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We build up the mathematical connection between the “Expectation-
Maximization” (EM) algorithm and gradient-based approaches for max-
imum likelihood learning of finite gaussian mixtures. We show that
the EM step in parameter space is obtained from the gradient via a pro-
jection matrix P, and we provide an explicit expression for the matrix.
We then analyze the convergence of EM in terms of special properties
of P and provide new results analyzing the effect that P has on the
likelihood surface. Based on these mathematical results, we present
a comparative discussion of the advantages and disadvantages of EM
and other algorithms for the learning of gaussian mixture models.

1 Introduction

The “Expectation-Maximization” (EM) algorithm is a general technique
for maximum likelihood (ML) or maximum a posteriori (MAP) estima-
tion. The recent emphasis in the neural network literature on probabilistic
models has led to increased interest in EM as a possible alternative to
gradient-based methods for optimization. EM has been used for vari-
ations on the traditional theme of gaussian mixture modeling (Ghahra-
mani and Jordan 1994; Nowlan 1991; Xu and Jordan 1993a,b; Tresp et al.
1994; Xu et al. 1994) and has also been used for novel chain-structured
and tree-structured architectures (Bengio and Frasconi 1995; Jordan and
Jacobs 1994). The empirical results reported in these papers suggest that
EM has considerable promise as an optimization method for such archi-
tectures. Moreover, new theoretical results have been obtained that link
EM to other topics in learning theory (Amari 1994; Jordan and Xu 1995;
Neal and Hinton 1993; Xu and Jordan 1993c; Yuille et al. 1994).

Despite these developments, there are grounds for caution about the
promise of the EM algorithm. One reason for caution comes from con-
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sideration of theoretical convergence rates, which show that EM is a
first-order algorithm.! More precisely, there are two key results avail-
able in the statistical literature on the convergence of EM. First, it has
been established that under mild conditions EM is guaranteed to con-
verge toward a local maximum of the log likelihood I (Boyles 1983;
Dempster et al. 1977; Redner and Walker 1984; Wu 1983). (Indeed the
convergence is monotonic: (%)) > [(@®), where ©® is the value
of the parameter vector © at iteration k.) Second, considering EM as
a mapplng O* ) = M(OW) with fixed point ©* = M(O*), we have

0%+ — 0 ~ [0M(07)/007](6W — ©7) when ©¥F1. is near ©*, and thus
aM(e7)
(k+1) _ o* < k) _ o=
ot - e < | 2O o _ )
with
"5

almost surely. That is, EM is a first-order algorithm.

The first-order convergence of EM has been cited in the statistical lit-
erature as a major drawback. Redner and Walker (1984), in a widely cited
article, argued that superlinear (quasi-Newton, method of scoring) and
second-order (Newton) methods should generally be preferred to EM.
They reported empirical results demonstrating the slow convergence of
EM on a gaussian mixture model problem for which the mixture com-
ponents were not well separated. These results did not include tests of
competing algorithms, however. Moreover, even though the convergence
toward the “optimal” parameter values was slow in these experiments,
the convergence in likelihood was rapid. Indeed, Redner and Walker
acknowledge that their results show that ... “even when the component
populations in a mixture are poorly separated, the EM algorithm can be
expected to produce in a very small number of iterations parameter val-
ues such that the mixture density determined by them reflects the sample
data very well.” In the context of the current literature on learning, in
which the predictive aspect of data modeling is emphasized at the ex-
pense of the traditional Fisherian statistician’s concern over the “true”
values of parameters, such rapid convergence in likelihood is a major
desideratum of a learning algorithm and undercuts the critique of EM as
a “slow” algorithm.

"For an iterative algorithm that converges to a solution ©*, if there is a real number
~ and a constant integer ko, such that for all k > ky, we have

|06+ - < gl &7

with g being a positive constant independent of k, then we say that the algorithm
has a convergence rate of order ~,. Particularly, an algorithm has first-order or linear
convergence if 4, = 1, superlinear convergence if 1 < «, < 2, and second-order or
quadratic convergence if v, = 2.
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In the current paper, we provide a comparative analysis of EM and
other optimization methods. We emphasize the comparison between
EM and other first-order methods (gradient ascent, conjugate gradient
methods), because these have tended to be the methods of choice in the
neural network literature. However, we also compare EM to superlinear
and second-order methods. We argue that EM has a number of advan-
tages, including its naturalness at handling the probabilistic constraints
of mixture problems and its guarantees of convergence. We also provide
new results suggesting that under appropriate conditions EM may in
fact approximate a superlinear method; this would explain some of the
promising empirical results that have been obtained (Jordan and Jacobs
1994), and would further temper the critique of EM offered by Redner
and Walker. The analysis in the current paper focuses on unsupervised
learning; for related results in the supervised learning domain see Jordan
and Xu (1995).

