthogonal to x. That is, m$ will converge
to the jth minor component of input data x, and thus,
for t—» o, m®, j=1, 2,...,n— p; will con-
verge to the eigenvectors of class correlation matrix
R; = E[xx'|x € w;] corresponding to the n — p;
smallest eigenvalues. The strict proof could be made
in a way similar to that used by Oja* or Sanger.?*
Equation (11a) can be regarded as an anti-Hebbian
version of SGA given by Eq. (10a); thus we call it
ASGA. Although Eq. (11a) is more complicated than
Eq. (10a) and is not local within one connection
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weight efficient, the implementation of Eq. (11a) is
still local within one unit. In Eq. (11a), an explicit
normalization term |[m{®|* is used as a divisor to the
term y®m{®. Another version of ASGA with less
explicit normalization was recently proposed by Oja,*
given by:

AmP = —ax () [yPxI™D — yPmP)
+ mP( — [m®[?)] (11b)

where x is given by the following Eq. (11c) instead
of Eq. (9b):

j) — j—1 k k
xO) = xU~D — yyom®

=LEP, . EPY =PI Y

(11¢)
with Y > Ag,/An, g = n — py, and
Ay > A > - > A, > 0 are the eigenvalues of mat-

rix R; = E[xx'/x € w,].

In Eq. (11b), the term m{(1 — [ m{®||*) takes the
role of an implicit normalization of m{®. Similar to
Eq. (11a), the implementation of Eq. (11b) is still
local within one unit although not within one connec-
tion weight coefficient. When Ag, < 1, it can also be
proved that* for t— o, m®, j=1, 2,...,
qx = n — p; will converge to the eigenvectors of class
correlation matrix R; = E[xx’|x € w;] corresponding
to the g = n — p, smallest eigenvalues.

In summary, after training the net for a long enough
period, each O-subnet has let the own subspace repre-
sentation of a pattern class be learned onto its orthogo-
nalized weight vectors m®, j =1, ..., p,.

4.1.3. The classification phase

When a sample with unknown class label is presented
to the net, no learning will take place since wy, = ¢
and x;(¢) =0, j=1,..., K. For each subnet, the
outputs y* = ' 'mP = x'm® (since m®,
r=1,...,j, are orthogonal) of the first layer are
summed up to give the output of the second-layer unit
8i(x) = jp:ﬁ] )’J('k)z;_ , for 0 =k =ko;
Ix[I? = 2= y &, for ko <k =K.
(12a)

As discussed before, after the net has stabilized
during the learning period, m{®’s are orthogonal
eigenvectors of the class correlation matrix R,. As a

result, Eq. (12a) becomes

O(x) =

{ 1 [(m®)x]2, for 0 < k < ko;
%I = 2528 tm®)y 12, for ko < k < K.
(12b)

The equations are just those given by Egs. (3c) and
(5¢).

Finally, the WTA subnet outputs a z; = 1, which
means that x is classified into class ;. From
Eq. (12a) it is not difficult to see that the function of
Eq. (9a) is equivalent to the function of Eq. (6).

So we see from the above discussion that the model
given in Fig. 1(a) supplies a neural network way for
implementation of dual subspace pattern recognition,
and the model is just the counterpart of those conven-
tional approaches like CLAFIC.!°

4.2. Model 2: A combination of ALIA and
AHALIA

The architecture of the model is still the same as that
given in Fig. 1, but now Figs. 1(b) and 1(c) are
replaced by Figs. 2(a) and 2(b), respectively. The
main difference between Fig. 1(b) and Fig. 2(a) [as
well as Fig. 1(c) and Fig. 2(b)] lies in the fact that for
the jth unit in Figs. 2(a) and 2(b) the feedback signal
—y{* does not internally and directly go back its input
ends as that in Figs. 1(b) and 1(c). Instead, the signal
is asymmetrically sent to laterally inhibit the latter
units through an additional set of lateral weights ¥{¥’s
which has its own learning rule to be described in the
sequel.

