
Pattern Recognition 40 (2007) 2129–2153
www.elsevier.com/locate/pr

A unified perspective and new results on RHT computing, mixture based
learning, and multi-learner based problem solving�

Lei Xu∗

Department of Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong

Abstract

On one hand, multiple object detection approaches of Hough transform (HT) type and randomized HT type have been extended into an
evidence accumulation featured general framework for problem solving, with five key mechanisms elaborated and several extensions of HT
and RHT presented. On the other hand, another framework is proposed to integrate typical multi-learner based approaches for problem solving,
particularly on Gaussian mixture based data clustering and local subspace learning, multi-sets mixture based object detection and motion
estimation, and multi-agent coordinated problem solving. Typical learning algorithms, especially those that base on rival penalized competitive
learning (RPCL) and Bayesian Ying–Yang (BYY) learning, are summarized from a unified perspective with new extensions. Furthermore, the
two different frameworks are not only examined with one viewed crossly from a perspective of the other, with new insights and extensions,
but also further unified into a general problem solving paradigm that consists of five basic mechanisms in terms of acquisition, allocation,
amalgamation, admission, and affirmation, or shortly A5 paradigm.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Object detection; Hough transform; Rival penalized competitive learning (RPCL); Elliptic RPCL; Local subspaces; Bayesian Ying–Yang learning;
Automatic model selection; Multi-sets modelling; Mixture of experts; RBF nets; Evidence combination

1. Introduction

An intelligent system, which could be an individual or a col-
lection of men, animals, robots, agents, and other intelligent
bodies, survives in its world with needs of two types of intel-
ligent abilities.

As illustrated by the right path in Fig. 1(a), Type I con-
sists of abilities of knowing ‘what it is’ or discovering regular-
ities or dependencies among data as its knowledge about the
world. As illustrated in Fig. 1(b), the knowledge is obtained
either from pieces of uncertain evidences (or called samples)
about the world or from existing authorized sources (e.g., text-
books) that were also obtained from samples in past. Therefore,
Type I abilities are obtained via processes what we usually call

� The work described in this paper was fully supported by a grant
from the Research Grant Council of the Hong Kong SAR (project No:
CUHK4225/04E).
∗ Tel.: +852 2609 8423; fax: +852 2603 5024.

E-mail address: lxu@cse.cuhk.edu.hk.

0031-3203/$30.00 � 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2006.12.016

learning, during which an intelligent system gradually senses
its world from samples and modifies itself to adapt the world.

As illustrated by the left path in Fig. 1(a), Type II consists of
skills of problem solving, i.e., skills of appropriately respond-
ing upon what are currently encountering. The reaction can be
either just perceiving (e.g., identify, detect, decision, recognize,
etc.) or also reacting (e.g., reasoning, control, manage, etc.).
As illustrated in Fig. 1(b), the skills of problem solving can
be roughly classified into two categories. One is made via ev-
idence combination, inference, optimization, based on a priori
knowledge of Type I. The other is developing a fast imple-
menting device (or called problem solver) for the dependence
of either the input-perceiving type or the input-reacting type
for those often encountered issues that usually need a rapid re-
sponse. Specifically, the problem solver is developed via learn-
ing from samples in help of either a teacher who provides a
set of input–response pairs (e.g., in supervised pattern recogni-
tion, function approximation, control system, etc.) or the Type
I knowledge from learning dependence structures under obser-
vations (e.g., in data clustering, object detecting, etc.).

http://www.elsevier.com/locate/pr
mailto:lxu@cse.cuhk.edu.hk

2130 L. Xu / Pattern Recognition 40 (2007) 2129–2153

Fig. 1. (a) Two types of intelligent ability. (b) How to get the abilities?

Typical examples of the first category of problem solving
skills include those Hough transform (HT) like approaches for
detecting objects in an image, started from the early 1960s [1,2].
With a priori Type I knowledge (i.e., each object to be detected
is described by a parametric equation), each point in the param-
eter space describes a potential assumption of one object. The
evidence carried by each pixel on an image is accumulated in
the parametric space, with those points receiving enough num-
ber of votes as the corresponding parametric expressions of the
detected objects. However, HT has several shortcomings, and
there have been many efforts targeting at solving this or that
part of the problems, while the key idea remains more or less
the same [1]. Randomized Hough transform (RHT) [3,4] over-
comes the problems in help of an innovation on fundamental
mechanisms. In the past decade, many studies and applications
have been made along this RHT branch with a number of new
results [5–13].

Typical examples of the second problem solving category in-
clude those learning approaches for estimating a multi-modes
featured distribution from samples, mining multiple depen-
dence structures among data, as well as detecting multiple ob-
jects and their motions in an image. These approaches are
featured by a coordinated learning process by a number of learn-
ers or intelligent systems/agents (shortly agents). We start at
introducing rival penalized competitive learning (RPCL) for
clustering analysis and line detection in an image [14,15].
Again, each point in a parametric space describes a potential
assumption of one object. A number of learners search among
the parameter space, with each describing a candidate of a
detected object. As one sample comes, it is allocated to one

candidate via competition, and the winner moves a little bit to
adapt the information carried by this sample. Moreover, the ri-
val (i.e., the second winner) is repelled a little bit from the sam-
ple to reduce a duplicated information allocation. Such a rival
penalized mechanism can detect an appropriate number of can-
didates. Not only RPCL has been further extended from spheral
clusters to elliptic clusters via Gaussian mixture [16–18], but
also multi-sets mixture learning (MML) has been developed
[19,20] for detecting objects ranging from lines and subspaces
to ellipses, and even any shapes via given templates. Readers
are referred to Ref. [21] for a recent elaboration and to [22,23]
for successful applications. Also, many studies and applications
have been made on RPCL learning in the past decade [24–33].

This paper aims at jointly investigating both the above two
categories. Basic mechanisms behind each category have been
elaborated and a general framework is proposed for each cat-
egory to summarize variants and to explore extensions. Not
only each framework is viewed crossly from a perspective of
the other, but also both are unified into a general problem solv-
ing paradigm that consists of five mechanisms, namely acqui-
sition, allocation, amalgamation, admission, and affirmation.
In Section 2, after introducing HT and RHT, a general ev-
idence accumulation framework for problem solving is pre-
sented for object detection, with new variants and extensions
of RHT discussed. In Section 3, after introducing the funda-
mentals of RPCL learning, another general framework is pro-
posed to integrate multi-learner based approaches for problem
solving, with typical learning algorithms (especially RPCL and
Bayesian Ying–Yang (BYY) learning based ones), summarized
from a unified perspective with new extensions. In Section 4,
each framework is examined crossly from a perspective of the
other, and both are unified as a specific implementation of a
general problem solving paradigm. Concluding remarks will be
made in Section 5.

2. Evidence accumulation approaches: RHT and
extensions

2.1. A brief introduction of HT and RHT

As shown in Fig. 2(a), we take straight line detection as an
example to introduce the key idea of HT. A pixel (x, y) is
mapped into a line b=xk+y passing a point (k, b) in a param-
eter space where each point represents a potential assumption
of a detected line. That is, one pixel from the image allocates
its partial evidence to a set of potential assumptions located on
the line b = xk + y. In other words, all these assumptions are
activated by this piece of evidence. Moreover, a set of points on
the line y = kx + b in the image are mapped into a set of lines
across a point (k, b) in the parameter space. As a result, the
activated assumption at the point (k, b) receives an amount of
evidences much higher than other assumptions and thus detects
a line y = kx + b in the image. To implement such an idea, a
grid with a uniform quantization is located on a window in the
(k, b) space, and a score accumulator a(k, b) is located at each
bin that represents a potential assumption. As each point (x, y)

on the image is mapped into a line in the (k, b) space, every

L. Xu / Pattern Recognition 40 (2007) 2129–2153 2131

Fig. 2. From Hough transform to randomized Hough transform.

accumulator a(k, b) with the line passing through is added
by 1. We can detect lines by finding out each peak score of
a(k, b). The same idea also applies to the detection of circles,
ellipses, as well as a more general shape that can be represented
by a parametric equation [1].

However, HT has several critical drawbacks as follows:

(a) All pixels are mapped, and every bin in the grid needs an ac-
cumulator. If there are d parameters with each represented
by M quantizing units, there need accumulators of Md .

(b) To reduce the computing cost, quantization resolution
cannot be high, which blurs the peaks and leads to a low
detection accuracy.

(c) Each pixel activates every accumulator located on a line,
with only one representing the correct one while all the
others are disturbances.

(d) If the grid window is set inappropriately, some objects
may locate outside the window and thus is not able to be
detected.

(e) Noisy pixels cause many disturbing accumulations.

As shown in Fig. 2(a), HT maps one pixel (x, y) into all
the points on a line passing (k, b). It is this diverging mapping
mechanism that actually incurs the above drawbacks (a)–(e).
RHT [3,4] replaces this mechanism with a converging mapping
mechanism as shown in Fig. 2(b). That is, two or more pixels
are picked to jointly determine a line, i.e., mapped into one
point (k, b). By this mechanism, different points on a same line
y = kx + b will hit the same point (k, b), without creating a
great number of false accumulations. Also, the feature of being
mapped into one point per time makes it is possible to lay
accumulators dynamically without the need of laying a grid
on a pre-specified window. We only need to accumulate scores
a(k, b) at those locations activated by the converging mappings.
Also, not only quantization resolution may vary for locations,

Fig. 3. Template matching.

and each quantization bin can be replaced by a kernel. As a
result, the drawbacks (b)–(d) no longer exist.

Furthermore, there is no need to enumerate all the pixels. For
each converging mapping, we can randomly pick two or more
pixels with each in an equal probability. When there are many
pixels on a line y = kx + b, the probability that a point (k, b)

is hit by converging mappings from samples on the line will be
much higher than the probability that other points in the (k, b)

space are hit by the converging mappings from samples not on
lines. Therefore, a line can be detected via a point in the (k, b)

space if it is hit by certain amount of times. In other words, the
drawbacks (a), (e) have also been avoided. In the past decade,
studies on RHT has become an important branch of HT studies
[5–13].

RHT is directly applicable to the detection of circles, ellipses,
as well as other more general shapes in a parametric equation
f (x, y, �)= 0 with a number � of free parameters. Solving the
following joint equations yields a converging mapping into a
unique point � in the parameter space [4]:

f (xi, yi, �)= 0, i = 1, . . . , �. (1)

This mechanism can also be extended to the cases that objects
are represented by templates as shown in Fig. 3. A template can
be used to match a shape via a translation �, a rotation � and
a scaling �. That is, each pixel u= (x, y) on the image relates
to a corresponding point v on the template via

u= �R(�)(v − �), (2)

where R(�) is a rotation matrix by an angle �. If we are able
to get m�2 pairs of the (u, v) correspondence, the parameters
�, �, c can be solved jointly by m matrix equations obtained
with Eq. (2) for each pair. In other words, randomly sampling m

pairs of (u, v) with u from the image and v from the template,
we get a converging mapping to one point in the parameter
space of �, �, �. From an alternative view, we can also detect
a motion of an object by the displacement � and the rotation �
between two times by setting �= 1.

2132 L. Xu / Pattern Recognition 40 (2007) 2129–2153

Fig. 4. Evidence accumulation framework.

2.2. Evidence accumulation framework and five basic
mechanisms

2.2.1. Evidence accumulation framework
Both the processes of HT and RHT are featured by gathering

evidences from a data set D from either an image after certain
pre-processing or an other information source, and accumulat-
ing evidences piece by piece in a parametric space, such that
certain points in the parametric space are detected as objects if
each of the points receives an enough number of votes.

In the implementation of HT as shown in Fig. 2(a), not the
entire parameter space but the points within each bin are actu-
ally considered. Also, all the points within each bin is treated
as a same potential assumption of an object to detect. A po-
tential assumption is activated when a line b = xk + y passes
through the corresponding bin. An assumption becomes active
once it is activated. Each active assumption is attached with an
accumulator that updates its supporting evidence every time it
is activated. For a pixel (x, y), the assumptions with their cor-
responding bins on the line b = xk + y are all activated. In
the implementation of RHT as shown in Fig. 2(b), every point
in the entire parameter space is implicitly regarded as a po-
tential assumption that becomes active once it is hit by a con-
verging mapping. A converging mapping activates merely one
assumption.

Actually, both a HT process and a RHT process can be
regarded as specific implementations of a general evidence
accumulation framework as shown in Fig. 4, featured by five
basic mechanisms, namely sampling for acquiring information,
mapping for activating assumptions, accumulating evidences to
intensify the activated assumptions, then determining and veri-
fying candidates. A problem solving process consists of a series
of epochs, with each epoch featured by one run of consecu-
tively implementing the first three mechanisms. The last two
mechanisms may be implemented per T �1 epochs. The entire
process stops either after all the samples have been enumerated
(e.g., for HT) or when terminating signal is received externally
or via a monitoring measure that says “there is no more object
to detect among the remaining part of D”.

In the sequel, we further elaborate the five mechanisms in
Table 1 with more details. Each of the five basic mechanisms
has several choices to implement. The differences between HT
and RHT arise from an integrated implementation of the first
three mechanisms.

2.2.2. Sampling and mapping
As shown in Table 1, each epoch starts at Sampling that picks

one or several samples from D, in one of the following ways:

(a) As used in HT and variants, one is simply picking one
sample per epoch by scanning all the samples among D,
with each sample picked only once. Moreover, one may
also pick k pixels per epoch, but the number of possible
k-pixel-combinations to be scanned increase explosively as
k increases.

(b) As used in RHT [3,4], at each epoch, one or several sam-
ples are randomly picked with each in an equal probability.
There is no need on exhaustively enumerating all the sam-
ples or their combinations.

(c) The third way is picking one or several samples in help of
currently available knowledge, e.g., locally around certain
region of an image by connectivity or along certain direc-
tions, some examples are discussed in Ref. [34].

The choice on a way for picking samples is not completely
independent from the choices of the subsequent mechanisms.
E.g., when we choose to scan all the samples, we have to let the
threshold T being the total number of samples in D. Though
such a coupling can be removed if we randomly pick samples,
the number m of picked samples still affect the choices of
the subsequent mechanisms, as listed in the second column of
Table 1. For detecting an object that has to be determined by
at least � points (e.g., �= 2 for detecting a line), we encounter
the following three scenarios:

(a) When m < �, we are unable to uniquely activate an assump-
tion. Instead, we can only explicitly or implicitly specify
a manifold in the parameter space. For detecting a line by
HT, we have m= 1 < �= 2 and the manifold is a line. For
the cases with � > 2, there will be �−2 different manifolds
that lead to different variants of HT.

(b) When m = �, except those degenerated cases that become
actually the above situation (a), the joint equations by
Eq. (1) or (2) will activate a unique candidate. E.g., in the
implementation of RHT, we have 2=m=�= 2 that yields
a converging mapping.

(c) When m > �, the situation would have no difference from
the above (b) if there is no noise on samples. However,
there are always noises and quantization errors such that the
joint equations have no solution. As suggested in Ref. [4]
for detecting curves on an image, we may use the median
axis of scatted pixels as an estimation, as shown in Fig. 5.
Also, we may even simply check whether the average error
� is smaller than a given threshold. This approach works
well for a parametric expression with a small �, e.g., line,
circle, ellipse, etc. In general, we consider the following
double minimization approach.