The remainder of the paper is organized as follows. We first briefly
review the EM algorithm for gaussian mixtures. The second section es-
tablishes a connection between EM and the gradient of the log likelihood.
We then present a comparative discussion of the advantages and dis-
advantages of various optimization algorithms in the gaussian mixture
setting. We then present empirical results suggesting that EM regular-
izes the condition number of the effective Hessian. The fourth section
presents a theoretical analysis of this empirical finding. The final section
presents our conclusions.

2 The EM Algorithm for Gaussian Mixtures

We study the following probabilistic model:
K
P(x l @) = ZO(]‘P(X I m/‘, 2]) N (21)
j=1

and

_ 1 =1/2(x=m) T2 (x—m;)
P(x l mj,Ej) = We 1 j
where ¢; > 0 and Zj’f_.l a; = 1, d is the dimension of x. The parameter
vector © consists of the mixing proportions «;, the mean vectors m;, and
the covariance matrices ;.
Given K and given N independent, identically distributed samples
{x®}Y, we obtain the following log likelihood:?

N N
1(©) =log [[ P(x'"]©) = 3" log P(x"|O) (2.2)
t=1 t=1

2Although we focus on maximum likelihood (ML) estimation in this paper, it is
straightforward to apply our results to maximum a posteriori (MAP) estimation by
multiplying the likelihood by a prior.
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which can be optimized via the following iterative algorithm (see, e.g,
Dempster et al. 1977):

N 1, (k)
OJ(k-H) Et:lhj (t)

J N
k
(k+1) L ()
m; = N ()
f:lhj (t)
N O 0 — m®a® — ;™7
2](k-H) _ t=1"% ()[ '] ][ ] ] (23)

()
where the posterior probabilities h}k) are defined as follows:

(’\)P(x(t) 1 m (k))
3 1a(L)P(x(’) 50

®) () —
hi(t) =

3 Connection between EM and Gradient Ascent

In the following theorem we establish a relationship between the gradient
of the log likelihood and the step in parameter space taken by the EM
algorithm. In particular we show that the EM step can be obtained by
premultiplying the gradient by a positive definite matrix. We provide an
explicit expression for the matrix.

Theorem 1. At each iteration of the EM algorithm equation 2.3, we have

Am _A® = p aaflu » 3.1)
](k+1)_ml(k) ___ p}(jl;ji 0?711] y 3.2)
o—
vec[Z}k“)]—vec[ZfM] =P gi) aveacl[zj] — 3
=
where
ph - —;\—,{diag[agk),.. o] = AW (A®)TY (3.4)
(k)
P,(,’,‘}) _ 7%,}77(}} | (3.5)
Py = ——g-——z“ @ (3.6)

’ SO
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where A denotes the vector of mixing proportions [a, ..., ak|T, j indexes the
mixture components (j = 1,...,K), k denotes the iteration number, “vec[B]”

denotes the vector obtained by stacking the column vectors of the matrix B, and
“®@" denotes the Kronecker product. Moreover, given the constraints Z,K=1 a =1

and a](k) >0, Pi’f) is a positive definite matrix and the matrices P,(,’,‘/.) and Pg/_) are
positive definite with probability one for N sufficiently large.

The proof of this theorem can be found in the Appendix.

Using the notation © = [m{,... mg, vec[Z]T,. .., vec[Zk]T, A7, and
P(©) = diag[P,,,....Py,, Pz, ... , Py, P4], we can combine the three up-
dates in Theorem 1 into a single equation:

ol

ekt — gk 4 p(@(k)) .

50 (3.7)

0=6

Under the conditions of Theorem 1, P(©%®)) is a positive definite matrix
with probability one. Recalling that for a positive definite matrix B, we
have (01/00)"B(01/0©) > 0, we have the following corollary:

Corollary 1. For each iteration of the EM algorithm given by equation 2.3,

the search direction ©*+!) — ©® has a positive projection on the gradient
of .

That is, the EM algorithm can be viewed as a variable metric gradient
ascent algorithm for which the projection matrix P(©®)) changes at each
iteration as a function of the current parameter value ©%).