In a way similar to that for the first model discus-
sed before, we briefly describe here the whole process
of pattern recognition by the present model. First, in
the pre-structuring phase, O-subnets and C-subnets are
allocated to each pattern class in the same way as that
for the first model. Second, in the learning phase, the
learning for an O-subnet is made by the following two
learning equations :

Am® = a1 x(@)yP(x — yPm®)  (13a)

k) —
AviP = —arxu(wyn)yPy (13b)
Jj—1
*) — gtmk) _ k), (k
Y= xmi = 3 vy,
=

AvP = v + 1) — v®() (13c)
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where 0 < a;, a, <1 are the learning rates. Equa-
tion (13a) is just Oja’s one-unit rule and Eq. (13b) is
the classical anti-Hebbian learning rule. This combina-
tion is proposed by Rubner.® Since its key feature is
the use of asymmetric lateral inhibition learning (i.e.,
anti-Hebbian learning) for decorrelating the outputs of
different units. In the sequel, we call the combination
as Asymmetric Lateral Inhibition Learning Algorithm
(or simply denoted by ALIA). It has been proved>®
that after learning reaches its equilibrium, all the
lateral weights »{’s will vanish, and m®, j=1,
2, ..., pix will converge to the eigenvectors of the
class correlation matrix R; = E[xx’|x € w;] corres-
ponding to the p, largest eigenvalues.

For C-subnets, the learning equation Eq. (13a)
should be replaced by

y(_k)m(_k)
Am® = —axi(wx)y® (x B W) (14)
J

while Eq. (13b) still remains the same. Equation (14)
is just the anti-Hebbian learning version of Oja’s one
unit rule. As indicated earlier, mj(.") will converge to
the minor component of input data x. Without
Eq. (13b), all the m{’s will converge to the same
minor component (i.e., the one corresponding to the
smallest eigenvalue). However, it can be proven in a
way similar to that used by Rubner and Hornik ez
al.>® that the decorrelation force produced by
Eq. (13b) will finally make all the lateral weights
v{?’s vanish and m®, j=1, 2,...,n~— p; con-
verge to the eigenvectors of class correlations matrix
R; = E[xx’|x € w;] corresponding to the n — p;
smallest eigenvalues. The combination of Eq. (14) and
Eq. (13b) is just the anti-Hebbian learning counterpart
of ALIA; thus we briefly denote it by AHALIA.

So again we see that after training the net for a
long enough period, each O-subnet has let the own
subspace representation of a pattern class be learned
onto its orthogonalized weight vectors m{,
j=1,...,pr. Similarly, each C-subnet lets the
complementary subspace representation of a pattern
class be learned onto its orthogonalized weight vectors
m®, j=1,...,n—p.

Finally, from the results of the above learning
phase, and noticing that all the lateral weights v{’s
vanish such that y® = x'm® — 7"} p®y®x'm®,
we can see that the classification phase for model 2 is
the same as that for model 1.

4.3. Some variants

Some possible variants are given in Figs. 3(a)—(d).

The main difference between these variants and the
previously discussed models lies in the following three
points :

(a) Instead of both O-subnets and C-subnets, only
one type of subnet, e.g., O-subnet, is contained
in the variant models.

(b) Each O-subnet, as shown in Fig. 3(b) & (c),
consists of n units instead of only p; units.

(c) For the unit of the second layer in each subnet,
its weight is not fixed at constant 1. They are
obtained by an adaptive learning, which will be
explained later.

This kind of variants has two possible cases,
obtained by using the model of Fig. 3(b) or 3(c) as
subnets in Fig. 3(a) respectively. For simplicity, we
choose only one case, i.e., the model of Fig. 3(c) is
used as subnets in Fig. 3(a), for describing the differ-
ences of the variants from the originals given
Secs. 4.1 and 4.2.