Considering that samples from each object include one de-
terministic part plus noises. The deterministic part is described
by a finite or continuous set S(�) of real points in Rd , subject
to a parametric set � with a number of unknown parameters.

L. Xu / Pattern Recognition 40 (2007) 2129–2153 2133

Table 1
Different choices for five essential mechanisms

Sampling Mapping Accumulating Determining Verifying

(a) Enumerate (a) and (b) m��: (a) Uniform (a) Large ones (a) Length
(b) Random solving equations (b) Nonuniform (b) Peaks (b) Error
sampling f (x, y, �)= 0 Over bins (c) Clusters L2

(c) Local (c) m >� Over epochs Spherical L1

searching median or (c) Kernel based Others log-L
Lp fitting (d) Discard dead (c) Test

Fig. 5. Curves under noises and disturbances. (a) A � band of curve ci is a band of width 2� with ci as the median axis. (b) A true curve ci has at mmin
pixels falling in a given � band; otherwise ci is a pseudo-curve.

Fig. 6. Least-square error fitting.

S(�) represents a shape such as line, curve, and ellipsis, as well
as a pre-specified shape. For an expression f (u, �) = 0, u =
(x, y), we have

S(�)= {u : u satisfies f (u, �)= 0}. (3)

For an object in a shape without a parametric expression,
as shown in Fig. 6, a template is given via a set of samples
Y = {y�}N�=1 that represents a contour of a specific shape, the
following S(�j) is used to denote a shape resulted from a dis-
placement �, a rotation matrix R(�j) for an angle �j , and a
scaling �j

S(�j)= {�;R(�j)(y� + �j) : ∀y� ∈ Y }
where �j = {�j , �j , �j }. (4)

As shown in Fig. 6, we define the error that a point ut deviates
from an object represented by S(�) via the following minimiza-
tion:

e(ut , �)= ut − ut (�), ut (�)= min
v∈S(�)

‖ut − v‖p, (5)

where ut (�) is a reconstruction or representation of ut by S(�).
Then, we solve the second minimization min�

∑m
t=1 ‖e(ut , �)‖p,

m�� via finding one or several local minimum values of �
for activating assumptions in the parameter space, where ‖	‖p
denote the Lp norm of the vector 	, e.g., L1 norm for p = 1
and L2 norm for p = 2. Though a larger m may produce a
better performance in removing the noises if the samples all
come from a same object, we need to check the samples in a
way similar to that in Fig. 5.

2.2.3. Accumulating and determining
For each assumption, its corresponding supporting evidence

is accumulated per activating, according to one of the following
rules (summarized in the third column of Table 1):

(a) The simplest one is voting, i.e., each assumption is added
with 1 per activation, uniformly over all the activated as-
sumptions and all the epochs.

(b) As shown in Fig. 2(b), each bin is placed with one accumu-
lator. Due to quantization, each bin is voted by an amount
lb proportional to the segment length of a line b = xk + y

falling within each bin.
(c) With m > � samples, our confidence on activated assump-

tions vary as epoch t varies, e.g., in Fig. 5 it can be measured
by either or both of the average error �t and the fraction ft

of samples falling within the � band. Correspondingly, the
activated assumptions should be accumulated with a piece
of evidence proportional to ft lb/�t .

2134 L. Xu / Pattern Recognition 40 (2007) 2129–2153

Fig. 7. Kernel supported RHT.

(d) Instead of voting to a cubic bin as in Fig. 7(a), we can place
a kernel function with its center located at each activated
assumption, as shown in Fig. 7(b). That is, assumptions in
its neighbor area are accumulated by certain degree too,
which motivates a new direction—kernel supported RHT.

(e) When an active assumption has not been activated for a
long period �, we may regard it as dead and remove its
corresponding accumulator, such that the cost for space can
be saved and the performance may be improved. This � may
relate to its accumulated amount of evidences.

After implementing accumulation, as shown in Fig. 4, it
returns to the sampling mechanism unless it has finished T

epochs. As in the fourth column of Table 1, the assumptions
accumulated after T epochs are then assessed to determine
on which of them can be admitted as candidate solutions,
according to

• whether the amount of its accumulated evidence is larger
than a threshold;
• whether the amount of its accumulated evidence becomes

stably a peak;
• whether some active assumptions have steadily formed a

cluster either in spherical shapes or in other configurations,
such that the cluster centers or modes are picked as candi-
dates.

The obtained candidates can be either directly taken as solu-
tions or further verified to check whether each of them can be
determined as a detected object. This verifying procedure con-
sists of two steps. First, we search within a neighbor region of
the candidate to identify samples that belong to the object. The
simplest way is to take the samples within a � band in Fig. 5.
We can also make a maximum likelihood (ML) detection based
on a model. Second, we test whether it can be determined ac-
cording to one of the following criteria:

• Enough number of samples, e.g., enough length of a line
segment.
• An average error of these samples in fitting the object, or a

log-likelihood of the samples from the object under a prob-
abilistic model.

• A statistical testing based on some testing-ratio, e.g., Bayes
factor [35].

3. Multi-learner based problem solving approaches

The previous category of problem solving approaches is fea-
tured by the first choice on the left path in Fig. 1(b). Given the
objects’ structures, e.g., a line, an ellipse, a parametric equa-
tion by Eq. (1), and a template as shown in Fig. 3, the Type
I knowledge (i.e., the locations, orientations, and scales of the
structures) are obtained via evidence accumulation and search-
ing optimums in the parameter space, together with pixels clas-
sified into different objects.

Another category of problem solving approaches is featured
by the second choice on the left path in Fig. 1(b), i.e., the
Type I knowledge are learned via adapting information among
samples by multiple learning agents (or shortly learners). There
are two coupled tasks. First, each learner fights to be allocated to
an environment via competition and communication mutually
among learners. Second, each learner learns the knowledge
about its environment, and perhaps also make certain action
according to its knowledge. Both the tasks are also affected by
interactions among learners. In the sequel, a general framework
is proposed to integrate typical multi-learner based problem
solving approaches from a unified perspective with several new
extensions.

3.1. RPCL for clustering analysis

We start at the simplest scenario that each learner �j is
featured by a point �j = �j that moves among the obser-
vation samples and seeks to be located at the center of a
cluster of samples. This center may represent an object to be de-
tected among noisy observations. Jointly, several learners col-
lectively perform data clustering or detecting multiple objects.
One earliest effort is the classical competitive learning (CCL)
[36] which is implemented adaptively per sample. As a sample
xt comes, each learner �j has an individual value or criterion

t (�j)=‖xt −mj‖2 as a degree of dissatisfaction on its repre-
sentation of xt , and competes to represent xt such that
t (�j) is
reduced or minimized. The competition is guided globally by

L. Xu / Pattern Recognition 40 (2007) 2129–2153 2135

*

1

x
1

*2

321

rival theis

 winner theis

2

3

*
3

1

awayfardrivenis

convergedareand

2

31

3

2

*

*

*

1

x

1

2
*

2

123

rival theis

 winner theis

2

1

*

3

3

*

3
2

Fig. 8. Rival penalized competitive learning.

the winner-take-all (WTA) policy

pj,t =
{

1 if j = c,

0 otherwise,
c = arg min

j

t (�j). (6)

Each learner updates to reduce
t (�j) by

�new
j = �old

j + �pj,t (xt − �old
j). (7)

It is well known that the CCL has a so-called under-utilized or
dead unit problem, i.e., some learners will become ‘dead’, while
each of other learners may take samples crossly from more than
one clusters, which makes the task of clustering analysis badly
performed. This problem comes from that the WTA or hogging
mechanism is too strong. There needs a sharing mechanism to
balancing such a monopolizing tendency. One sharing mecha-
nism is the so-called frequency sensitive competitive learning
(FSCL) [37], by simply modifying
t (�j)= ‖xt − �j‖2 into

t (�j)= �j‖xt − �j‖2, (8)

where �j is the frequency that the j th learner won in past. Such
a spirit of reducing the winning rates of frequent winners can
also be implemented in alternative ways, e.g., conscience [38].
Moreover, a sharing mechanism can be introduced in different
ways too, e.g., leaky learning [36,39], convex bridge [40], and
neighbor sharing in Kohonen Map [41].

The sharing mechanism by �j in Eq. (8) works well when k

is pre-assigned to an appropriate one. However, when k is pre-
assigned to a value larger than an appropriate one, FSCL fails
due to its sharing mechanism is excessive, which makes the
extra units also move into data to disturb the correct locations
of other units. This is another critical difficulty that we need
to overcome. One solution is given under the name of RPCL,
proposed in the early 1990s for clustering analysis and detecting
lines in an image [14,15].

The key idea is shown in Fig. 8, i.e., not only the winning
learner moves a little bit to adapt xt , but also the rival (i.e.,
the second winner) is repelled a little bit from xt to reduce
a duplicated information allocation. For example, as a sample
xt comes, �1 is the winner and �2 is its rival in Fig. 8(a),

�1 is moved towards xt by a small step size, while �2 is re-
pelled away from xt by a much smaller step size. Similarly, in
Fig. 8(b), �3 is the winner and moved towards xt , while �2 is its
rival and repelled away from xt . Formally, this is implemented
by Eq. (7) with Eq. (6) replaced by

pj,t =

⎧⎪⎨
⎪⎩

1 if j = c,

− if j = r,

0 otherwise,

{
c = arg min

j

t (�j),

r = arg min
j �=c

t (�j),
(9)

where
t (�j) is given by Eq. (8), and approximately takes
a number between 0.05 and 0.1 for controlling the penalizing
strength versus learning strength.

As illustrated in Fig. 8(c), �1 and �3 finally converge to clus-
ters’ centers, while �2 is driven far away from samples. That is,
the rival penalized mechanism has balanced the excessive shar-
ing mechanism by �j in Eq. (8) and thus driven extra learners
far away from data. In other words, RPCL determines the num-
ber of clusters or objects automatically during learning. This
is a favorable feature that the conventional competitive learn-
ing or clustering algorithm (e.g., k-means) does not have. In
the past decade, a number of applications of RPCL have been
made [24–29,31–33].

In 1998 [16,42], RPCL based clustering analysis is extended
to elliptic clusters with each cluster by a Gaussian in general,
with certain simplification on updating the rival. The updating
equations without simplification are given in Ref. [17, Tables
1(B) and 2(A); 43, Eq. (33)]. Again, the number of Gaussians
can be determined automatically during RPCL learning. More-
over, the MML has been developed [19,20] for detecting ob-
jects ranging from lines and subspaces to ellipses, and even any
shapes via given templates. Also, it has been demonstrated that
RPCL can be regarded as one fast approximate implementa-
tion of the BYY harmony learning that was firstly proposed in
1995 [44] and developed in the past decade [45–48], and thus
the RPCL’s ability of automatic model selection can be under-
stood in a top-down way from the BYY harmony learning the-
ory. Different implementations of the BYY harmony learning
lead to different versions of RPCL-like mechanism. A historic
remark on this topic is referred to Section 23.7 in Ref. [48].

2136 L. Xu / Pattern Recognition 40 (2007) 2129–2153

3.2. A general multi-learner based problem solving framework

3.2.1. Three fundamental ingredients and automatic model
selection

The RPCL learning can be regarded as a special case of a
general multi-learner based problem solving framework that
integrates several related learning algorithms from a unified
perspective, featured by three ingredients:

3.2.1.1. Leaner structure. Instead of being represented simply
by a point �j , each learner needs a hardware Sj that is able
to handle typical problem solving tasks. This Sj can be one of
two choices:

• Without external action: Each learner targets only on repre-
senting the knowledge about its environment, in help of a
pre-specified structure Sr and a set �r

j of parameters within
Sr

j . For object detection, Sr
j may be given either by Eq. (3)

for a shape such as line, curve, and ellipses or by Eq. (4)
for a shape in a template. Beyond object detection, Sr

j may
also be an appropriate parametric model for representing a
particular structure underlying samples. Moreover, some Sr

further consists of a number mr
j of components, e.g., a sub-

space of dimension mr
j in Fig. 11(a) later in Section 3.3.2.

Usually, we use �r
j , plus mr

j to denote this structure.
• With external action: In certain tasks, upon an input xt we

also need an additional structure Sa
j for making an action to

its environment, via a computable function or operator

�t = �a(xt |��
j), (10)

where �t is either a real number or a discrete label. Similarly,
we can use �a

j , plus ma
j (if any), to denote this structure Sa

j .

In the above formulation, the tasks of problem solving are
embedded in the process of determining or learning all the
unknowns of every learner. The unknowns always contain {�r

j }
that implicitly includes the unknowns {mr

j } (if any). For the
tasks that involves making actions, the unknowns also contain
{�a

j } and {ma
j } (if any). There may also be some additional

unknowns for combining the two parts Sr
j and Sa

j . We simply
use �j to denote all these unknowns, which are determined
jointly by the learners’ individual criteria and the policy for a
global coordination.

3.2.1.2. Individual criterion. As an extension of the previous

t (�j)=‖xt −�j‖2, each learner has an individual value
t (�j)

to evaluate its performance per sample xt observed. This per-
formance may involve two types of contributions. One is how
good xt is represented by Sr

j . As discussed in Eqs. (3)–(5), we
can get xt (�

r
j) as a reconstruction or a representation of xt by

Sr
j and thus an error

er
t (�

r
j)= xt − xt (�

r
j), (11)

from which we get
t (�
r
j) as this part of contribution, where

(er
t (�

r
j))�0 and
t (�

r
j) = 0 iff (if and only if) er

t (�
r
j) = 0.

The most common one is

(er
t (�

r
j))= ‖er

t (�
r
j)‖2. (12)

Other typical examples are also given by Eqs. (32)–(34) in
Ref. [21].

In the situation that the learner needs to make an action by
Eq. (10), we need another contribution
t (�

a
j) to evaluate the

performance of the action. There are two typical scenarios:

• Supervised learning: There is a teacher to give a set of train-
ing pair {xt , �t }, e.g., for the tasks of classification, function
regression, prediction, etc. It follows from Eq. (10) that we
can simply have

ea
t (�a

j)= �t − �a(xt |��
j) (13)

from which we get
t (�
a
j)=
(ea

t (�a
j))�0 and
t (�

a
j)= 0 iff

ea
t (�a

j)= 0. Again, one example is the square error

(ea
t (�a

j))= ‖ea
t (�a

j)‖2. (14)

There could be various specific forms for each individual
criterion
t (�j). Every one expects a good performance but
possibly in a different sense. The square error equations (12)
and (14) target at a best performance on a currently available
set of samples. There are a number of other criteria that seeks
a best performance in this sense. However, due to noise and
not an enough number of samples, a best performance on a
currently available set from a underlying structure may not
generalize well (i.e., it my not still be the best as more samples
come from the same underlying structure). Thus, we may also
consider
t (�j) that aims at a best generalization sense.

• Reinforcement learning: There is no teacher. An action is
made upon xt , with an encouraging or discouraging score
incurred from environment, which is simulated by Eq. (10)
that provides a score �a

t �0 that expresses a degree of dis-
satisfactory on the action, with �a

t = 0 for a complete satis-
factory. In this case, we let
t (�

a
j)= �a

t directly.

In a summary, we have

t (�
a
j)=

{

(et (�

a
j)) (a) supervised learning,

�a
t (b) reinforcement learning.

(15)

As a whole, the two parts are compounded together via an
operator:

t (�j)= �[
t (�r
j),
t (�

a
j), bj], (16)

where bj consists of some compounding parameters.
t (�j) is
monotonically increasing with respect to both
t (�

r
j) and
t (�

a
j).