Our results extend earlier results due to Baum and Sell (1968), who
studied recursive equations of the following form:

k) T(x(k)),
T(xW) = [Tx®), ... T(x®)g,
(k) *)
T(x®); . ?/{)/aXi ®
K xMo]/ox;

where xfk) >0, YK, xfk) =1, where | is a polynomial in xl(k) having posi-
tive coefficients. They showed that the search direction of this recursive
formula, i.e., T(x®) — x®, has a positive projection on the gradient of |
with respect to the x® (see also Levinson et al. 1983). It can be shown
that Baum and Sell’s recursive formula implies the EM update formula
for A in a gaussian mixture. Thus, the first statement in Theorem 1 is a
special case of Baum and Sell’s earlier work. However, Baum and Sell’s
theorem is an existence theorem and does not provide an explicit expres-
sion for the matrix P4 that transforms the gradient direction into the EM
direction. Our theorem provides such an explicit form for P4. More-
over, we generalize Baum and Sell’s results to handle the updates for
m; and Y, and we provide explicit expressions for the positive definite
transformation matrices Pm/. and Pgi as well.
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It is also worthwhile to compare the EM algorithm to other gradient-
based optimization methods. Newton's method is obtained by premulti-
plying the gradient by the inverse of the Hessian of the log likelihood:

ol
o0k

Newton’s method is the method of choice when it can be applied, but
the algorithm is often difficult to use in practice. In particular, the algo-
rithm can diverge when the Hessian becomes nearly singular; moreover,
the computational costs of computing the inverse Hessian at each step
can be considerable. An alternative is to approx1mate the inverse by a
recursively updated matrix B*+) = B® + nAB®. Such a modification is
called a quasi-Newton method. Conventional quasi-Newton methods are
unconstrained optimization methods, however, and must be modified to
be used in the mixture setting (where there are probabilistic constraints
on the parameters). In addition, quasi-Newton methods generally re-
quire that a one-dimensional search be performed at each iteration to
guarantee convergence. The EM algorithm can be viewed as a special
form of quasi-Newton method in which the projection matrix P(©%)) in
equation 3.7 plays the role of B%. As we discuss in the remainder of the
paper, this particular matrix has a number of favorable properties that
make EM particularly attractive for optimization in the mixture setting.

o+l = o 4 H(e®)~! (3.8)

4 Constrained Optimization and General Convergence

An important property of the matrix P is that the EM step in parame-
ter space automatically satisfies the probabilistic constraints of the mix-
ture model in equation 2.1. The domain of © contains two regions that
embody the probabilistic constraints: D; = {O : Z]K:] a](k) = 1} and
= {0 : a}k) > 0, % is positive definite}. For the EM algorithm the
update for the mixing proportions «; can be rewritten as follows:

(k+1 N ( 'p P(x® |m(k) E(k )
Z T
t=1 f]a( )P( f)|mi -/21())

It is obvious that the iteration stays within D;. Similarly, the update for
¥; can be rewritten as:

k k k)
(1) _ 1 i ( )P(x(' |m( ) E( )
/ L0 () i € o Plat ! ,25">>

k k
[x(t) _ m]( )Hx(t‘) _ m]( )]T

which stays within D, for N sufficiently large.

Whereas EM automatically satisfies the probabilistic constraints of a
mixture model, other optimization techniques generally require modifica-
tion to satisfy the constraints. One approach is to modify each iterative
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step to keep the parameters within the constrained domain. A num-
ber of such techniques have been developed, including feasible direction
methods, active sets, gradient projection, reduced-gradient, and linearly
constrained quasi-Newton. These constrained methods all incur extra
computational costs to check and maintain the constraints and, more-
over, the theoretical convergence rates for such constrained algorithms
need not be the same as that for the corresponding unconstrained algo-
rithms. A second approach is to transform the constrained optimization
problem into an unconstrained problem before using the unconstrained
method. This can be accomplished via penalty and barrier functions, La-
grangian terms, or reparameterization. Once again, the extra algorithmic
machinery renders simple comparisons based on unconstrained conver-
gence rates problematic. Moreover, it is not easy to meet the constraints
on the covariance matrices in the mixture using such techniques.