One key feature is that the pre-structuring phase is
obviously simplified. Instead of estimating the dimen-
sion of the subspace spanned by each class, we simply
assign n units for each class and leave the dimension
selection problem to the learning phase. The cost of
such simplification is that more units are used in each
subnet such that the advantage of the dual subspace
representation is lost. In fact, the variants given in
Figs. 3(a)—(c) are the extensions of the ordinary sub-
space model given in Oja’s paper.'*

In the learning phase, the adaption made on the

weight's u}’s and v{}’s are still given by Egs. (13a)

Z] 22 ZK
WTA
subnet

& (x) 8.4x) 8y (x)
O-SUBNET
subnet subnet subnet
! 2 K
X Xj(@) X Xp(w) X X (@)

Fig. 3(a). A variant of the model given in Fig. 1(a). Its
difference from Fig. 1(a) lies in that it consists of only K
O-subnets without any C-subnets.
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and (13b). Besides, there is an additional learning
occurring on the weights w® of the second-layer unit
in each subnet. These weights are modified by the
following learning equation:

Aw® = a;(y® — w) (15a)
with
2 2
wh = [wh, L w®), y® = [yR Ry

where 0 < a3 <1 is a learning rate. This equation is
just that used in Kohonen’s self-organizing map.>* As
t—>o0o, wh tends to Ey® =[E(H®), ...,
E(yf,")z)]‘. Since m{®, j = 1, . . ., n will converge to
the eigenvectors of the class correlation matrix
R, = E[xx'], we know that Ey,(.")2 tends to
(mj(."))’kaJ(.") which, in turn, tends to the eigenvalue
A{® = 0 corresponding to the jth eigenvector of R;.
As a result, we see from Fig. 3(c) that after training
for a long enough time, the output of each subnet is
given by

n n
Sk(x) = 21 why®?: % ALy®* - (15b)
= =1

When the real dimension of subspace spanned by
the class k is py < n, the n — p, eigenvalues of R,
should be quite small'?: thus >, A®y®” could be
regarded as an approximation of >\, /\j(.")y](.")z, where
A > 0 are p; largest eigenvalues of R,, and yj(.")2 are
outputs of the units with weight vectors being corres-
ponding eigenvectors. Furthermore, 7%, A{Py®)?2
could be taken as an approximation of that given by
Eq. (3¢), especially when these A{*’s are near 1. So,
we see that Kohonen learning based on the weights
w®”s performs the task of automatically selecting the
basis vectors of each subspace.

5. Some Computer Simulations

5.1. The results on a two-class problem

Our simulations were made on a data set of two
classes in R® space. To visualize the distributions of
the two classes, we projected these populations onto
the x—y plane, x—z plane and y—z plane, respectively,
and showed them in Figs. 4(a)—(c). The data set
consists of 400 sample points, 200 points were ran-
domly chosen as the training set and the other 200
points as the test set. We can observe from
Figs. 4(a)—(c) that for all the three projections, the

The Samples of The Two Classes Projected on x-y Plane
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Fig. 4. Data samples of two classes, projected on each of
the coordinate planes, where symbols ““.”’ and “‘O’’ denote
respectively a training-sample point and a testing-sample
point of class one, symbols ‘“+’’ and ‘‘*** denote respec-
tively a training-sample point and a testing-sample point of

.class two.