One example is

t (�j)

�j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t (�
r
j)

�r
j

(a) without making action,

t (�
r
j)

�r
j

+
t (�
a
j)

�a
j

(b) with an action made.

(17)

L. Xu / Pattern Recognition 40 (2007) 2129–2153 2137

where bj = {�j , �
r
j , �

a
j } that make
t (�j),
t (�

r
j), and
t (�

a
j)

become scale invariant. One typical example is

�j =
1

N

N∑
t=1

t (�j), �r
j =

1

N

N∑
t=1

t (�
r
j),

�a
j =

1

N

N∑
t=1

t (�
a
j). (18)

3.2.1.3. Combining policy. Extending Eq. (6), learners are co-
ordinated via a global policy that combines individual criteria
{
t (�j)}kj=1. The global policy can be either a criterion for eval-
uating the overall performance jointly by all the learners, e.g.,
a simple one is the following weighted sum:

(�)=
N∑

t=1

t (�),
t (�)=
k∑

j=1

pj,t

t (�j)

�j

(19)

or just an allocation scheme on a per sample basis

pj,t = ALOC

⎡
⎣{
t (�j)

�j

}k

j=1

⎤
⎦ (20)

according to which xt is assigned to the j th learner with a
weight pj,t . pj,t > 0 means that xt is at least partially allocated
to the j th learner. Three typical examples are given as follows:

• WTA allocation: The simplest and widely used one is given
by Eq. (6) at �j = 1, i.e., xt is completely allocated to the
winner c.
• Shared allocation: A group of learners with pj,t > 0 provides

a sharing mechanism, one example is the following soft-
allocation:

pj,t =
⎧⎨
⎩

e−
t (�j)/�j∑
i∈C�

e−
t (�i)/�i

if j ∈ C�,

0 otherwise,

C� =
⎧⎨
⎩j :
t (�j)/�j among the �

smallest ones of

{

t (�j)

�j

}k

j=1

⎫⎬
⎭ . (21)

One extreme case is � = 1 by which Eq. (21) degenerates
to the WTA equation (6) at �j = 1. The other extreme case is
�= k by which Eq. (21) leads to the Bayes posterior allocation
by Eq. (27) as
t (�j)/�j given by Eq. (26).

Another example can be found in Kohonen Map [41], where
certain neighbors of the winner are all assigned with pj,t > 0.

• Penalized allocation: We can also have a case with some
pj,t < 0 means that the j th learner will be repelled from xt by
a little bit. The one by Eq. (9) for RPCL is such an example.

We can regard pj,t by Eq. (9) as a sum of two parts, namely
qj,t by Eq. (6) minus �j,t with �j,t =1 at j = r and �j,t =0
for j �= r . Generally, we can let

pj,t = qj,t − �j,t , qj,t �0,
∑
j

qj,t = 1 and

�j,t �0,
∑
j

�j,t = 1, (22)

where qj,t provides a sharing mechanism, while �j,t provides
a penalizing mechanism that distributes a penalizing strength
 over learners. One extreme case is Eq. (9) with qj,t by
Eq. (6) and �j,t = 1 at j = r and �j,t = 0 for j �= r . One
another extreme case �j,t = 1/k.

3.2.2. Probabilistic approach, individual criterion, and
combining policy

Each learner may also be given a probabilistic structure

p(ut |�j)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(xt |�r
j) (a) ut = xt

(no external action),

p(xt |�r
j)p(�t |xt , �

a
j) (b) ut = {xt , �t }

(with an action),

(23)

where p(�t |xt , �
a
j) describes a probabilistic response �t in-

curred from xt . For the reinforcement learning case in Eq. (15),
a randomness of �t may come from either a randomness in
making an action or a randomness in scoring an action.

Each learner may also take the proportion �j and a priori
knowledge on �j in consideration, such that Eq. (23) can be
further modified into

(a) p(ut , j)= �jp(ut |�j),

(b) p(ut , �j)= p(ut |�j)p(�j),

(c) p(ut , j, �j)= �jp(ut |�j)p(�j). (24)

Moreover, a parametric model in Eq. (23) actually specifies not
only a learner structure but also indirectly an individual criterion

t (�j) by a monotonic decreasing scalar function �(p). Taking
�(p)=− ln p as an example, we have

t (�j)

�j

=− ln pj ,

pj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(ut |�j),

p(ut , j),

p(ut , �j),

p(ut , j, �j),

�j �0,
∑
j

�j = 1. (25)

Taking the case with p(ut , j) as an example, we have

t (�j)/�j =−[ln p(ut |�j)+ ln �j], (26)

2138 L. Xu / Pattern Recognition 40 (2007) 2129–2153

and put it into Eq. (21), we further get

pj,t =
⎧⎨
⎩

�jp(ut |�j)∑
i∈C�

�ip(ut |�i)
if j ∈ C�,

0, otherwise,

p�(u|�)=
∑
i∈C�

�ip(ut |�i). (27)

At the extreme case �= k, pk(u|�) is actually a finite mixture
[49], and pj,t by Eq. (27) provides a Bayes posterior sharing
allocation. Generally, when � < k, pj,t by Eq. (27) provides a
sharing allocation only among learners proportionally with �
maximum posteriors, which is thus shortly referred as �-map
sharing.

Furthermore, if we have a priori knowledge on p(�j), it
follows from Eq. (25) with p(ut , �j) and p(ut , j, �j) that we
get an individual criterion that considers generalization in a
Bayesian sense [35,50].

On the other hand, given individual criteria {
t (�j)}kj=1, it

follows from Eq. (26) that we can also get1

pj ∝ e−�−1
j
t (�j), (28)

which can be further normalized into the following density:

p(
t |�j)= �−1
j e−�−1

j
t (�j)
, �j=E[
t]=

∫

p(
|�j) d
, (29)

where �j = E[
t] provides a further insight on Eq. (18). We

may also turn e−�−1
j
t (�j) into a density on the domain of

er
t , e

a
t via

∫
e−�−1

j
t (�j) der
t dea

t or on the domain of xt , �t via∫
e−�−1

j
t (�j) dxt d�t , though these integrals may be difficult to
handle except some special cases.

Similarly, an extension of
t (�j) = �j‖xt − �j‖2 in Eq. (8)
can be an alternative of Eq. (26) as follows:

t (�j)/�j =− ln p(ut |�j)
�j , �j �0,

∑
j

�j = 1. (30)

In Ref. [16], RPCL extensions is classified as Type A if it bases
on Eq. (26) and Type B if it bases on Eq. (30). Also, we get
the counterpart of Eq. (28) by

p(ut |�j) ∝ e−
t (�j)/�j�j . (31)

Probabilistic approach also provides an alternative direction
of seeking a global criterion for combing policy. E.g., it follows
from Sections 3.4, 3.4.4 and 3.4.5 that the criterion by Eqs. (19)
with pj,t by Eqs. (6) and (21) can be obtained from a special
case of BYY harmony learning. A global criterion implies an
allocation scheme. For an example, Eq. (6) is obtained by min-
imizing the criterion by Eq. (19) with respect to pj,t subject to∑

j pj,t = 1, pj,t �0, and Eq. (21) is obtained by minimizing

1 In this paper, u ∝ v denotes either ‘a scalar u is proportional to a
scalar v.’ or ‘a vector u and a vector v share a same direction.’

this criterion with respect to pj,t subject to∑
j

pj,t = 1, pj,t �0 and

pj,t = ct exp

(
−
t (�j)

�j

)
, j ∈ C�. (32)

Also, Eqs. (6) and (21) can be obtained from a special case of
BYY harmony learning by Eq. (69). As shown later in Eq. (83),
the RPCL one by Eq. (9) and its extension by Eq. (22) can also
be obtained from the BYY harmony learning.

Moreover, Eq. (21) with � = k closely relates to a ML
criterion. It follows from Eq. (27) that ∇�j

ln pk(ut |�) =
−pj,t∇�j

t (�j), we observe that the updating �new
j = �old

j +
�∇�j

ln p(ut |�j) is equivalent to making a gradient ascent
updating of the likelihood criterion on pk(ut |�). That is, it
actually leads to an adaptive EM algorithm that implements
the ML learning on a finite mixture.

A global criterion or combing policy aims at a best overall
performance. For this, the correct number k of structures un-
derlying samples must be determined and the samples from a
same structure are allocated to a same leaner (it may compose
of more than one learners that form a compound learner) such
that each learner performs best according to its corresponding
individual criterion. In the literature, the task of determining
the number k belongs to what is usually called model selection,
and the task of determining parameters in each learner belongs
to what is usually called parameter learning.

In past decades, several typical model selection theories have
been proposed for model selection, such as Akaike’s informa-
tion criterion (AIC) [51], Bozdogan’s consistent Akaike’s in-
formation criterion (CAIC) [52], Schwarz’s Bayesian inference
criterion (BIC) [53] which coincides with Rissanen’s minimum
description length (MDL) criterion [54]. In implementation,
model selection has to be made in a two-phase procedure. At
the first phase, a number of candidate models are enumerated,
and the unknown parameters in each candidate are estimated
by the ML principle. At the second phase, one of the above
criteria is used on every candidate with estimated parameters
to get the best candidate. These existing approaches face two
major problems. One is the performance problem. In the cases
of a small size of samples, each criterion actually provides a
rough estimate that cannot guarantee to give the correct result
but has a high chance to give a wrong one. Also, one criterion
works better in this case and the other may work better in that
case, none can be said better than the others. The second prob-
lem is that the enumeration needs a vast computing cost, which
is infeasible in many real applications.

Favorably, as to be further discussed in Table 2 in the next
subsection, an appropriate combination of a global policy pj,t

and an individual criterion can make an appropriate k deter-
mined during learning parameters of each learner, which is re-
ferred as automatic model selection during parameter learning.

3.2.3. A general framework for multi-learner problem solving
To implement a process of problem solving, the three ingre-

dients in Section 3.2.1 are integrated into a general framework

L. Xu / Pattern Recognition 40 (2007) 2129–2153 2139

Table 2
Allocations versus individual criteria

Pj,t

∖

t (�j)

�j

ln[�j p(
t |�j)] �j ln[�j p(
t |�j)] ln(�j pj), e.g.,

e.g., ‖xt − �j‖2 e.g., �j‖xt − �j‖2 pj =G(xt |�j ,�j)

WTA CL FS–CL BYY–CL on finite mixture
(with dead units) (no model selection ability) (with automatic model selection)

�-map sharing �-map CL �-map FS–CL BYY �-map
(dead units reduced) (still poor in model selection) (with automatic model selection)

Bayes posteriori sharing Simplified EM FS type Simplified EM EM on finite mixture
(for ML or its special case,
not good on model selection)

Penalized allocation Bare RPCL RPCL BYY–RPCL on finite mixture
(with automatic model selection)

With the first column and first row not counted, there are 4× 4 blocks, the block (i, j) denotes the cross of the ith column and j th row.

Sampling Allocating Adapting
t+1 t

t > T

DeterminingVerifyingFinished?

no

yes

t=0completed

tasksRemoving

samples of

fulfilled

tasks

yes

no

no

Fig. 9. A general framework for multi-learner problem solving.

as shown in Fig. 9. Being different from the cases in Fig. 4, an
assumption solution is provided by a learner, with its knowl-
edge about environment and its action. With each leaner ini-
tialized to a given status, samples from the environment are
allocated to learners and thus their corresponding assumptions
are activated and modified to adapt the environment. Similar to
the nature of automatic model selection by the RPCL learning,
as learning proceeds, some of learners may become unneces-
sary and thus be driven away or removed, while the others will
finally stabilized with their corresponding assumptions as can-
didate solutions. Similar to the general framework shown in
Fig. 4, the framework in Fig. 9 is still featured by a specific
integration of the following five mechanisms:

Sampling: Information is acquired via randomly picking one
sample xt per epoch. However, picking k > 1 samples per epoch
is applicable by only considering the k samples that basically
come from a same object or structure.

Allocating: Similar to the mapping mechanism in Fig. 4, in-
formation carried by xt is allocated to learners by an alloca-
tion scheme pj,t via Eq. (20). We can simply get
t (�j)/�j via
Eq. (26) for a probabilistic model by Eq. (23); otherwise it
follows from Eq. (18) that we can update

�r new
j = (1− �pj,t)�

r old
j + �pj,t

r
t (�j),

�a new
j = (1− �pj,t)�

a old
j + �pj,t

a
t (�j),

get
t (�j)/�j by Eq. (17). (33)

An allocation scheme and an individual criterion jointly de-
termine the nature of the entire learning process. As shown in

Table 2, the first two columns consider
t (�j) directly given
by Eq. (14) or (17), equivalently ln[�jp(
t |�j)] by Eq. (29),
pj,t by Eq. (6) lead to the previously CL and FSCL, and pj,t by
Eq. (9) or (22) leads to RPCL and variants with the nature
of automatic model selection. The last column considers a
finite mixture pk(u|�) in Eq. (27) at � = k such that pj,t by
Eq. (6) leads to an extension from CL to BYY harmony learn-
ing (shortly BYY–CL), and pj,t by Eq. (9) or (22) leads to
an extension from RPCL to the Bayesian harmony learning
(shortly BYY–RPCL), still with a nature of automatic model
selection during parameter learning. The details are referred to
Section 3.4.4.

We further consider the third row, pj,t by Eq. (21) plus
Eq. (26) leads to the Bayes posterior sharing by Eq. (27) when
� = k. As discussed after Eq. (32) in Section 3.2.2, the block
(3,3) leads to an adaptive EM algorithm that implements the ML
learning on a finite mixture. Here k needs to be pre-specified
since it is well known that the ML learning is not good at model
selection, especially on a small size of samples. Moreover, the
block (3,1) and the block (3,2) become equivalent at a degen-
erated case at p(ut |�)=G(xt |�j , �

2I), �j =�2, and �j = 1/k.
Balancing the two extreme cases (namely WTA and Bayes

posterior sharing), the second row is featured by the �-map
sharing allocation by Eq. (21) with 1 < � < k. Further discus-
sion will be made at the end of Section 3.3.1.

Adapting: As a further extension of Eq. (7), the activated
learners or assumptions are modified to adapt xt according to
the allocation by pj,t , e.g.,

�new
j = �old

j + �pj,t��j , ��j = Reduce(
t (�
old
j)),

�old
j , �new

j ∈ D(�j), (34)

where � > 0 is a learning step size, and D(�j) is the domain
of �j , within which �j may need to satisfy certain constraints.
Moreover, Reduce(
t (�j)) denotes an operator that acts on
�old
j and xt to yield a direction along which
t (�j) reduces

within a neighborhood of �old
j . When
t (�j) is differentiable,

Reduce(
t (�j)) can be given by −∇�j

t (�j) or its projection

onto D(�j).

2140 L. Xu / Pattern Recognition 40 (2007) 2129–2153

Moreover, each �j is also updated in proportional to pj,t .
When pj,t �0, one simplest way is �j =∑N

t=1 pj,t /N that may
be adaptively updated by

�new
j =

{
(�+ �old

j)/(�+∑k
j=1 �old

j) if j = arg max� p�,t ,

�old
j /(�+∑k

j=1 �old
j) otherwise.