A second appealing property of P(O%) is that each iteration of EM
is guaranteed to increase the likelihood (i.e., [(©%+D) > [(©®)). This
monotonic convergence of the likelihood is achieved without step-size pa-
rameters or line searches. Other gradient-based optimization techniques,
including gradient descent, quasi-Newton, and Newton’s method, do
not provide such a simple theoretical guarantee, even assuming that
the constrained problem has been transformed into an unconstrained
one. For gradient ascent, the step size 7 must be chosen to ensure that
[0%+D — o®=D|/|[(©@® — @*=D)|| < |II + nH(O* V)| < 1. This requires
a one-dimensional line search or an optimization of 7 at each iteration,
which requires extra computation, which can slow down the conver-
gence. An alternative is to fix 7 to a very small value, which generally
makes ||I+7H(©*D)]| close to one and results in slow convergence. For
Newton’s method, the iterative process is usually required to be near a
solution, otherwise the Hessian may be indefinite and the iteration may
not converge. Levenberg-Marquardt methods handle the indefinite Hes-
sian matrix problem; however, a one-dimensional optimization or other
form of search is required for a suitable scalar to be added to the diagonal
elements of Hessian. Fisher scoring methods can also handle the indef-
inite Hessian matrix problem, but for nonquadratic nonlinear optimiza-
tion Fisher scoring requires a stepsize n that obeys ||I+7BH(©*D)|| < 1,
where B is the Fisher information matrix. Thus, problems similar to
those of gradient ascent arise here as well. Finally, for the quasi-Newton
methods or conjugate gradient methods, a one-dimensional line search is
required at each iteration. In summary, all of these gradient-based meth-
ods incur extra computational costs at each iteration, rendering simple
comparisons based on local convergence rates unreliable.

For large-scale problems, algorithms that change the parameters im-
mediately after each data point (“on-line algorithms”) are often signifi-
cantly faster in practice than batch algorithms. The popularity of gradient
descent algorithms for neural networks is in part to the ease of obtain-
ing on-line variants of gradient descent. It is worth noting that on-line
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variants of the EM algorithm can be derived (Neal and Hinton 1993; Tit-
terington 1984), and this is a further factor that weighs in favor of EM as
compared to conjugate gradient and Newton methods.

5 Convergence Rate Comparisons

In this section, we provide a comparative theoretical discussion of the
local convergence rates of constrained gradient ascent and EM.

For gradient ascent a local convergence result can be obtained by
Taylor expanding the log likelihood around the“maximum likelihood es-
timate ©*. For sufficiently large k we have

104D — o] < |IT + nH(O")|[|6% - o | CRY
and

11+ nH(O")|| < Am[l +nH(©)] = r (5.2)
where H is the Hessian of I, 5 is the step size, and r = max{|1 —

nAm[—=H(©")]|, |1 — nA,[-H(©")]|}, where Ay[A] and A,[A] denote the
largest and smallest eigenvalues of A, respectively.

Smaller values of r correspond to faster convergence rates. To guar-
antee convergence, we require r < 1 or 0 < 7 < 2/A\y[-H(©")]. The
minimum possible value of r is obtained when 7 = 1/\y[H(6*)] with

"min = 1- /\m[H(@*)]/’\M[H(@*)]
= 1-x7'[H(©")]

where x[H] = Ay[H]/\,[H] is the condition number of H. Larger values of
the condition number correspond to slower convergence. When k[H] =1
we have 7, = 0, which corresponds to a superlinear rate of convergence.
Indeed, Newton’s method can be viewed as a method for obtaining a
more desirable condition number—the inverse Hessian H~! balances the
Hessian H such that the resulting condition number is one. Effectively,
Newton can be regarded as gradient ascent on a new function with an
effective Hessian that is the identity matrix: Hey = H"'H = [. In practice,
however, x[H] is usually quite large. The larger x[H] is, the more difficult
it is to compute H™! accurately. Hence it is difficult to balance the Hes-
sian as desired. In addition, as we mentioned in the previous section,
the Hessian varies from point to point in the parameter space, and at
each iteration we need to recompute the inverse Hessian. Quasi-Newton
methods approximate H(©®)~" by a positive matrix B®) that is easy to
compute.

The discussion thus far has treated unconstrained optimization. To
compare gradient ascent with the EM algorithm on the constrained mix-
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ture estimation problem, we consider a gradient projection method:

ol
ok+1) _ k) .
O] =0 + "Hka@(k) (5.3)

where II; is the projection matrix that projects the gradient 9 /00® into
Dy. This gradient projection iteration will remain in D; as long as the
initial parameter vector is in D;. To keep the iteration within D,, we
choose an initial ©*) € D, and keep 7 sufficiently small at each iteration.