samples of class one located on a line-segment bank
and the samples of class two located on an ellipse
bank. Furthermore, the two banks overlap each other
and have the same mean values located at the origin of
each coordinate plane. In fact, in 3D space, the
samples of class two are located on an elliptic ring
which centers at the origin of the 3D coordinate
system and its longest elliptic axis is along the direc-
tion (—1, 1, 0), the plane of the two elliptic axes
intersects the x—y plane with an acute angle (around
30 degrees); while the samples of class one are located
on a straight bar which penetrates the origin of the 3D
coordinate system and is perpendicular to the elliptic
plane.
~ Since the two classes have the same mean values,
they are difficult to classify by the perceptron or
parametric Bayes classifier with Gaussian assumption
on populations. Here, we use the neural net model
proposed in Sec. 4.1 and Fig. 1 to solve the problem.
From Figs. 4(a)—(c) or the eigenvalues of the
covariance matrix of two classes, it is known that the
dimensions of the own subspaces of class one and
class two are respectively p; = 1 and p, = 2. Thus by
dual subspace representation, we can use a vector m;
to represent class one through representing its own
subspace and a vector m, (since g, =3 — p, = 1) to
represent class two through representing its com-
plementary subspace. We initialized m;, m, by letting
the three components of each basis vector be random
numbers uniformly distributed on the [0, 1] interval,
and then trained them by learning rule Eqs. (10) and
(11) with learning rates a; = a, = 0.01. The experi-
ments turned out that the learning converges very fast
regardless of the initial values. An example of the
learning process are shown in Figs. 5(a), (b). The
confusion matrices given in Table I and Table II show
the classification performances after 400 learning steps
and 900 learning steps, respectively.

5.2. Some comparisons with backpropagation
approach

A backpropagation (BP) approach with a three-layer
forward net has also been tested on the above data set.
Its input layer has three nodes for the three compo-
nents of the 3D input vector, its output layer has two
nodes with each one for representing a pattern class,
and its hidden layer has n, nodes. We have tried
several cases of n;, = 2, 10, 20, 40, respectively.

For each unit, its output is given by

r+1) — 1

— (r+1) — .M R
9j 1+ e Yj = Z wijo;” + 6;
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Fig. 5. The learning process of the basis vectors in dual
subspace representation for (a) basis vector m; = [a{", a{,
aP]’ of the own subspace for representing class one.
(b) basis vector m; = [a?, a?, a?]* of the complementary
subspace for representing class two.

Table I. The confusion matrix after 400 learning steps.

Training Set Testing Set

class 1 class 2 class 1 class 2
class 1 93% 7% 93.5% 6.5%
class 2 0% 100% 0% 100%

Table II. The confusion matrix after 900 learning steps.

Training Set Testing Set

class 1 class 2 class 1 class 2
class 1 93.5% 6.5% 93.50/0 6.5%
class 2 0% 100% 0% 100%
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where r = 0, 1, 2 denote the input, hidden and output
layer, respectively. The learning is a pure gradient
descent without any other modification; the learning
rate is fixed at 0.1 for each descent update on every
unit. The learning is of the on-line (or adaptive) type,
i.e., at each learning step, one input sample x is
randomly selected from the training set with equal
chance to be from either of the two classes, then the
current (i.e., not averaged with the earlier steps) error

2
E= [x) — 0P
j=1

is minimized in the gradient descent through BP.
The classification results by BP are given in the
following Table II and Table IV.

In the following, we give some observations about
the performances on the data set given in Sec. 5.1 by
backpropagation (BP) and our neural model of
Fig. 1(a) (for convenience, we denote it by NDSM,
i.e., neural dual subspace method).

(1) It follows from Tables I, II, III and IV that the
classification rates of NDSM are obviously better than
those of BP, e.g., on the testing set, NDSM could
easily obtain the average recognition rate
0.5 X 93.5% + 0.5 X 100% = 96.75%, while the
best case (i.e., n, = 20) of BP could only reach the

average recognition rate 0.5 X 86% + 0.5 X 98%
92%.

(2) The computational costs of BP are significantly
greater than those of NDSM. On the storage aspect,
the main storage requirement of BP is for weight
vectors, the outputs and the errors of the hidden
units. It approximately needs the storage for
Sgp = 3 X ny + 20, + 2 X ny, real numbers, specifi-
cally, Sgp = 140 for the best performance case
np = 20; while NDSM needs only the storages for two
base vectors, i.e., Snpsm = 2 X 3 = 6 real number,
thus we have Sgp/Snpsm = 23.3. As regards comput-
ing time, in the best performance case (in Table IV at
n, = 20) BP spent nrgp = 9 130 018 flops on training
and ntgp = 248 123 flops on testing, while in
Table II with a better classification rate, NDSM spent
only nrnpsm = 54579 flops on training and
ntnpsm = 37644 on  testing. Thus we have
nrep/nrapsm = 167.28  and  ntgp/ntnpsm = 6.59,
where the number of flops are counted by MATH-
WORK Inc.’s PRO-MATLAB software, by which one
addition (subtraction) or one multiplication (division)
involving a real number is defined as one flop.