(35)

When pj,t < 0, the updating needs to satisfy �j �0,
∑

j �j =1,
which can be made by

�new
j = �old

j + �(pj,t − �old
j), �j = e�j

/
k∑

j=1

e�j . (36)

Determining: Similar to the fact that RPCL drives extra learn-
ers away, for those in Table 2 with automatic model selection
nature, we can determine whether some learners should be re-
moved if they are tending to dead (e.g., not be allocated with
samples for a long period), which can be made via monitoring
some variables that can be used as indicators. E.g., one typical
way is initially letting �j = 1/k for every j and then acts as
follows:2

if �j → 0 is detected, discard the j th structure,

k← k − 1. (37)

For a specific problem there may be also other indicators for
this purpose.

Finally, we need to determine whether learners are stabilized
to provide candidate solutions.

Verifying: Similar to that in Fig. 4.

3.3. Further details on several typical problem solving tasks

3.3.1. Gaussian mixture and coordinated mechanisms
In 1998 [16,42], RPCL learning is extended to elliptic clus-

ters with each cluster described by a general Gaussian density
G(x|�j , �j). Here, we further elaborate such a case, i.e., it fol-
lows from Eq. (26) that each learner is given probabilistically
by
t (�j) = − ln G(x|�j , �j) − ln �j , from the perspective of
the general framework introduced in Fig. 9. Corresponding to
the three typical allocation schemes in Section 3.2.1, namely,
WTA, shared, and penalized, the discussion made on Table 2
tells us that this general framework will implement one of the
following choices:

• An adaptive EM algorithm listed at the block (3,3), that
makes the ML learning on the Gaussian mixture pk(x|�)=∑k

j=1 �jG(x|�j , �j) with Eq. (21) at � = k for pj,t and
Eq. (35) for �j , as well as Eq. (34) becoming Eq. (7) plus

�new
j = (1− �pj,t)�

old
j + �pj,t��j

,

��j
= h2I + ej,t e

T
j,t ,

ej,t = xt − xj,t , xj,t = xt (�j)= �old
j . (38)

2 Where a number 	 → 0 means that 	 can be regarded as 0 or
approaching 0 according to some detecting technique.

This algorithm implements not only the ML learning for
h2=0 in an adaptive version of the well-known EM algorithm
[49,77,81], but also a smoothing regularization for a h2 > 0.
The details are referred to Section 3.4.4 and Eq. (79).
• BYY–RPCL listed at the block (4,3), that extends the RPCL

learning in help of Eq. (9) (or more generally Eq. (22)) for
pj,t and Eq. (35) for �j , with the number of Gaussians de-
termined automatically during learning. In this case, there
is pj,t < 0 that makes Eq. (38) no longer apply since it no
longer guarantees that �j is positive definite. Instead, we
replace Eq. (38) with

�j = SjS
T
j , Snew

j = Sold
j + �pj,tG

old
�j

Sold
j ,

G�j
= �−1

j ��j
�−1

j − �−1
j . (39)

Again, as will be further introduced in Eq. (79), it implements
a smoothed BYY–RPCL for a h2 > 0.
• BYY–CL at the block (1,3), �-map at the block (2,1), and

BYY �-map at the block (2,3) all extend CL to a RPCL
like mechanism in help of pj,t by either Eq. (6) or (21)
at � < k, with Eq. (35) for �j and Eq. (38) for �j . It also
makes the number of Gaussians determined automatically.
The reason will be explained not only later in Section 3.4
from a perspective of the BYY harmony learning but also
in the sequel from a perspective of three mechanisms in
coordination.

As introduced in Section 3.1, the automatic model selection
nature by RPCL comes from a coordination of two opposite
mechanisms, namely one for each learner to participate and the
other for each learner to leave. The WTA allocation by Eq. (6)
with a local criterion
t (�j)=‖xt −mj‖2 leads to the previous
CCL. It has the dead unit problem because learners do not have
an equal chance to participate. This problem can be solved via
a participating mechanism that let each learner to have an equal
initial chance to participate, via either its local criterion or the
global criterion.

For the previous FSCL that bases still on the WTA allo-
cation by Eq. (6), its local criterion by Eq. (8) provides a
participating mechanism that penalizes those frequent winners
and rewards those constant losers. On the other hand, we can
still use
t (�j)=‖xt −mj‖2 but minimize the global criterion
by Eq. (19) under the constraint by Eq. (32), resulting in
Eq. (21) that lets all the learners in C� to get a chance pj,t > 0
to participate per sample comes.

However, all the above cases are lack of a mechanism for
an incapable/extra learner to leave. As a result, they will still
fail when the number of learners in consideration is larger than
an appropriate number. As previously introduced, RPCL im-
proves FSCL via penalizing the rival by Eq. (9), which pro-
vides a mechanism to drive an incapable/extra learner away. An
appropriate balance between this leaving mechanism and the
participating mechanism leads to the favorable RPCL nature of
automatic model selection, with the balance controlled by the
de-learning rate in Eq. (9). Moreover, instead of providing
a participating mechanism via a local criterion by Eq. (8), a
balance between the mechanisms for participating and leaving

L. Xu / Pattern Recognition 40 (2007) 2129–2153 2141

)(jt θθε

d

e tj,

2
jσ

tjti

jttj

ee
mxe

,,

2

,

>
−=

d

e ti,

Fig. 10. Rewarding vs penalizing via variances.

can be obtained via the generalized RPCL allocating scheme
by Eq. (22).

Also, we can get a leaving mechanism via an appropriate
local criterion, e.g., by Eq. (26) instead of using a global allo-
cating policy such as Eq. (9) or (22). Without losing generality,
still using the WTA allocating policy by Eq. (6), we consider
Eq. (26) with a special Gaussian G(x|mj , �2

j I). It follows from

that
t (�j)=− ln �j +0.5[‖xt −mj‖2/�2
j +d ln(2��2

j)] varies

with �2
j as shown in Fig. 10, where d is the dimension of x. If

the j th learner wins a lot of samples, �2
j will become larger than

a threshold, not only
t (�j) will increase but also the gap be-
tween different learners reduces. In other words, the competing
ability of learners that won too much in past is self-penalized
and the competing ability of weaker learners is rewarded for a
relative boosting, which thus provides a participating mecha-
nism similar to �j in Eq. (8). It can also be observed from the
term 0.5‖xt − mj‖2/�2

j that �−2
j ∝ �j takes a role similar to

�j in Eq. (8).
More than the above, when the j th learner won too fewer

samples with its �2
j dropping below certain threshold, not only

t (�j) will increase but also the corresponding gap between dif-
ferent learners increases. As a result, an incapable/extra learner
is self-penalized to fade out, which also provides a leaving
mechanism that is different from the RPCL one by Eq. (9).
Moreover, as the competing ability of the j th learner decreases,
�j decreases and the other �i will relatively increase. That is,
the term − ln �j enhances this self-penalizing featured leav-
ing mechanism. As a result, the local criterion internally seeks
an appropriate balance between its participating and leaving
mechanisms, with an automatic model selection nature.

Putting p(x|�j)=G(x|�j , �
2
j I) in Eq. (30), we get that
t (�j)

varies with �2
j in a way similar to Fig. 10. Thus, the above

discussion applies too. Differently, the role of �j is similar
to that in Eq. (8), which enhances a participating mechanism
instead of a leaving mechanism. Generally, with p(x|�j) =
G(x|�j , �j) in Eq. (30), we are lead to a finite product of
Gaussians as an extension of Eq. (8).

The second row in Table 2 can also be understood from the
view of seeking a balance between the mechanisms for partic-
ipating and leaving. Between the two extreme cases (namely
WTA and Bayes posterior sharing), the �-map sharing alloca-
tion by Eq. (21) with 1 < � < k will enhance the participating

mechanism, and thus improves CL with dead units reduced.
Similarly, it may also improve BYY–CL with an appropriate
�. However, it has no help on FSCL due to too stronger a par-
ticipating force by �j in Eq. (8).

3.3.2. Local subspace and local factor analysis
For a finite size of samples in a high dimension space, �j

in G(x|�j , �j) becomes singular easily, which means that a
Gaussian structure locates actually in a subspace of a lower
dimension. It is not adequate to only consider either the general
case �j or the degenerated case �j =�2

j I . We further consider
�j in the following decomposition:

�j = �2
j I +

mj∑
i=1

�(i) 2
j a

(i)
j a

(i) T
j ,

a
(i) T
j a

(i)
j = 1, a

(i) T
j a

(�)
j = 0, i �= �, (40)

where �(1) 2
j ��(2) 2

j · · · ��
(mj) 2
j with each �(i) 2

j being the

variance of the projection a
(i) T
j x on the direction of the ith

principal vector a
(i)
j . This expression by Eq. (40) actually repre-

sents a subspace located at �j , as shown in Fig. 11(a). Thus, our
task becomes finding subspaces at different locations, which is
called local subspace analysis. Instead of directly updating �j ,

we can update �2
j , {�(i) 2

j , a
(i)
j }

mj

i=1 via Eq. (34) by considering

∇{a(i)
j ,�(i) 2

j }mj
i=1,�

2
j

t (�j) subject to a
(i) T
j a

(i)
j =1, a

(i) T
j a

(�)
j =0,

where
t (�j) is given by − ln G(xt |�j , �j)− ln �j . The details
are referred to Sections 3.2 and 3.3 of [18,43].

As illustrated in Fig. 11(a), the subspace obtained via the
decomposition by Eq. (40) is equivalent to orthogonally pro-
jecting each sample x onto a subspace that is located at � and
spanned by vectors a1, a2, a3, such that the average square er-
ror ‖e‖2 between x and its projection x̂ is minimized. When
only the first principal component is considered, we get local
PCA for detecting multiple lines, as shown in Fig. 11(b). We
can also detect multiple planes as shown in Fig. 11(c). Using
the transformation technique in Ref. [55], we can also detect
multiple curves and surfaces. Some applications are referred to
Refs. [22,23].

However, we are unable to determine those unknown dimen-
sions of subspaces, though it follows from the previous subsec-
tion that we are able to determine k via implementing a RPCL
learning or a BYY harmony learning. Alternatively, it follows
from e=x− x̂, x̂=Ay+� that this subspace analysis is equiva-
lent to the special case �j=�2

j I of the following factor analysis
(FA) [56,57]:

x = Ajy + �j + ej , ej ∼ G(ej |0, �j),

y ∼ G(y|0, I), E(ej y
T)= 0, or

p(xt |�j)=
∫

G(x|Ajy + �j , �j)G(y|0, I) dy

=G(x|�j , AjA
T
j + �j), (41)

where u ∼ p(u) means that u comes from p(u). In a general
case �j �= �2

j I , the project x → x̂ is still linear but its direction

2142 L. Xu / Pattern Recognition 40 (2007) 2129–2153

e

e

1a

3a

2a

x

1y 2y

3y

x̂

e

Fig. 11. Subspaces.

is no longer orthogonal to the subspace. Also, the average error
‖e‖2 is no longer minimized.

Since a rotation transform on y ∼ G(y|0, I) results in y′ ∼
G(y|0, I) still, it has no difference to the marginal distribution
p(xt |�j) by Eq. (41) whether Aj is a general matrix or subject
to the following constraint:

Aj = Uj�j , UjU
T
j = I, �j = diag[�(1) 2

j , . . . , �
(mj) 2
j].

(42)

Moreover, this p(xt |�j) still remains unchanged when

Aj = Uj , y ∼ G(y|0, �j),

Uj =
{

UjU
T
j = I, i.e., Uj is orthogonal (a),

upper-triangle with diagonal (b),

elements being 1
(43)

where the components of y remain uncorrelated but not from
y ∼ G(y|0, I). When k and {mj }kj=1 are given, the choices by
Eqs. (41)–(43) have no difference for making a ML learning.

The situation becomes quite different when k and {mj }kj=1
are unknown. The performance by the ML learning deteriorates
since the ML learning is not good at determining these un-
knowns, while on the choices by Eq. (42) or (43), k and {mj }kj=1
can be determined automatically during either the RPCL learn-
ing [16,18] or the BYY harmony learning [45–48]. All of them
are included in the framework in Fig. 9, especially those in
Table 2 with automatic model selection nature, via the follow-
ing probabilistic model:

t (�j)/�j =− ln[p(u|�j)�j], ut = (xt , yt),

p(u|�j)=
{

G(x|Ajy + �j , �j)G(y|0, I) for Eq. (42),
G(x|Ajy + �j , �j)G(y|0, �j) for Eq. (43).

(44)

As each sample xt comes, we need to get its inner representation
yt to form a ut = (xt , yt) in order to compute
t (�j). It follows
from the BYY harmony learning on the FA by Eq. (41) (see,
Ref. [45, Eqs. (127) and (129)]) that

yj,t = f (xt , Uj , �j),

f (x, Uj , �j)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[I + AT
j �−1

j Aj]−1AT
j for Eq. (42),

�−1
j (x − �j)

[�−1
j + AT

j �−1
j Aj]−1AT

j for Eq. (43).

�−1
j (x − �j)

(45)

with ut = (xt , yj,t), we are able to compute
t (�j) and get
pj,t by Eq. (20) in one specific form. Then, we update �j by
Eq. (35) or (36) and update �j by Eq. (34). Taking Eq. (43)(a)
as an example, the detailed form of Eq. (34) becomes

(a) xj,t = Uold
j yj,t + �old

j , ej,t = xt − xj,t ,

�new
j = �old

j + �pj,t ej,t ,

gUj
= �old −1

j (ej,t y
T
t + Uold

j �j),

Unew
j = Uold

j + �(gUj
− Uold

j gT
Uj

Uold
j),

update �j by Eq. (38) or (39) but with;

��j
= h2I + Uold

j �jU
old T
j + ej,t e

T
j,t ,

(b) �new
j = (1− �pj,t)�

old
j + �pj,t��j

,

��j
= diag[yj,t y

T
j,t + �j],

or in the case with pj,t for some j, we update �j = V 2
j via

V new
j = V old

j + �pj,tG
old
�j

V old
j ,

G�j
= �−1

j ��j
�−1

j − �−1
j . (46)

where diag[A] denotes the diagonal part of A. Learning is
regularized via h2 > 0 and �j > 0, with the details referred to
Section 3.4.5. This regularization can be easily shut off by
setting h2 = 0 and �j = 0.

In addition to determining k by Eq. (37), there is also a
problem of determining the dimension of each local subspace,
for which �(i)

j acts as an indicator. Initially, letting �j = I for
every j , and during learning we act as follows:

if �(i)
j → 0 is detected, remove the ith

coordinate in the j th subspace,

then reduce its dimension by mj ← mj − 1. (47)

Finally, it deserves to mention that the local subspaces have also
been extended to multiple temporal state spaces by considering
temporal relations. The details are referred to [46, Section IV],
especially its Table 2 and Eq. (72).

3.3.3. MML and object detection
Proposed in 1994 [19,20], the multi-sets modelling approach

not only relates to but also further extends Gaussian mixture and
local subspaces for object detection. An object is described by a

L. Xu / Pattern Recognition 40 (2007) 2129–2153 2143

parametric structure Sr
j either by Eq. (3) for a shape such as line,

curve, and ellipses or by Eq. (4) for a shape in a template. Then,
er
t (�

r
j) is obtained by Eq. (11), with several typical examples

given in Ref. [21, Eqs. (32)–(34)]. Specifically, er
t (�

r
j) has an

analytic expression when Sr
j represents either a linear structure

(i.e., a subspace that includes a line, a plane, etc., as shown in
Fig. 11) or a circle; while er

t (�
r
j) has no analytic expression

when Sr
j represents a nonlinear structure other than a circle. In

such cases, er
t (�

r
j) is obtained via an optimization procedure,

readers are referred to Ref. [58] for an example of detecting
ellipses as shown in Fig. 6.