Suppose that E = [ey....,¢,] is a set of independent unit basis vectors
that spans the space D;. In this basis, ©® and I1;(91/90™) become O =
ETO® and 01/00" = ET(81/90%)), respectively, with [|0% —0|| = ||0® —
©~]|. In this representation the projective gradient algorithm equation 5.3
becomes simple gradient ascent: O = @ 4 n(01/00F)). Moreover,
equation 5.1 becomes [[©**) — ©*|| < |[ET[I + nH(6")][||©0® — ©*||. As a
result, the convergence rate is bounded by

IET[I + nH(©")]|
< AM[ET[ + pH(0)][I + yH(07)]TE]
= AMETI + 29H(©%) + 2H2(0%)|E]
Since H(©*) is negative definite, we obtain
re <1+ Ay [=H] — 20| ~H] (5.4)

In this equation H. = ETH(O)E is the Hessian of [ restricted to D;.
We see from this derivation that the convergence speed depends on
k[H] = Am[—Hc]/Au[—H.]. When «[H.] = 1, we have

te

V1+m23(=Ho) = 2ph[-H] = 1 — M| —H]

which in principle can be made to equal zero if 7 is selected appropriately.
In this case, a superlinear rate is obtained. Generally, however, x[H] # 1,
with smaller values of x[H,] corresponding to faster convergence.

We now turn to an analysis of the EM algorithm. As we have seen EM
keeps the parameter vector within D; automatically. Thus, in the new
basis the connection between EM and gradient ascent (cf. equation 3.7)
becomes

ol

(k+1) — g®) 4 ETp(gehy 2L
o ol + ETP(O1) =

and we have
1©%*V — ©*|| < |ET[I + PH(©")]|||0® — 7|
with

re = |ET[I + PH(©")]|| < \/Au[ET[I + PH(©*)][I + PH(O*)|TE]
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The latter equation can be further manipulated to yield

re < /14 Ny[ETPHE] — 2),,[~ETPHE] (.5)
Thus we see that the convergence speed of EM depends on

k|[ETPHE] = Ay[ETPHE)/\,[ET PHE]
When

k[ETPHE] =1,  My[E'PHE] =1
we have

\/1 + X [ETPHE] — 2\,,[~ETPHE] = (1 — Ay[~E"PHE]) = 0

In this case, a superlinear rate is obtained. We discuss the possibility of
obtaining superlinear convergence with EM in more detail below.

These results show that the convergence of gradient ascent and EM
both depend on the shape of the log likelihood as measured by the con-
dition number. When x[H] is near one, the configuration is quite regular,
and the update direction points directly to the solution yielding fast con-
vergence. When «[H] is very large, the | surface has an elongated shape,
and the search along the update direction is a zigzag path, making con-
vergence very slow. The key idea of Newton and quasi-Newton meth-
ods is to reshape the surface. The nearer it is to a ball shape (Newton’s
method achieves this shape in the ideal case), the better the convergence.
Quasi-Newton methods aim to achieve an effective Hessian whose con-
dition number is as close as possible to one. Interestingly, the results that
we now present suggest that the projection matrix P for the EM algorithm
also serves to effectively reshape the likelihood yielding an effective con-
dition number that tends to one. We first present empirical results that
support this suggestion and then present a theoretical analysis.

We sampled 1000 points from a simple finite mixture model given by

p(x) = a1p1(x) + agpa(x)

where
1 1 (x — m;)?
i) = 2mo? P {-5 o} }
The parameter values were as follows: o = 0.7170, a, = 0.2830, m; = -2,

my = 2, 02 = 1, 0% = 1. We ran both the EM algorithm and gradient ascent
on the data. The initialization for each experiment is set randomly, but is
the same for both the EM algorithm and the gradient algorithm. At each
step of the simulation, we calculated the condition number of the Hessian
(k[H(©W))), the condition number determining the rate of convergence
of the gradient algorithm (x[ETH(©®)E]), and the condition number de-
termining the rate of convergence of EM (x[ETP(©™W)H(©®)E]). We also
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Figure la: Experimental results for the estimation of the parameters of a two-
component gaussian mixture. (a) The condition numbers as a function of the
iteration number.

calculated the largest eigenvalues of the matrices H(O®)), ETH(OW)E,
and ETP(0®)H(O®)E. The results are shown in Figure 1. As can be
seen in Figure 1a, the condition numbers change rapidly in the vicinity
of the 25th iteration. This is because the corresponding Hessian ma-
trix is indefinite before the iteration enters the neighborhood of a solu-
tion. Afterward, the Hessians quickly become definite and the condition
numbers converge.> As shown in Figure 1b, the condition numbers con-
verge toward the values x[H(O®)] = 47.5, k[ETH(OW)E] = 33.5, and
K[ETP(OW)H(O®)E] = 3.6. That is, the matrix P has greatly reduced the
condition number, by factors of 93 and 13.2. This significantly improves
the shape of I and speeds up the convergence.

3Interestingly, the EM algorithm converges soon afterward as well, showing that for
this problem EM spends little time in the region of parameter space in which a local
analysis is valid. \
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Figure 1b: (b) A zoomed version of (a) after discarding the first 25 iterations.
The terminology “original, constrained, and EM-equivalent Hessians” refers to
the matrices H, ETHE, and ETPHE, respectively.