(3) NDSM is quite robust to the selection of those
predefined parameters such as the learning rate, a, and
the initial values of bases vectors. For example, let
vary from 0.01 to 0.2 and for different initializations,
the classification rates obtained in Table I and Table II

Table III. The confusion matrices after 5000 learning steps by BP.

n, =2 n, = 10 ny, =20 n, = 40
(4] Ca Cy Ca Cy Ca Cy Ca
Training
class 1 100% 0% 83.5% 16.5% 64% 36% 29% 1%
class 2 100% 0% 6.5% 93.5% 15% 85% 5.5% 94.5%
Testing
class 1 100% 0% 82% 18% 61% 39% 26% 74%
class 2 100% 0% 10% 90% 12.5% 87.5% 5.5% 94.5%
Table IV. The confusion matrices after 11 000 learning steps by BP.
n, =2 n, = 10 n, =20 n, = 40
(] Ca (o] [} [ [} (4] Ca
Training
class 1 0% 100% 89.5% 10.5% 86% 14% 27.5% 72.5%
class 2 0% 100% 5% 95% 2% 98% 3.5% 96.5%
Testing
class 1 0% 100% 89% 11% 86% 14% 24% 76%
class 2 0% 100% 6% 94% 2% 98% 4.5% 95.5%




remain unchanged. The training time also remains
nearly the same because of fast convergence in NDSM
learning. However, BP is sensitive to the initialization
of weights, especially to the pre-selected learning rate
a. For instance, when a learning rate of & = 0.05 was
used, even after 11 000 learning steps, in our simula-
tions of all the cases that n, = 2, 10, 20, 40 BP
always reached unacceptable average recognition rates
(around 50% —-60%). Usually, to choose an appropri-
ate learning rate and the initial weights, BP needs a lot
of extra computational costs for many ‘‘try-and-see’’
trials.

(4) From Table III and Table IV, we see that the
best performance is achieved when the number of
hidden units is around 10—20. For inappropriate num-
bers (e.g., n, = 2, ny = 40), we get very bad result
even after training the net for a long time. So, similar
to NDSM which needs to determine the subspace
dimension of each class, BP needs to determine the
dimension of the hidden layer. The difference is that
for NDSM we at least have a simple formula given in
Sec. 3.2 to tackle the task, while for the BP the job is
again very complicated and expensive.

(5) Finally, it should be pointed out that BP is a
general approach which is widely applicable to many
kinds of practical problems, while the subspace
methods (including the dual subspace methods prop-
osed in this paper) are limited to some special kinds of
practical problems as indicated by Oja.!*"'7 So, NDSM
could only outperform BP in those problems. We will
give some new results for extending the applicable
range of subspace methods elsewhere.

6. Conclusions

For data or pattern representation, it is conventionally
regarded that principal components are important while
minor components are unimportant or are noises.
However, there exist cases in which the minor compo-
nents are of the same importance as principal compo-
nents. In this paper, we have observed that the minor
components have the same representation abilities as
the principal components. Based on this observation,
we proposed a new subspace representation form—-the
dual subspace representation, which uses both princip-
al components and minor components for expressing
pattern classes. With this new representation, we could
usually save much computing time and storage. The
nice thing is that all the techniques (including LSM) of
the conventional subspace method could be adapted to
this new form with small changes. Furthermore, we
proposed two neural-net models for implementing dual
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subspace pattern recognition in an adaptive way by
using some combinations of extended Hebbian and/or
anti-Hebbian learning rules. The results of computer
simulations given in Sec. 5 have demonstrated that our
method may provide a new tool for adaptively solving
the problems of subspace pattern recognition.
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