The tasks of object detection can also be implemented by
the general framework in Fig. 9, especially those in Table 2
with automatic model selection on the number of objects. The
cases with the allocation scheme by Eqs. (6) and (21) at �= k

were early suggested in 1994 [19,20]. The probabilistic model
by Eq. (29) was firstly suggested also in Ref. [20] and then
further extended to consider a density p(er

t |�j) in Section 3.3
of Ref. [21] for which it follows from Eq. (11) that ��r

j in
Eq. (34) can be computed via

��r
j =−[� ln p(er

t |�j)/�er
t][�xt (�

r
j)/��r

j]. (48)

when Sr
j represents a linear structure, such as a line, a plane,

a hyperplane, and a subspace, as shown in Fig. 11, as well as
a template by Eq. (4) as shown in Fig. 3, we can regard that
er
t comes from p(er

t |�j) = G(er
t |0, �j), which leads to local

PCA with Sr
j for a line, to a local MCA with Sr

j for a plane,
and further to two different types of local subspaces with Sr

j

for a subspace [21].
In general, it follows from Eqs. (11) and (5) that the map

from xt to er
t is implemented via an optimization process. In

some cases, we may find an analytic expression er
t =g(xt , �

r
j),

from which we can get a density supported directly on the
domain of xt as follows:

p(x|�j)= p(er
t |�j)|�g(x, �r

j)/�x|,

t (�

r
j)=−�−1

j ln[�jp(x|�j)]. (49)

3.3.4. Mixture-of-experts, RBF nets, and agents: with external
action

Mixture-of-experts: Having been widely studied and applied
in the past two decades, it jointly performs function approxi-
mation type tasks via the following original model [59]

p(�|x, �)=
k∑

j=1

p(j |x, �g
j)p(�|x, �a

j), (50)

for a probabilistic mapping x → �. Usually p(�|x, �a
j) =

G(�|�(x|��
j), �

a
j I) that provides an action �(x|��

j) by Eq. (10)
under a Gaussian noise of a variance �a

j . Also, from Eq. (50)
we can get the following regression:

E[�|x] =
∑
j=1

p(j |x, �g
j)E[�|x, �a

j], E[�|x, �a
j] = �(x|�a

j).

(51)

All the unknown parameters are estimated via the ML learning
on a set of pairs {xt , �t }Nt=1. However, the gating net p(j |x, �g

j)

is itself a parametric model that makes the ML learning on this
part unable to be implemented by an exact EM algorithm.

An alternative ME model has also been proposed as follows
[60]:

p(j |x, �g
j)= �jp(x|�r

j)

/
k∑

i=1

�ip(x|�r
i) , (52)

with two advantages. First, the ML learning on

p(�|x, �j)=
k∑

j=1

�jp(x|�r
j)G(�|�(x|��

j), �
a
j I) (53)

can be easily implemented by an exact EM algorithm when
p(x|�j)=G(x|�j , �j). Second, it follows from

t (�j)/�j =− ln[�jp(xt |�j)G(�t |f (xt |�j), �
2
j I)], (54)

that we can implement the general framework in Fig. 9, es-
pecially those in Table 2 with k determined automatically via
pushing �j → 0, together with the parameters updated by
Eq. (46) for �j plus the following one:

j,t = �t − f (xt |�old
j),

�new
j = �old

j + �pj,t

�f T(xt |�j)

��j

j,t ,

�new
j = �old

j + �pj,t (‖
j,t‖2/d� − �2
j)/�

old
j ,

d� is the dimension of �. (55)

RBF nets: The above alternative ME model is simplified into
normalized RBF nets and extended normalized RBF nets at the
following special case [80]:

f (x|�j)= wT
j x + cj , �j = |�j |

/
k∑

i=1

|�i | . (56)

The updating of �j is simplified into wnew
j = wold

j +
�
j,t xt , cnew

j =cold
j +�
j,t . As a result, the conventional subop-

timal two stage approach for RBF net learning can be replaced
by the ML learning via an adaptive EM algorithm. Again, we
can implement the general framework in Fig. 9, especially
those in Table 2 with automatic model selection on k either via
pushing �j → 0 explicitly or via �j = |�j |/∑k

i=1 |�i | with
some |�j | pushed to 0. Readers are referred to further details
in Section 22.9.1(d) of Ref. [48].

Multi-agents: We further consider that each agent is learnt in
help of
t (�j) by Eqs. (15)–(17) via the general framework in
Fig. 9, especially those in Table 2 with the number of agents
determined automatically.

3.4. BYY system and BYY harmony learning

3.4.1. BYY system
Firstly proposed in 1995 [44] and developed in the past

decade, the BYY harmony learning is featured by modelling

2144 L. Xu / Pattern Recognition 40 (2007) 2129–2153

Fig. 12. Bayesian Ying–Yang system.

the problem solving tasks of Types I and II jointly via a uni-
fied statistical framework called BYY system in which all the
unknowns are learned by a theory under the name of best har-
mony [45–48]. Here we briefly introduce its key points.

As shown in Fig. 12, we consider a general two-pathway
approach from the joint distribution of the external observations
X and its inner representations R in the following two types of
Bayesian decomposition:

p(X, R)= p(R|X)p(X), q(X, R)= q(X|R)q(R). (57)

In a compliment to the famous Chinese ancient Ying–Yang phi-
losophy, the one of p(X, R) coincides the Yang concept with a
visible domain p(X) for a Yang space and a forward pathway
by p(R|X) as a Yang pathway. Thus, p(X, R) is called Yang
machine. Similarly, q(X, R) is called Ying machine with an in-
visible domain q(R) for a Ying space and a backward q(X|R)

as a Ying pathway. Such a Ying–Yang pair is called Bayesian
Ying–Yang (BYY) system.

Specifically, R = {Y, �} can be divided into two parts, and
thus the system is also divided into two layers, as shown in
Fig. 12. One is Y that consists of a set of inner encoding or state
variables, which timely respond the external environment per
sample or per several samples observed. This Y is supported
by a parametric substructure q(Y |�y). On one hand, taking a
key role in the information flow within the front layer, Y is the
source of the information flow to fit the observations XN via
the top-down pathway that implements the abilities of Type I
by another parametric substructure q(X|Y, �x|y). On the other
hand, featuring the abilities of Type II, this Y comes from the
information flow via a bottom-up pathway p(Y |X, �y|x) from
XN , or in a smoothed form:

ph(X)=
N∏

t=1

G(xt |x̄t , hI). (58)

In a summary, the front layer itself is a parametric Ying–Yang
pair:

p(X, Y |�p)= p(Y |X, �y|x)ph(X),

q(X, Y |�q)= q(X|Y, �x|y)q(Y |�y), (59)

which consists of four substructures with each depending on
a subset of parameters � = {�p, �q} with �p = {�y|x, h} and
�q = {�y, �x|y}. Being different from Y that responds the envi-
ronment per sample, � is determined collectively from all the
samples and represents the common regularities or dependen-
cies among data as its knowledge about the world. This � is
accommodated in the back layer with some a priori structure
to back up the front layer. A feedback from the front layer to
the back layer goes via p(�|X). Moreover, the back layer may
be modulated by a meta knowledge from a deeper layer.

The Ying–Yang system in Fig. 12 are featured by two
manifolds p(X, Y |�p) and q(X, Y |�q). After the structures
q(Y |·), q(X|Y, ·), and p(Y |X, ·) are pre-designed, the task is
to determine three levels of unknowns:

Association or relaxation: The task is to determine Y from
X via certain dependence or association within the front layer
and is usually referred to under the terms of reasoning, map-
ping, repression, etc. Also, Y may be indirectly determined via
minimizing an energy or cost that incurs from violating certain
constraints in S, under the term of relaxation.

Parameter learning: The task is to determine �, which in-
cludes determining Y as a subtask. Determined collectively by
all the samples, � is updated as samples come in a speed much
slower than Y . This parameter learning is made via optimiz-
ing the performances of implementing either or both of Types I
and II abilities, subject to either none or some priori knowledge
q(�) from the back layer.

Model selection: The scale for representing R (or equiv-
alently the scale of the entire system) is featured jointly by
the scale kp of p(X, Y |�p) and the scale kq of q(X, Y |�q).

L. Xu / Pattern Recognition 40 (2007) 2129–2153 2145

One common part shared by both kp and kq is the scale
kY for representing Y . Moreover, q(X|Y, �x|y) may be
designed via a combined architecture, which contributes a
rest part k̄q of kq after taking off the effect of kY . Also,
p(Y |X, �y|x) may be designed via a combined architecture
too, which contributes another rest part k̄p of kp after taking
off the effect of kY . Therefore, the challenging task of model
selection actually includes determining each of kY , k̄q , and k̄p.

Taking clustering analysis by a Gaussian mixture as an ex-
ample, kY = k with k being the number of Gaussians, while
kq = k − 1 + dk + 0.5dk(k + 1) denotes the effective free
parameter number in the set of mj , �j , j = 1, . . . , k as well
as p(Y = j), j = 1, . . . , k, where kp is equal to the effective
number of free parameters for representing the discriminating
boundaries.

3.4.2. BYY harmony learning theory and automatic model
selection

An analogy of the Ying–Yang system in Fig. 12 to the ancient
Chinese Ying–Yang philosophy motivates to determine all the
three level unknowns under a best harmony principle, which
is mathematically implemented by maximizing the following
harmony measure:

H(p‖q)=
∫

p(R|X)ph(X) ln[q(X|R)q(R)]�(dX)�(dR)

=
∫

p(�|X)

{∫
p(Y |X, �y|x)ph(X)

× ln[q(X|Y, �x|y)q(Y |�y)q(�)]

× �(dX)�(dY)

}
�(d�), (60)

with respect to kY , k̄q , and k̄p as well as p(�|X).
Instead of seeking a best �∗ value, it seeks a density p∗(�|X)

that represents the uncertainty on estimating � from a finite
size of samples. However, it is difficult to have an appropriate
priori q(�) and to design an appropriate structure for p(�|X). To
avoid the difficulty, we only seek p(�|X) at X=XN instead of
being as a function of both � and X, i.e., we consider p(�|X)=
p(�|XN) such that Eq. (60) can be further rewritten into

H(p‖q)=
∫

p(�|XN)H(p‖q, �) d�,

H(p‖q, �)=Hf (p‖q, �)− Z(�),

Hf (p‖q, �)=
∫

p(Y |X, �y|x)p(X)

× ln[q(X|Y, �x|y)q(Y |�y)] dX dY , (61)

where Z(�) = − ln q(�) represents a priori knowledge for
regularization.

Further noticing the following inequity

H(p‖q)=
∫

p(�|XN)H(p‖q, �) d�� max
�

H(p‖q, �),

(62)

we can avoid the difficulty for the maximization of H(p‖q)

via approximately seeking the maximization of its upper bound

max�H(p‖q, �). That is, maximizing H(p‖q) with respect to
kY , k̄q , k̄p, and p(�|X) is replaced by

max
{�,kY ,k̄q ,k̄p}

H(p‖q, �). (63)

A simplest and also mostly encountered case is that there
is no priori knowledge for q(�). Let q(�) = 1 or Z(�) = 0,
maxhH(p‖q, �) will force h= 0 and thus ph(X)= p0(X) by
Eq. (58). Provided that k̄q, k̄p are pre-given, Eq. (61) becomes

max
{�,kY }

{
Hf (p‖q, �)=

∫
p(Y |XN, �y|x)

× ln[q(XN |Y, �x|y)q(Y |�y)] dY

}
, (64)

which seeks a best harmony within the front layer Ying–Yang
system in Fig. 12.

By Eq. (63), the maximization of H(p‖q) by Eq. (60) is
approximately implemented because the feedback interaction
from the front to the back layer has been ignored with p(�|XN)

not considered. If we take p(�|XN) in consideration, an im-
provement would be obtained by seeking k = {kY , k̄q, k̄p} to
maximize an improved estimate of H(p‖q). For this purpose,
we expand H(p‖q, �) with respect to � around the resulted
�∗ obtained from Eq. (63) up to the second order, ignoring its
first order term since ∇�H(p‖q, �)= 0 at �= �∗, by which the
task can be approximately decomposed into the following two
stages:

Stage I: � ∗ = arg max
�

H(p‖q, �)

for a set of values of k.

Stage II: k∗ = arg min
k

J (k), J (k)=−Ĥ (p‖q),

Ĥ (p‖q)=H(p‖q, �∗)− 0.5d(�∗), (65)

where d(�∗) = −Tr[��2H(p‖q, �)/����T]�=�∗ with � =∫
(� − �∗)(� − �∗)Tp(�|XN) d�. Though it involves the un-

known p(�|XN) and thus is unable to compute, we can still
get a rough estimate from the number nf of free parameters
in � [48,61,62]:

d(�∗)=
{

nf (a) an under-constraint choice,

2nf (b) an over-constraint choice.
(66)

The criterion J (k) in Eq. (65) provides a further improvement
on typical existing model selection criteria because the scale
of a BYY system is considered separately for the part kY and
for the rest parts by k̄q and k̄p. This separation makes the
contributions of two parts in J (k) estimated differently. The
contribution by kY can be estimated more accurately while the
contribution by the rest part is still estimated roughly in a way
similar to those typical model selection criteria. As a result,
J (k) in Eq. (65) can outperform the typical model selection
criteria, as confirmed by experiments [63,64,78,79].

Even interestingly, the model selection problems of many
typical learning tasks [62] can be reformulated into selecting
merely the kY part in a BYY system. This favorable feature
makes both parameter learning for � and model selection
for kY implemented simultaneously during the maximization

2146 L. Xu / Pattern Recognition 40 (2007) 2129–2153

of Eq. (64) via a new mechanism, namely automatic model
selection during parameter learning. For q(Y) in a scale re-
ducible structure with kY initialized at values large enough,
an appropriate kY will be determined automatically dur-
ing implementing parameter learning max� Hf (p‖q, �,XN)

by Eq. (64) via maximizing
∫

p(Y) ln q(Y |�y) dY with
p(Y)= ∫ p(Y |X, �y|x)p(X) dX [61]. Detailed discussions are
referred to Sections 22.5 and 23.3.2 in Ref. [48], Section II(B)
in Ref. [46], and Section III(C) in Ref. [62]. In other words,
the BYY harmony learning by Eq. (64) provides a general the-
ory for learning algorithms with a RPCL-like mechanism that
implements model selection automatically during learning.

3.4.3. Approximate implementations and regularization
techniques

A detailed implementation of Eq. (63) depends on the types
of dependence among samples in XN . There are two typical
scenarios. The simplest but most widely studied case is that
samples in XN are i.i.d., while the other includes those with
a temporal or serial dependence among samples. The later has
been studied under the name of temporal BYY learning, with
details referred to Refs. [46,65,66]. In the sequel, we only in-
troduce the i.i.d. one.