We ran a second experiment in which the means of the component
gaussians were m; = —1 and m, = 1. The results are similar to those
shown in Figure 1. Since the distance between two distributions is re-
duced into half, the shape of I becomes more irregular (Fig. 2). The con-
dition number x[H(©")] increases to 352, x[ETH(O®)E] increases to 216,
and £[ETP(©@W)H(6W)E] increases to 61. We see once again a significant
improvement in the case of EM, by factors of 3.5 and 5.8.

Figure 3 shows.that the matrix P has also reduced the largest eigenval-
ues of the Hessian from between 2000 to 3000 to around 1. This demon-
strates clearly the stable convergence that is obtained via EM, without a
line search or the need for external selection of a learning stepsize.

In the remainder of the paper we provide some theoretical analyses
that attempt to shed some light on these empirical results. To illustrate
the issues involved, consider a degenerate mixture problem in which
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Figure 2: Experimental results for the estimation of the parameters of a two-
component gaussian mixture (cf. Fig. 1). The separation of the gaussians is half
the separation in Figure 1.

the mixture has a single component. (In this case a; = 1.) Let us fur-
thermore assume that the covariance matrix is fixed (i.e., only the mean
vector m is to be estimated). The Hessian with respect to the mean
m is H = —NE-! and the EM projection matrix P is £/N. For gradi-
ent ascent, we have x[ETHE] = x[2~!], which is larger than one when-
ever ¥ # cI. EM, on the other hand, achieves a condition number of
one exactly (x[ETPHE|] = x[PH] = «[I] = 1 and Au[E"PHE] = 1). Thus,
EM and Newton’s method are the same for this simple quadratic prob-
lem. For general nonquadratic optimization problems, Newton retains
the quadratic assumption, yielding fast convergence but possible diver-
gence. EM is a more conservative algorithm that retains the convergence
guarantee but also maintains quasi-Newton behavior. We now analyze
this behavior in more detail. We consider the special case of estimating
the means in a gaussian mixture when the gaussians are well separated.
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Figure 2: Continued.

Theorem 2. Consider the EM algorith;n in equation 2.3, where the parameters
aj and 3; are assumed to be known. Assume that the K gaussian distributions are

well separated, such that for sufficiently large k the posterior probabilities h](k) (t)
are approximately zero or one. For such k, the condition number associated with
EM is approximately one, which is smaller than the condition number associated
with gradient ascent. That is g

K[ETP(OMH(OW)E] ~ 1 (5.6)
KETP(O@™)H(OM)E] < k[ETH(OW)E] (.7)

Furthermore, we have also

METP(OW)H(OW)E] ~ 1 (5.8)
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Figure 3: The largest eigenvalues of the matrices H, ETHE, and ETPHE plotted
as a function of the number of iterations. The plot in (a) is for the experiment
in Figure 1; (b) is for the experiment reported in Figure 2.

Proof. The Hessian is

Hyn Hi -+ Hix
Hyy Hxn -+ Hx

H = : : ~ : (59)
Hxi Hyxo -+ Hxk
where
_ 0?1
Hi = om;om]
) N
= () 6kO)
t=1

N
+ (BT A —m) (o —m)T| ()T 610

t=1



144 Lei Xu and Michael Jordan

10 E T T 1 T |l T T T T
. the original Hessian
the constrained Hessian E
m 1
=2 t
)
g10°F 3
k) -
(]
S
3
£
310" L _
g10
[]
<
the EM-equivalent Hessian 1
100:__ ............................ ._....‘._4......_._._‘._._.._.._......._._._..__:
10" L

1 ) 1 1 1 1 1 L
0 50 100 150 200 250 300 350 400 450 500
the leaming steps

(b)

Figure 3: Continued. The plot in (a) is for the experiment in Figure 1; (b) is for
the experiment reported in Figure 2.

with ;(x")) = [§; - hfk)(t)]h](k)(t). The projection matrix P is
P = diaglpy, .. P

where

P =5/ ; hO(t)
Given that h](k) (1)1 —h}k) (t)] is negligible for sufficiently large k [since h](k) (t)
are approximately zero or one], the second term in equation 5.10 can be
neglected, yielding Hy ~ — (")~ £, h*)(t) and H = diag[Hy, ..., Hx].
This implies that PH ~ —I and E'PHE ~ -I, thus x[ETPHE] ~ 1 and
AM[ETPHE] ~ 1, whereas usually <[ETHE] > 1. m