The inner representation of each sample x may consist of
either or both of a set y of a finite number of real variables
and a set L of a finite number of a discrete variables. With
p(X)= ph(X) by Eq. (58), Eq. (61) becomes

H(p‖q, �)=
N∑

t=1

∑
L

p(L|xt)HL,t − Z(�), (67)

HL,t=
∫

p(y|xt , L)

{
�(xt , y, �)−1

2
h2Tr[�x

L(xt , y, �x|y)]
}

dy,

�(xt , y, �)= ln[q(xt |y, L, �x|y)q(y|�y, L)q(L)],
�x

L(x, y, �x|y)=−�2 ln q(x|y, L, �x|y)
�x�xT ,

where � consists of all the unknown parameters in q(xt |y, L,

�x|y)q(y, L|�y)q(L). Moreover, the second term h2Tr[·] comes
from

∫
G(x|xt , h

2I)Q(x) dx in help of the following type of
approximation:

∫
G(|�, �)Q() d	 ≈ Q()	=� + 1

2
Tr

[
�

�2Q()

�	�	T

]
	=�

.

(68)

Moreover, if there is no priori constraint on p(y|xt , L), the inte-
gral over y will also disappear during maximizing H(p‖q, �),
resulting in

p(y|xt , L)= �(y − gL(xt , �))gL(xt ,�)=fL(xt ,�),

fL(xt , �)= arg max
y

ln[q(xt |y, L, �x|y)q(y|�y, L)]. (69)

To update �, we need to compute ∇�H(p‖q, �) via the chain
rule on fL(xt , �). In many cases fL(xt , �) has no analytic ex-
pression but just implements a maximization procedure. One
easiest handling is simply ignoring the relation fL(xt , �) to

�, which is a crude approximation that usually affects perfor-
mances. A better way is to consider p(y|xt , L) in an appropriate
structure that makes not only the relation to � get an analytic
expression (or partially) but also the integral over y become
implementable. One solution is to let

p(y|xt , L)=G(y|gL(xt , �L), �L), (70)

with g(XN, �) being a pre-specified parametric model. It fol-
lows from Eq. (68) that we further get

HL,t =
{
Q(xt , y, �)− 1

2
Tr[h2�x

L(xt , y, �)]

− 1

2
Tr[�L�y

L(y, �)]
}

y=gL(xt ,�L)

+ 1

2
Tr

[
�L

�2 Tr[�x
L(xt , y, �)]

�y�yT

]
y=gL(xt ,�L)

,

�y
L(y, �)= − �2 ln[q(x|y, L, �x|y)q(y|�y, L)]

�y�yT , (71)

where the last term in HL,t is a high order derivatives that
vanishes exactly in some cases or can be approximately ignored
in many cases.

The parameters h, �L vanish during maximizing H(p‖q, �)

if q(�) is irrelevant to the parameters. From Eq. (71), we get
HL,t =Q (xt , y, �)y=gL(xt ,�L) that becomes the extreme ridge
of the joint likelihood confined to y = gL(xt , �L), which leads
to a maximum extremal joint likelihood or shortly Max-EJL.
Readers are referred to Ref. [61, Sections 3.6 and 5.2] for de-
tails. With the improvements, h, �L will be determined in help
of certain priori constraints on h2, �L, e.g., the so-called data
smoothing and normalization [17,18,61,62,65] for details. Here,
we suggest two other types of constraints.

One is directly imposed on h, �L, under the name of equal
covariance, by which an explicit relation between h2 = h(�)

can be obtained from

Varp(x|�)(x)= Varph(x)(x) with

Varph(x)(x)= h2I + SN , (72)

ph(x)= 1

N

N∑
t=1

G(x|xt , h
2I), x̄ = 1

N

N∑
t=1

xt ,

SN = 1

N

N∑
t=1

(xt − x̄)(xt − x̄)T,

p(x|�)=
∑
L

q(xt |L, �)q(L),

q(xt |L, �)=
∫

q(xt |y, L, �x|y)q(y|�y, L) dy.

Also, we can get an explicit relation �L = �(�) as follows:

�L = VarG(y|gL(xt ,�L),�L)(y)= Varq(y|xt ,L)(y),

q(y|x, L)= q(xt |y, L, �x|y)q(y|�y, L)/q(xt |L, �). (73)

When both q(xt |y, L, �x|y) and q(y|�y, L) are Gaussian, we
can analytically not only solve the integral over y for q(xt |L, �)

L. Xu / Pattern Recognition 40 (2007) 2129–2153 2147

but also get analytical expressions for both h2=h(�) and �L=
�(�).

The other type is to indirectly impose a priori Z(�) =
− ln q(h2)− ln q(�L). This q(h2) is in a form of a scalar den-
sity p(�), ��0. One choice is p(�)=C−1�be−a�, a > 0, b > 0,
e.g., a �2 distribution or a Gamma distribution, as well as other
distributions in the table in p. 413 of Ref. [67]. In this case, a
trade off occurs on maximizing f (�)=−0.5��−a�+b ln �+c.
It follows from−f ′(�)=0.5�+a−b/�=0 that �=b/(0.5�+a).
Specifically, we have � = −Tr[�x

L(xt , y, �)]y=gL(xt ,�L) for
�= h2, where a, b depend on what type of distribution is cho-
sen, e.g., for a Gamma distribution, a = 0.5 and b = 0.5r − 1
with r being the ‘number of degrees of freedom’ that relates
to the number N of samples, and the dimension d of x for h.
Considering �L = LI , we can also determine L in a similar
way.

Furthermore, we move to consider p(L|xt). If there is no
priori constraint on p(L|xt), the sum over L in Eq. (67) will
also disappear during maximizing H(p‖q, �), resulting in

p(L|xt)=
{1 if L= Lt ,

0 otherwise,
Lt = arg max

L
HL,t . (74)

It saves the computing cost that is needed to enumerate over
all the values of L, which can be huge especially when L con-
sists of quite a number of discrete variables. Similar to the case
by Eq. (69), updating � also needs to compute ∇�H(p‖q, �)

via the relation Lt = arg maxL HL,t (�) but it is not differ-
entiable. We have to approximately ignore the relation with
certain suffering on performance. One way to still take the
relation back in consideration is the following Bayesian poste-
riori structure:

p(L|xt)= q(xt |L, �)q(L)

/∑
L

q(xt |L, �)q(L) , (75)

but with an expensive computing cost. Anyway, it is still work-
able in some cases, e.g., when L consists of only one integer
� and the above integral for q(xt |L, �) is analytically solv-
able. A trade off between the two conflict purposes is letting
Lt = arg maxLHL,t (�) to be approximated by a parametric
model f (xt , �), e.g., a sigmoid semi-linear mapping in Ref.
[68, Eq. (34)].

With all the above preparations, we are ready to develop a
detailed algorithm for updating � and � as well via computing
∇{�,�}H(p‖q, �). It deserves to note that the order of removing
the integral over x and the integral over y from Eq. (61) will
lead to a difference. If we consider to remove the integral over
y by Eq. (70) first and then we consider p(X) = ph(X) by
Eq. (58) to remove the integral over x in help of Eq. (68), HL,t

in Eq. (71) becomes

HL,t = {�(xt , y, �)− 1
2 Tr[�L�y

L(x, y, �)]}y=gL(xt ,�L)

− 1
2 Tr[h2�x

L(xt , �)]

− 1
2 Tr[h2�2 Tr[�L�y

L(x, y, �)]y=gL(xt ,�L)/�x�xT]x=xt
,

�y
L(x, y, �)=−�2 ln[q(x|y, L, �x|y)q(y|�y, L)]

�y�yT ,

�x
L(x, �)=−�2 ln[q(x|y, L, �x|y)q(y|�y, L)]y=gL(x,�L)

�x�xT .

(76)

Again, the last term in HL,t is a high order derivative that
vanishes exactly in some cases or can be approximately ignored
in many cases. Moreover, Eq. (76) becomes equivalent to Eq.
(67) simply with �L = 0 and gL(xt , �)= fL(xt , �).

3.4.4. BYY harmony learning on Gaussian mixture
In the special case that y = ∅ and L consists of only one

integer j , it follows from Eqs. (67) and (71) that we are related
to
(�) by Eq. (19) via
t (�j)/�j=− ln[q(xt |�j)�j] as follows:

H(p‖q, �)=−
(�)−�(�)−Z(�), Z(�)=− ln q(�), (77)

(�)=
N∑

t=1

k∑
j=1

pj,t
t (�j), pj,t = p(j |xt),

t (�j)=− ln[q(xt |�j)�j],

�(�)=
N∑

t=1

k∑
j=1

pj,t�t (�j , h
2),

�t (�j , h
2)=−1

2
Tr

[
h2 �2 ln q(x|�j)

�x�xT

]
.

That is, the minimization of
(�) is regularized by both a term
�(�) for the effect of removing integrals and a term Z(�) of
a priori knowledge for a finite number of samples. Moreover,
pj,t=p(j |xt) is given by either Eq. (74) or (75), which becomes

pj,t =
{

1 if j = jt ,

0 otherwise,
jt = arg min

j
[
t (�j)+ �t (�j , h

2)]
or

pj,t = e−
t (�j)

/
k∑

�=1

e−
t (��) . (78)

Particularly, when h2 = 0 and Z(�) = 0, the above pj,t is
equivalent to pj,t by Eq. (21) or (27) with xt in place of ut ,
where the extreme case �= k leads to the Bayes allocation by
Eq. (27) or equivalently by Eq. (75).

Considering q(xt |�j) = G(xt |�j , �j) and thus a Gaus-

sian mixture q(xt |�) =∑k
j=1 �jG(xt |�j , �j), it follows from

Eq. (77) that

t (�j)=− ln[�jG(xt |�j , �j)], �t (�j , h
2)= h2Tr[�−1

j].
(79)

Maximizing H(p‖q, �) by Eq. (77) leads to the algorithm with
Eqs. (7) and (38) plus Eq. (35) or (36). In the simplest case
that we ignore Z(�), we are lead to h = 0, pj,t by Eq. (6),
and an algorithm by Eq. (28) in [21] that was firstly obtained
in 1995 [44] under the name of the hard-cut EM algorithm. In
general, we also need to determine h2 �= 0. It follows from
Eq. (72) that we get h2I + SN =∑k

j=1 �j (�j�
T
j + �j)− ��T

2148 L. Xu / Pattern Recognition 40 (2007) 2129–2153

with �=∑k
j=1 �j�j , that is,

h2 = 1

d

⎧⎪⎨
⎪⎩

k∑
j=1

�j‖�j‖2 −
∥∥∥∥∥∥

k∑
j=1

�j�j

∥∥∥∥∥∥
2

+ Tr

⎡
⎣ k∑

j=1

���j − SN

⎤
⎦
⎫⎬
⎭ . (80)

Alternatively, we can also determine h2 by either Z(�) =
− ln q(�) via data-smoothing [21] or Z(�) = − ln q(h2) via a
�2 or a Gamma distribution.

During learning, the selection on k is made via Eq.
(37) automatically. Moreover, a better k can be determined
with an expensive computing cost at the Stage II. With
�j = (1/N)

∑N
t=1 pj,t , it gets the following detailed form:

k∗ = arg min
k

J (k), J (k)= JC(k)+ 0.5d(�∗)/N ,

JC(k)= 0.5
k∑

j=1

�j ln |�j | + h2
k∑

j=1

�j Tr[�−1
j]

−
k∑

j=1

�j ln �j − 0.5
kd

N
, (81)

where d(�∗) is given by Eq. (66) with nf = k − 1 + kd +
0.5d(d + 1)k with k − 1 for �j , kd for �j , and 0.5d(d + 1)k

for �j , respectively.
It also deserves to note that we may also be lead to pj,t in

a type by Eq. (22) that is similar to RPCL learning [17,18], by
considering the case h2 = 0 with

q(�) ∝ 1/V 0(�), 0 < 0 < 1, V (�)=
N∑

t=1

q(xt |�), (82)

for normalization [18,21] via q(x|�) =∑i∈C�
�iG(xt |�i , �i)

with C� by Eq. (32). It follows from Eqs. (63) and (79)
that H(p‖q, �) = −
(�) + ln q(�) and that ∇�j

ln q(�) =
N−10

∑N
t=1 t�j,t∇�j

ln[�jG(xt |�j , �j)]with �j,t by Eq. (21)

and t = q(xt |�)/q̄(xt |�), where q̄(xt |�) = N−1∑N
t=1 q(xt |�).

We have also ∇�j

(�) = −∑N

t=1 qj,t∇�j
ln[�jG(xt |�j , �j)]

with qj,t given by Eq. (21) too. It further follows from
H(p‖q, �)=−
(�)+ ln q(�) that

∇�j
H(p‖q, �)= 1

N

N∑
t=1

pj,t∇�j
ln[�jG(xt |�j , �j)],

pj,t = qj,t − 0t�j,t , (83)

i.e., we get pj,t in a type by Eq. (22). Another RPCL-like
mechanism is also obtained from the BYY harmony learn-
ing with Z(�) = 0 and pj,t by Eq. (27), as suggested in
Ref. [17, Eq. (40)] and further demonstrated in Ref. [69].

3.4.5. BYY harmony learning on local subspaces and
extensions

For the local FA, the BYY harmony learning in Eq. (42) or
(43) is able to make k and {mj }kj=1 automatically determined

during learning. E.g., in Eq. (43) it follows that Eq. (77) is
modified into

t (�j)=− ln[�jG(xt |Ujy + �j , �j)G(y|0, �j)]y=Wj (xt−�j),

�t (�j , h
2)= h2 Tr[�−1

j] + Tr[�j (U
T
j �−1

j Uj + �−1
j)],

y =Wj(x − �j)

= arg maxy ln[�jG(x|Ujy + �j , �j)G(y|0, �j)],
with

Wj(x − �j)=
⎧⎨
⎩

f (x, Uj , �j) (a) by Eq. (45),
�jU

T
j (UT

j �jUj (b) or equivalently.

+�j)
−1(x − �j)

(84)

Then, maximizing H(p‖q, �) by Eq. (77) leads to the algorithm
by Eq. (46). Again, we can get h2 by Eq. (80) with �j replaced
by UT

j �jUj + �j , and it further follows from Eq. (73) that

�j = �j − �jU
T(UT

j �jUj + �j)
−1U�j . (85)

Alternatively, we can also determine h2, �j by either Z(�) =
− ln q(�) via data-smoothing [21] or Z(�) = − ln q(h2) via a
�2 or a Gamma distribution.

During implementing the algorithm, again the model selec-
tion on k is made via Eq. (37) with �j updated by Eq. (35) or
(36), while k∗, {m∗j }kj=1 are determined automatically via Eq.

(47). On a small sample size N , a better k∗, {m∗j }kj=1 can be
selected as follows:

{k∗, {m∗j }kj=1} = arg min
k,{mj }
{J (k, {mj })+ 0.5d(�∗)},

J (k, {mj })= 1

2

k∑
j=1

�j [ln |�j | + ln |�j |

+mj(ln(2�)+ 1)] −
k∑

j=1

�j ln �j

+
k∑

j=1

�j {h2 Tr[�−1
j]

+ Tr[�j (Uj�
−1
j UT

j + �−1
j)]}

− kd +∑k
j=1mj

N
, (86)

where d(�∗) is still given by Eq. (66) but with nf = dk +
k − 1 + 0.5d(d + 1)k +∑k

j=1 (mj + dUj
) and dUj

= mjd −
0.5mj(mj+1).

A number of variants and extensions can be obtained. Several
typical ones are briefly introduced as follows:

• From Eq. (84), we can obtain other algorithms for imple-
menting Eq. (43), including the ones in Table 2 and the tem-
poral extension by Eq. (72) and Table 2 in Ref. [46] with
Bj = 0,∀j . Applications to financial market are referred to
Ref. [70].

L. Xu / Pattern Recognition 40 (2007) 2129–2153 2149

• The algorithm by Eq. (46) is developed without consider-
ing the composite relation via y =Wj(xt − �j) in comput-
ing ∇�j

t (�j). More precisely, an extended algorithm can

be developed by using (�yT/��j)∇�j

t (�j) in the place of

∇�j

t (�j) for the updating rules for �j , Uj , �j , �j .

• Another algorithm can be developed from the HL,t in
Eq. (76), i.e., the version of removing the integral over y

first and then removing the integral over x.
• We consider other choices for q(y, L) in Eq. (67),

one is L = {�, j, i1, . . . , im�
} and q(y, L) = q(�)

∏m�

j=1

q(y(j)|ij , �)q(ij |�), q(y(j)|ij , �) = G(y(j)|�ij ,�, �
2
ij ,�)

such that each independent dimension in a non-Gaussian
q(y(j)|�) is jointly described by several scalar Gaussian
G(y(j)|�ij ,�, �

2
ij ,�). Readers are referred to Ref. [47, Section

IV(C)] for details.
• Even generally, we can consider q(y, L) in a direct graphical

model instead of a graphical model. One example is a tree
structure with dependence relations from leaves directed up
to the root layer by layer. We may explore automatic model
selection on the number of nodes (probably a structure as
well) by the BYY harmony learning.

4. An unified problem solving paradigm

4.1. A5 problem solving paradigm: A–D featured versus D–A
featured

Both the frameworks in Figs. 4 and 9 can be regarded as
examples of an unified problem solving paradigm (shortly A5
paradigm) as shown in Fig. 13, consisting of five essential
mechanisms as follows:

• Acquisition: It is same as in Figs. 4 and 9.
• Allocation: It is same as in Fig. 9. Also, the mapping mech-

anism in Fig. 4 can be regarded as allocating evidences.
• Amalgamation: It integrates newly obtained evidence into

the activated assumptions, e.g., either by the accumulating
mechanism in Fig. 4 or by the adapting mechanism in Fig. 9.
• Admission: It admits those activated assumptions as can-

didate solutions, via the determining mechanism both in
Figs. 4 and 9.
• Affirmation: It further affirms the candidates as final solutions

if they pass the verifying mechanism in both Figs. 9 and 4.

Sometimes, the last mechanism may be waived. Moreover,
each of the other four mechanisms may have a number of
choices. A specific integration of the choices leads to a spe-
cific approach of problem solving. The framework in Fig. 4
and the framework in Fig. 9 are different in their ways of
handling two coupled core tasks. One is combining pieces
of evidences carried by samples, and the other discriminates
according to their evidences. In Fig. 4, information carried by
samples are mapped into evidences for assumptions, which are
integrated via accumulation. Then, a cross-assumption inter-
action or comparison occurs in implementing its fourth mech-
anism, such that an appropriate discrimination is made in the

acquisition

allocation

amalgamation

admissionaffirmation

A general problem

solving paradigm

Fig. 13. A5 paradigm.

parameter space. While in Fig. 9, such a cross-agent interaction
happens during implementing its second mechanism that dis-
criminates and allocates evidences across assumptions. Then,
the allocated evidences are amalgamated via its adapting
mechanism. The amalgamation–discrimination (A–D) featured
scheme in Fig. 4 and the discrimination–amalgamation (D–A)
featured scheme in Fig. 9 lead to different characteristics in
their implementations, performances, computing costs, and
applicable scopes, etc.

4.2. Cross-perspectives: insights and extensions

It is also insightful to look HT like approaches as in Fig. 4
from a perspective of learning based approaches. We rewrite
Eq. (77) into

Hf (p‖q, �)=
N∑

t=1

k∑
j=1

ht (�),

ht (�)= 1

N

k∑
j=1

pj,t ln[�jp(xt |�j)]. (87)

That is, information carried by each sample is considered sepa-
rately, and then integrated via additive accumulation. Actually,
the ML learning and many cost based methods also have such
an additive nature. The second mechanism in Fig. 4 can be re-
garded as that each sample xt contributes a piece of evidence
or score ht (�) at every point in the parameter space of �. So,∑N

t=1 ht (�) can be regarded as a batch implementation of the
accumulating mechanism in Fig. 4. Then the next mechanism
performs max� Hf (p‖q, �) via comparing all the assumptions
(i.e., all the points) to determine a solution.

When ht (�) is a nonzero constant merely for points on a
manifold in the parameter space, only assumptions on this man-
ifold is accumulated. Considering that each of �j , j = 1, . . . , k

has a same dimension, we let all the distributions p(x|�j), j =
1, . . . , k share a common accumulation grid in the parameter
space for a sake of saving space and computing cost, which
leads us to exactly the conventional HT. Such a situation hap-
pens only in those idealistic cases without noises or distortions.
Taking noise or distortion in consideration, we can improve
the accumulating mechanism of HT by the choices (b)–(d) in

2150 L. Xu / Pattern Recognition 40 (2007) 2129–2153

Section 2.2.3. Also, we can implement

a(�j |X, xt)= a(�j |X)+ ct (�j),

ct (�j) ∝
{

�jp(xt |�j) for HT,

�jp(xm|�j) for RHT,
(88)

where a(�|X) denotes the score that the activated assumption
�j were accumulated via a set X of past samples. Moreover,
p(xt |�j) or p(xm|�j) describes the fit of xt or xm to the object
represented by �j , where xm is a subset consisting of m sam-
ples. For example, it can be obtained from et by Eq. (5) via a
Gaussian distribution truncated within a certain band.

Instead of performing max�H(k, �) in a batch by making
comparison across all the assumptions, learning can also be
performed via the D–A featured scheme in Fig. 9 adaptively
per sample xt . That is, the second mechanism in Fig. 9 discrim-
inates and allocates xt via pj,t , which is computed across all
�j , p(xt |�j), j=1, . . . , k that are then updated to adapt the ev-
idence carried by xt to increase ht (�) by certain extent. In this
case, implementing the subsequent admission mechanism does
not need a coordination across all the activated assumptions.
Alternatively, this observation motivates that a multi-learner
based approach can be improved from a perspective of HT like
approaches too.

We add a cross-assumption coordination in the implementa-
tion of admission mechanism. Each �j is also associated with
a score a(�j). Not only an activated �j is adapted according to
�new
j = �old

j + �pj,t��j but also the corresponding score is up-
dated by a(�new

j)=(1−�)a(�new
j)+�ct (�

new
j) with ct (�

new
j) ∝

�jp(xt |�new
j), such that a comparison across all the activated

assumptions can be made to select those assumptions with
enough scores.

In RHT, we can also implement accumulation mechanism
jointly with the mechanisms of allocation and adaptation. After
an assumption � is activated via mapping mechanism, we check
its difference from its closest neighbor �∗ among those activated
assumptions in past. If the difference is larger than a threshold,
we take this activated assumption with a score by Eq. (88);
otherwise, we allocate evidences carried by xm to �∗, and then
update

�∗new = �∗ + ���, ��= �− �∗,

a(�∗new|X, xt)= (1− �)a(�∗|X)+ �ct (�
∗),

ct (�
∗) ∝ �jp(xm|�). (89)

4.3. Evidence combination: further insights

Started from handwritten character recognition at the end of
1980s, studies on evidence combination have become popu-
lar in the fields of pattern recognition and information fusion
[82,71], which can be summarized from two major aspects.
One considers which level a combination is made on (e.g., de-
cision level, feature level, and data level). The other aspect is
to consider what types of rules a combination bases on. These

rules can be further summarized roughly into two classes. One
is featured by combinations made either explicitly or implicitly
within a probabilistic framework, e.g., a majority voting rule or
a Bayesian rule in Ref. [82]. The other consists of combinations
made beyond the probabilistic framework, e.g., the rules from
D–S evidence theory in Ref. [82].

In this paper, combination is made on choosing best assump-
tions as solutions (i.e., on decision level), which can be classi-
fied into the two categories:

• One is on assumptions that are obtained from a same piece or
collection of evidences but via different mechanisms. These
mechanisms may be either of different types (e.g., a di-
verging mapping, a converging mapping, an adaptation) or
of a same type (e.g., the converging mapping is used on
different numbers of pixels to assume different lines to be
detected), respectively. More formally, on a same piece of
evidence x we have k mechanisms Mj : x → �, j =
1, . . . , k to make or activate assumptions, which are shortly
denoted as Mj(�|x), what we want is to find a M(�|x) =
Combine[M1(�|x), M2(�|x), . . . , Mk(�|x)].
• The other category is on assumptions that are obtained

from applying a same mechanism on different evidences,
i.e., with m evidences x1, x2, . . . , xm and one mechanism
M , what we want is to find a M(�|x1, x2, . . . , xm) =
Combine[M(�|x1), M(�|x2), . . . , M(�|xm)].

Moreover, the above cases may happen jointly too, for which
we need to integrate two combining categories coordinately. In
a probabilistic form, the above two categories can be formulated
as follows:

• Product rule: Let p(�|x1), p(�|x2), . . . , p(�|xm) denote the
supports on � that comes from applying one same mech-
anism on different evidences x1, x2, . . . , xm, respectively,
which can be samples from either the same feature space or
different feature spaces. When x1, x2, . . . , xm are mutually
independent, we have the following product combination
rule [71]:

p(�|x1, x2, . . . , xm)

= p(�|x1)p(�|x2) · · ·p(�|xm)/pm−1(�). (90)

• Summation rule: Each Mj(�|x) describes a distribu-
tion p(�|x, j), we want to find p(�|x) that combines
p(�|x, j), j = 1, . . . , k. A best choice for p(�|x) is the
marginal of the joint distribution p(j, �|x)=p(j |x)p(�|x, j):

p(�|x)=
k∑

j=1

p(j |x)p(�|x, j),

k∑
j=1

p(j |x)= 1, 0�p(j |x)�1, (91)

where p(j |x) denotes the proportional role of the j th mech-
anism in the combination. This is just the mixture-of-experts
(ME) by Eq. (50).

L. Xu / Pattern Recognition 40 (2007) 2129–2153 2151

Started from 1991, several efforts has been made in Eq. (91)
for combining classifiers, which are summarized as follows:

(a) In [72], a special case of Eq. (91) is proposed, where
p(j |x) is implemented by a three layer net with sigmoid
output learners 0�oj (x, W)�1, j = 1, . . . , k, under the
name of a switching controller. This controller is trained
via maximizing the likelihood of a multiple Bernoulli∏

j oj (x, W)dj (x)[1 − oj (x, W)]1−dj (x) on a set of train-
ing pairs, with dj (x)= 1 if the j th classifier classifies the
sample x correctly.

(b) In [73], another special case of Eq. (91) is studied, with

p(j |x)= q(x|�j)

/
k∑

i=1

q(x|�i),

q(x|�j)�0 is a parametric function. (92)

(c) In [60,74], we further extend Eq. (92) by considering each
q(x|�j) from the exponential family subject to a priors
�j , j = 1, . . . , k, i.e., we have

p(j |x)= �j q(x|�j)

/
k∑

i=1

�iq(x|�i),

0��j �1,

k∑
j=1

�j = 1, (93)

which leads to the alternative ME by Eqs. (52) and (51).

The last but not least, it deserves to show that the mixture
using variance (MUV) approach for ensemble learning [75,76]
can be regarded as a degenerated case of Eq. (91). The MUV
approach suggests the following combination:

�(x)=
k∑

j=1

pj�j (x), pj = �−2
j

/
k∑

i=1

�−2
i , (94)

where �2
j is the variance of the estimate �j (x). From �(x) =∫

�p(�|x) d�, �j (x)= ∫ �p(�|x, j) d�, it is not difficult to see
that Eq. (94) is actually a degenerated case of Eq. (51), where
p(j |x) = pj is estimated collectively from a set of samples
instead of depending on each individual sample x. That is,
considering q(x|�j) = p(�|x, j) = G(�|mj(x), �j) under the
constraint:

(�−m1(x))T�−1
1 (�−m1(x))

= · · · (�−mk(x))T�−1
k (�−mk(x)), (95)

it follows from Eq. (92) that p(j |x) = pj = |�j |−0.5/∑k
i=1 |�i |−0.5, which further degenerates to Eq. (94) when

�j = �2
j I . Similarly, it follows from Eq. (93) that

p(j |x)= pj = �j |�j |−0.5

/
k∑

i=1

�i |�i |−0.5. (96)

5. Concluding remarks

A general problem solving paradigm has been elaborated to
provide not only a unified perspective on two different frame-
works for problem solving but also a number of new results on
HT and RHT computing, mixture based learning approaches,
and evidence combination, for typical pattern recognition tasks
that involve data clustering and structure mining, object detec-
tion and motion estimation, as well as multi-agent coordinated
problem solving. This general paradigm is implemented by an
integration of five essential mechanisms, namely, acquisition,
allocation, amalgamation, admission, and affirmation. Differ-
ent implementations of these mechanisms and differences in a
specific integration may bring us new results and potential di-
rections for future studies. Also, the difference of the two prob-
lem solving frameworks studied in this paper comes from their
ways of handling two coupled core tasks, namely amalgamat-
ing evidences and discriminating differences.

References

[1] J. Illingworth, J. Kittler, A survey of the Hough transform, Comput.
Vision Graphics Image Process. 43 (1988) 221–238.

[2] P.V.C. Hough, Method and means for recognizing complex patterns,
U.S. Patent 3069654, December 18, 1962.

[3] L. Xu, E. Oja, P. Kultanen, A new curve detection method: randomized
Hough transform (RHT), Pattern Recognition Lett. 11 (1990) 331–338.

[4] L. Xu, E. Oja, Randomized Hough transform (RHT): basic mechanisms,
algorithms and complexities, Comput. Vision Graphics Image Process.:
Image Understanding 57 (1993) 131–154.

[5] O. Chutatape, L. Guo, A modified Hough transform for line detection
and its performance, Pattern Recognition 32 (1999) 181–192.

[6] S.M. Kruse, Scene segmentation from dense displacement vector fields
using randomized Hough transform, Signal Process.—Image Commun.
9 (1996) 29–41.

[7] T. Behrens, K. Rohr, H.S. Stiehl, Robust segmentation of tubular
structures in 3-D medical images by parametric object detection and
tracking, IEEE Trans. Syst. Man Cybern. Part B–Cybernetics 33 (2003)
554–561.

[8] J. Heikkonen, Recovering 3-d motion parameters from optical-flow field
using randomized Hough transform, Pattern Recognition Lett. 16 (1995)
971–978.

[9] R.A. McLaughlin, Randomized Hough transform: improved ellipse
detection with comparison, Pattern Recognition Lett. 19 (1998)
299–305.

[10] Y.X. Chen, F.H. Qi, A new ellipse detection method using randomized
Hough transform, J. Infrared Millimeter Waves 19 (2000) 43–47.

[11] A. Imiya, Detection of piecewise-linear signals by the randomized Hough
transform, Pattern Recognition Lett. 17 (1996) 771–776.

[12] N. Milisavljevic, Comparison of three methods for shape recognition
in the case of mine detection, Pattern Recognition Lett. 20 (1999)
1079–1083.

[13] Q. Ji, Y. Xie, Randomised Hough transform with error propagation for
line and circle detection, Pattern Anal. Appl. 6 (2003) 55–64.