This theorem, although restrictive in its assumptions, gives some in-
dication as to why the projection matrix in the EM algorithm appears to




|
i
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condition the Hessian, yielding improved convergence. In fact, we con-
jecture that equations 5.7 and 5.8 can be extended to apply more widely,
in particular to the case of the full EM update in which the mixing pro-
portions and covariances are estimated, and also, within limits, to cases
in which the means are not well separated. To obtain an initial indication
as to possible conditions that can be usefully imposed on the separation
of the mixture components, we have studied the case in which the second
term in equation 5.10 is neglected only for H; and is retained for the Hj;
components, where j # i. Consider, for example, the case of a univariate
mixture having two mixture components. For fixed mixing proportions
and fixed covariances, the Hessian matrix (equation 5.9) becomes

hy h
H= [ 1 12}
ha ha

and the projection matrix (equation 5.10) becomes
_h1 0
— 11
b= [ 0 ‘“hi-zl]
where
hi = -—1—§Njh<">(t) i=1,2
n - O'.Z(k) ot i L] - &
and
1 CIPRICIPNNG T .,
hij = WZU — B O = m) T (x —my), i#j=1.2
i j t=1

If H is negative definite (i.e., hi1hy — hizhy1 < 0), then we can show that
the conclusions of equation 5.7 remain true, even for gaussians that are

not necessarily well separated. The proof is achieved via the following
lemma:

Lemma 1. Consider the positive definite matrix

o o1 "
021 O -

For the diagonal matrix B = diagoy', 03], we have x[BX] < x[Z].

Proof. The eigenvalues of T are the roots of (o11 —A)(022 =) —o21012 =0,
which gives

A on +on+

M cunvYRT 7
2

A o1 t+0xn—v

m —_—__2__’_‘——

T \/(au + 02)? — 4(onon — 021012)
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and
on+on+y
o1+ 0 —7

The condition number «[¥] can be written as K[Z] = (1+5)/(1—5) = f(s),
where s is defined as follows: )

k[Z] =

_ 4(011022 — 021012)
s=,|1- 3
(o1 + 02)

Furthermore, the eigenvalues of BY. are the roots of A=N1-X-
(0‘21012)/(0’110‘22) = 0, which giVGS m=1+ \/(O'sz'lz)/(dndzz) and )\, =
1- \/(0‘21012)/(0110’22). Thus, defining r = \/(0:210'12)/(0110'22), we have
KBZ| = (1+7)/(1—7) = f(r).

We now examine the quotient s/r:

s_1| 4(1 - r2)
roor (011 + 022)%/(01102)
Given that (011 + 05)?/(01102) > 4, we have s/r>1/ry1—(1-r) =1,

That is, s > 7. Since f(x) = (1 + x)/(1 - x) is a monotonically increasing
function for x > 1, we have f(s) > f(r). Therefore, x[BY) < x[3]. o

We think that it should be possible to generalize this lemma beyond

the univariate, two-component case, thereby weakening the conditions
on separability in Theorem 2 in a more general setting.

6 Conclusions

In this paper we have provided a comparative analysis of algorithms for
the learning of gaussian mixtures. We have focused on the EM algorithm
and have forged a link between EM and gradient methods via the pro-
jection matrix P. We have also analyzed the convergence of EM in terms
of properties of the matrix P and the effect that P has on the likelihood
surface.

EM has a number of properties that make it a particularly attrac-
tive algorithm for mixture models. It enjoys automatic satisfaction of
probabilistic constraints, monotonic convergence without the need to set
a learning rate, and low computational overhead. Although EM has
the reputation of being a slow algorithm, we feel that in the mixture
setting the slowness of EM has been overstated. Although EM can in-
deed converge slowly for problems in which the mixture components are
not well separated, the Hessian is poorly conditioned for such problems
and thus other gradient-based algorithms (including Newton’s method)
are also likely to perform poorly. Moreover, if one’s concern is conver-
gence in likelihood, then EM generally performs well even for these ill-
conditioned problems. Indeed the algorithm provides a certain amount

,1 b
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of safety in such cases, despite the poor conditioning. It is also impor-
tant to emphasize that the case of poorly separated mixture components
can be viewed as a problem in model selection (too many mixture com-
ponents are being included in the model), and should be handled by
regularization techniques.