[14] L. Xu, A. Krzyzak, E. Oja, Rival penalized competitive learning for
clustering analysis, RBF net and curve detection, IEEE Trans. Neural
Networks 4 (1993) 636–649.

[15] L. Xu, A. Krzyzak, E. Oja, Unsupervised and supervised classifications
by rival penalized competitive learning, in: Proceedings of 11th
International Conference on Pattern Recognition, vol. I, Hauge,
Netherlands, August 30–September 3, 1992, pp. 672–675.

[16] L. Xu, Rival penalized competitive learning, finite mixture, and multisets
clustering, in: Proceedings of IEEE-INNS IJCNN98, Anchorage, Alaska,
vol. II, May 5–9, 1998, pp. 2525–2530.

2152 L. Xu / Pattern Recognition 40 (2007) 2129–2153

[17] L. Xu, Best harmony, unified RPCL and automated model selection for
unsupervised and supervised learning on Gaussian mixtures, ME-RBF
models and three-layer nets, Int. J. Neural Syst. 11 (2001) 3–69.

[18] L. Xu, BYY harmony learning, structural RPCL, and topological self-
organizing on unsupervised and supervised mixture models, Neural
Networks 15 (2002) 1125–1151.

[19] L. Xu, Multisets modeling learning: an unified theory for supervised and
unsupervised learning, Invited Talk, in: Proceedings of IEEE ICNN94,
vol. I, Orlando, Florida, June 26–July 2, 1994, pp. 315–320.

[20] L. Xu, A unified learning framework: multisets modeling learning, Invited
Talk, in: Proceedings of WCNN95, vol. I, Washington, DC, July 17–21,
1995, pp. 35–42.

[21] L. Xu, Data smoothing regularization, multi-sets-learning, and problem
solving strategies, Neural Networks 16 (2003) 817–825.

[22] Z.Y. Liu, K.C. Chiu, L. Xu, Strip line detection and thinning
by RPCL—based local PCA, Pattern Recognition Lett. 24 (2003)
2335–2344.

[23] Z.Y. Liu, K.C. Chiu, L. Xu, Improved system for object detection and
star/galaxy classification via local subspace analysis, Neural Networks
16 (2003) 437–451.

[24] T.M. Nair, et al., Rival penalized competitive learning (RPCL): a
topology-determining algorithm for analyzing gene expression data,
Comput. Biol. Chem. 27 (2003) 565–574.

[25] P.R. Chang, W.H. Yang, Environment-adaptation mobile radio
propagation prediction using radial basis function neural networks, IEEE
Trans. Veh. Technol. 46 (1997) 155–160.

[26] S. Nakkrasae, P. Sophatsathit, An RPCL-based indexing approach for
software component classification, Int. J. Software Eng. Knowl. Eng. 14
(2004) 497–518.

[27] G. Acciani, et al., A feature extraction unsupervised neural network for
an environmental data set, Neural Networks 16 (2003) 427–436.

[28] T. Nakamura, et al, The RoboCup-NAIST: a cheap multisensor-based
mobile robot with visual learning capability, in: M. Asada, H. Kitano
(Eds.), RoboCup-98, Lecture Notes in Artificial Intelligence, vol. 1604,
Springer, Berlin, 1999, pp. 326–337.

[29] G. Castellano, A.M. Fanelli, T. Roselli, Mining categories of learners
by a competitive neural network, in: Proceedings of IJCNN01, vol. 2,
2001, pp. 845–950.

[30] P. Avesani, A. Perini, F. Ricci, CBET: a case base exploration tool, in:
Proceedings of AI ∗ IA97, Roma, Italy, September 16–19, 1997.

[31] H. Furukawa, T. Ueda, M. Kitamura, A systematic method for rational
definition of plant diagnostic symptoms by self-organizing neural
networks, Neurocomputing 13 (1996) 171–183.

[32] R. Li, et al., Fast image vector quantization using a modified competitive
learning neural network approach, Int. J. Imaging Syst. Technol. 8 (1997)
413–418.

[33] A.G. Bors, I. Pitas, Optical flow estimation and moving object
segmentation based on median radial basis function network, IEEE Trans.
Image Process. 7 (1998) 693–702.

[34] H. Kalviainen, P. Hirvonen, L. Xu, E. Oja, Probabilistic and non-
probabilistic Hough Transforms: overview and comparisons, Image
Vision Comput. 5 (1995) 239–252.

[35] R.E. Kass, A.E. Raftery, Bayes factors, J. Am. Stat. Assoc. 90 (430)
(1995) 773–795.

[36] S. Grossberg, Competitive learning: from iterative activation to adaptive
resonance, Cognitive Sci. 11 (1987) 23–63.

[37] S.C. Ahalt, et al., Competitive learning algorithms for vector quantization,
Neural Networks 3 (1990) 277–291.

[38] D. Desieno, Adding a conscience to competitive learning, in: Proceedings
of IEEE International Conference on Neural Networks, vol. I, 1988,
pp. 117–124.

[39] D.E. Rumelhart, D. Zipser, Feature discovery by competitive learning,
Cognitive Sci. 9 (1985) 75–112.

[40] R. Hecht-Nielsen, Counterpropagation networks, Appl. Opt. 26 (1987)
4979–4984.

[41] T. Kohonen, Self-organized formation of topologically correct feature
maps, Biol. Cybern. 43 (1982) 59–69.

[42] L. Xu, Bayesian–Kullback Ying–Yang learning scheme: reviews and new
results, in: Proceedings of ICONIP96, vol. 1, Hong Kong, September
24–27, 1996, pp. 59–67.

[43] L. Xu, An overview on unsupervised learning from data mining
perspective, in: N. Allison et al. (Eds.), Advances in Self-Organizing
Maps, Springer, Berlin, 2001, pp. 181–210.

[44] L. Xu, Bayesian–Kullback coupled Ying–Yang machines: unified
learnings and new results on vector quantization, in: Proceedings of
ICONIP95, Beijing, October 30–November 3, 1995, pp. 977–988.

[45] L. Xu, Independent component analysis and extensions with noise and
time: a Bayesian Ying–Yang learning perspective, Neural Inf. Process.
Lett. Rev. 1 (2003) 1–52.

[46] L. Xu, Temporal BYY encoding, Markovian state spaces, and space
dimension determination, IEEE Trans. Neural Networks 15 (2004)
1276–1295.

[47] L. Xu, Advances on BYY harmony learning: information theoretic
perspective, generalized projection geometry, and independent factor
auto-determination, IEEE Trans. Neural Networks 15 (2004) 885–902.

[48] L. Xu, Bayesian Ying Yang learning: (I) a unified perspective for
statistical modeling, (II) a new mechanism for model selection and
regularization, in: N. Zhong, J. Liu (Eds.), Intelligent Technologies for
Information Analysis, Springer, Berlin, 2004, pp. 613–697.

[49] R.A. Redner, H.F. Walker, Mixture densities, maximum likelihood, and
the EM algorithm, SIAM Rev. 26 (1984) 195–239.

[50] D. Mackey, A practical Bayesian framework for backpropagation, Neural
Comput. 4 (1992) 448–472.

[51] H. Akaike, A new look at the statistical model identification, IEEE Trans.
Autom. Control 19 (1974) 714–723.

[52] H. Bozdogan, Model selection and Akaike’s information criterion: the
general theory and its analytical extension, Psychometrika 52 (1987)
345–370.

[53] G. Schwarz, Estimating the dimension of a model, Ann. Stat. 6 (1978)
461–464.

[54] J. Rissanen, Stochastic Complexity in Statistical Inquiry, World Scientific,
Singapore, 1989.

[55] L. Xu, E. Oja, C.Y. Suen, Modified hebbian learning for curve and
surface fitting, Neural Networks 5 (1992) 393–407.

[56] T.W. Anderson, H. Rubin, Statistical inference in factor analysis,
Proceedings of the Third Berkeley Symposium Mathematical Statistics
and Probability. vol. 5, UC Berkeley, 1956, pp. 111–150.

[57] R. McDonald, Factor Analysis and Related Techniques, Lawrence
Erlbaum, London, 1985.

[58] Z.Y. Liu, H. Qiao, L. Xu, Multisets mixture learning based ellipse
detection, Pattern Recognition 39 (2006) 731–735.

[59] R.A. Jacobs, et al., Adaptive mixtures of local experts, Neural Comput.
3 (1991) 79–87.

[60] L. Xu, M.I. Jordan, G.E. Hinton, An alternative model for mixtures
of experts, in: J. Cowan, G. Tesauro, J. Alspector (Eds.), Advances in
Neural Information Processing Systems, vol. 7, MIT Press, Cambridge,
MA, 1995, pp. 633–640.

[61] L. Xu, A trend on regularization and model selection in statistical
learning: a perspective from bayesian ying yang learning, in: W. Duch
et al. (Eds.), Challenges to Computational Intelligence, Springer, Berlin,
2007, in press.

[62] L. Xu, Fundamentals, challenges, and advances of statistical learning for
knowledge discovery and problem solving: a BYY harmony perspective,
keynote talk, in: Proceedings of International Conference on Neural
Networks and Brain, vol. 1, Beijing, China, October 13–15, 2005,
pp. 24–55.

[63] L. Shi, L. Xu, Local factor analysis with automatic model selection: a
comparative study and digits recognition application, in: Artificial Neural
Networks—ICANN 2006, Lecture Notes in Computer Applications,
vol. 4132, Springer, Berlin, 2006, pp. 260–269.

[64] L. Shi, L. Xu, Comparative investigation on dimension reduction and
regression in threelayer feed-forward neural network, in: Artificial Neural
Networks—ICANN 2006, Lecture Notes in Computer Applications,
vol. 4131, Springer, Berlin, 2006, pp. 51–60.

L. Xu / Pattern Recognition 40 (2007) 2129–2153 2153

[65] L. Xu, BYY harmony learning independent state space and generalized
APT financial analyses, IEEE Trans. Neural Networks 12 (2001)
822–849.

[66] L. Xu, Temporal BYY learning for state space approach, hidden markov
model and blind source separation, IEEE Trans. on Signal Processing
48 (2000) 2132–2144.

[67] L. Rade, B. Westergren, S. Lund, Mathematics Handbook for Science
and Engineering, Birkhauser, Basel, 1995.

[68] L. Xu, BYY learning, regularized implementation, and model selection
on modular networks with one hidden layer of binary units,
Neurocomputing 51 (2003) 227–301.

[69] J. Ma, T. Wang, L. Xu, A gradient BYY harmony learning rule on
Gaussian mixture with automated model selection, Neurocomputing 56
(2004) 481–487.

[70] K.X. Chiu, L. Xu, Arbitrage pricing theory based Gaussian temporal
factor analysis for adaptive portfolio management, Decision Support
Syst. 37 (2004) 485–500.

[71] J. Kittler, et al., On combining classifiers, IEEE Trans. Pattern Anal.
Mach. Intell. 20 (3) (1998) 226–239.

[72] L. Xu, A. Krzyzak, C.Y. Sun, Associative switch for combining multiple
classifiers, in: Proceedings of IJCNN91, vol. I, Seattle, WA, July 8–12,
1991, pp. 43–48.

[73] L. Xu, M.I. Jordan, EM learning on a generalized finite mixture model
for combining multiple classifiers, Proceedings of WCNN93, Portland,
OR, vol. IV, July 11–15, 1993, pp. 227–230.

[74] L. Xu, M.I. Jordan, G.E. Hinton, A modified gating network for the
mixtures of experts architecture, in: Proceedings of WCNN94, vol. 2,
San Diego, CA, June 4–9, 1994, pp. 405–410.

[75] M. Perrone, L. Cooper, When networks disagree: ensemble methods for
hybrid neural networks, in: R.J. Mammone (Ed.), Neural Networks for
Speech and Image Processing, Chapman & Hall, London, 1993.

[76] T. Dietterich, Machine learning research: four current directions, Arif.
Intell. Magazine 18 (4) (1997) 97–136.

[77] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, Wiley,
New York, 1973.

[78] X.L. Hu, L. Xu, Investigation on several model selection criteria for
determining the number of cluster, Neural Inf. Process.—Lett. Rev. 4
(2004) 1–10.

[79] X.L. Hu, L. Xu, A comparative study of several cluster number selection
criteria, in: Proceedings of IDEAL03, Lecture Notes in Computer
Science, vol. 2690, Springer, Berlin, 2003, pp. 195–202.

[80] L. Xu, RBF nets, mixture experts, and Bayesian Ying–Yang learning,
Neurocomputing 19 (1998) 223–257.

[81] L. Xu, M.I. Jordan, On convergence properties of the EM algorithm for
Gaussian mixtures, Neural Comput. 8 (1) (1996) 129–151.

[82] L. Xu, A. Krzyzak, C.Y. Sun, Several methods for combining multiple
classifiers and their applications in handwritten character recognition,
IEEE Trans. System Man Cybern. 22 (1992) 418–435.

About the Author—LEI XU (IEEE Fellow and IAPR Fellow), a professor of Chinese University of Hong Kong where he joined in 1993. He completed his
Ph.D. Thesis at Tsinghua University in 1986, and worked at several universities during 1987–1993, including Peking University, Harvard and MIT. Prof. Xu
has published a number of well-cited papers in the literatures of neural networks, statistical learning, and pattern recognition (e.g., his ten most frequently cited
papers scored 1000 citations according to SCI-Expended). He gave keynote/plenary/invited/tutorial talks in international conferences (IJCNN, WCNN, ICONIP,
ICNN, etc.), served or has been serving as associate editor for several international journals, a governor of International neural network society (01–03), a
past president of Asian-Pacific neural networks assembly (APNNA), and also a member of engineering panel on several Chinese and HK research funding
committees, as well as a nominator for the prestigious Kyoto prize (2003–2004). Prof. Xu has received several Chinese national prestigious academic awards
(including 1993 National Nature Science Award) and international awards (including 1995 INNS Leadership Award). Recently, he has received the 2006 APNNA
Outstanding Achievement Award. He is an IEEE Fellow (2001–) and a Fellow of International Association for Pattern Recognition (2002–), and an academician
of European Academy of Sciences (2002–). Prof. Xu is also serving as a member of Fellow committee of IEEE Computational Intelligence Society (2006–).

	A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving62626262
	Introduction
	Evidence accumulation approaches: RHT and extensions
	A brief introduction of HT and RHT
	Evidence accumulation framework and five basic mechanisms
	Evidence accumulation framework
	Sampling and mapping
	Accumulating and determining

	Multi-learner based problem solving approaches
	RPCL for clustering analysis
	A general multi-learner based problem solving framework
	Three fundamental ingredients and automatic model selection
	Probabilistic approach, individual criterion, and combining policy
	A general framework for multi-learner problem solving

	Further details on several typical problem solving tasks
	Gaussian mixture and coordinated mechanisms
	Local subspace and local factor analysis
	MML and object detection
	Mixture-of-experts, RBF nets, and agents: with external action

	BYY system and BYY harmony learning
	BYY system
	BYY harmony learning theory and automatic model selection
	Approximate implementations and regularization techniques
	BYY harmony learning on Gaussian mixture
	BYY harmony learning on local subspaces and extensions

	An unified problem solving paradigm
	A5 problem solving paradigm: A--D featured versus D--A featured
	Cross-perspectives: insights and extensions
	Evidence combination: further insights

	Concluding remarks
	References