The fact that EM is a first-order algorithm certainly implies that EM
is no panacea, but does not imply that EM has no advantages over gra-
dient ascent or superlinear methods. First, it is important to appreciate
that convergence rate results are generally obtained for unconstrained
optimization, and are not necessarily indicative of performance on con-
strained optimization problems. Also, as we have demonstrated, there
are conditions under which the condition number of the effective Hessian
of the EM algorithm tends toward one, showing that EM can approximate
a superlinear method. Finally, in cases of a poorly conditioned Hessian,
superlinear convergence is not necessarily a virtue. In such cases many
optimization schemes, including EM, essentially revert to gradient ascent.

We feel that EM will continue to play an important role in the devel-
opment of learning systems that emphasize the predictive aspect of data
modeling. EM has indeed played a critical role in the development of hid-
den Markov models (HMMSs), an important example of predictive data
modeling.* EM generally converges rapidly in this setting. Similarly,
in the case of hierarchical mixtures of experts the empirical results on
convergence in likelihood have been quite promising (Jordan and Jacobs

11994; Waterhouse and Robinson 1994). Finally, EM can play an impor-
tant conceptual role as an organizing principle in the design of learning
algorithms. Its role in this case is to focus attention on the “missing
variables” in the problem. This clarifies the structure of the algorithm
and invites comparisons with statistical physics, where missing variables
often provide a powerful analytic tool (Yuille ef al. 1994).

Appendix: Proof of Theorem 1

1. We begin by considering the EM update for the mixing proportions
a;. From equations 2.1 and 2.2, we have

ol N (P, 00y, P(x®, 68T

0A A=Ak 1 lel afk)P(x(t)a 9,'(k))

t

“In most applications of HMMs, the “parameter estimation” process is employed
solely to yield models with high likelihood; the parameters are not generally endowed
with a particular meaning.
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Premultiplying by Pﬁ), we obtain

(k) al

P
A OA| 4 a0

{[o{7P(x®, 0. o P(x), 49T Ea(k)P )61}

_.
il
_

Il
Z| =
M=

K
S0P, oY)

i=1

IO (1), BB =AY

I
Z| =
M=

._
I
—_

The update formula for A in equation 2.3 can be rewritten as
A®D = g®) 4 Z[h“ U 3 Ly ()

Combining the last two equations establishes the update rule for A (equa-

tion 2.4). Furthermore, for an arbitrary vector u, we have Nu”P%

uT diagla®, ..., allu — (uT A®)2 By Jensen’s inequality we have

I
. M x
=
-
\-.:\_/

uT diag[el®, ... oW

Thus, TP(k)u >0 and P( is positive definite given the constraints
i (k)—landa >Ofora11]

j=
2. We now con51der the EM update for the means m;. It follows from
equations 2.1 and 2.2 that

ol

(k (k ~17,.(t (k)
o = Zh ) (= [x ) —m"]

g (K)
mp=m;

Premultiplying by P,,, yields

_ Z ®

) ]
m,:m’m t 1 h] =

m, am]

— k+1) _ (k)
= M m;
From equation 2.3, we have YN, h;k) (t) > 0; moreover, E;k) is positive
definite with probability one assuming that N is large enough such that
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the matrix is of full rank. Thus, it follows from equation 3.5 that P,,,,
positive definite with probability one.

3. Finally, we prove the third part of the theorem. It follows from
equations 2.1 and 2.2 that

ol 1 -
35| =2 S I (50~ 0~ a0 = T

2:2;“’ t=1

With this in mind, we rewrite the EM update formula for Z}k)

N
S0 = 80 S RO - m]r® - mP]T - 5
— 1

_ oy j (k)
(D 5 ARY Tl (R
where
1N« s —1 (lk k k
VZ, _ -5 ;h]( )(t)(zj( )) 1{2’( ) [x(t) _ m}( )Hx(t m' )]T}(E]( ))
ol
BEj _E;k)
That is, we have
(k)
Z(k+1) Z(k szj(k) ol E}k)
=11y (t) 0% £=g®
]
Utilizing the identity vec[ABC] = (CT ® A)vec|B|, we obtain
2 ol
vec[S¥ ] = vec[gW] + — = (50 @ oW
[ ] ] [ ] ] Z?_’__lhj(k)(t)( J] ] )82 El(k)
Thus P(k) ﬁ(z’k ® Z}(k)). Moreover, for an arbitrary matrix U,
= 1 t ;
we have v e

VeC[U]T(E}k) ® Z](k )VeC[U] = tr(E}(k)uz(k)uT)
= u((Pu) (=P w)
el el 2

where equality holds only when L ®U =0 for all U. Equality is impossi-
ble, however, since Z( ) is positive def1n1te with probability one when N
is sufficiently large. Thus it follows from equation 3.6 and N, (k)( t) >0
that P(Zk/) is positive definite with probability one. w
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