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Abstract— Rival Penalized Competitive Learning
(RPCL) can automatically select the number of clus-
ters during learning via penalizing the rival in competi-
tion. The original adaptive RPCL algorithm is proposed
for clusters of spherical shapes and its performance will
degenerate considerably when the clusters are of com-
plicated shapes. In this paper, adaptive RPCL learning
has been extended to solve this problem via the finite
mixture modeling and multi-sets modeling, respectively.
Moreover, two general competition types are suggested,
called Type A and Type B. The Type B RPCL with
both the finite mixture modeling and multi-sets model-
ing includes the original RPCL as a special case. The
experiments have shown that both Type A and Type B
RPCL work well and improved the original RPCL con-
siderably for clusters of complicated shapes and strong
overlapping. Moreover, the Type B RPCL is the best
in automatic selection of correct number of clusters,
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1. Introduction

Given a data set D, = {z;}}\,, the task of parti-
tioning D, into k clusters is a classical problem in the
literature of statistics and pattern recognition, usually
called cluster analysis [1], [2], [3]. A well known formu-
lation of this task is to use k vectors {m] };?:1, called
centers or code-vectors to represent the & clusters such
that a sample z; is classified into the y-th cluster when
I(y|z;) = 1, according to:

N J 1, ify = arg minj||lz; — m;||2
Hylz:) = {0, otherwise > ()

with {mj}5_, obtained by

Mingy, yx_ Emsk,

k N
2 Iz —msl*. (2)

1i=1

Eymse = N
J

This formulation is called the Mean Square FError
(MSE) clustering analysis or vector quantization. It
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is typically implemented by the well known k-means
algorithm or the LBG algorithm, which is a two-step
iterative procedure, starting from an initial guess on
either {m;}5_; or {I(yla:)}Y,:

Step 1 update {I(y|z:)}, by eq.(1), get

1 &
&= Ef(ylwi),
1 X
St 2 lat i = — Y I(ylz;)z;.
ep update m; ajNE (ylz;)a;

Equivalently, many of the so called competitive learn-
ing algorithms in the literature of neural networks can
be regarded as adaptive variants of the above algorithm
for MSE clustering (e.g., see the Ref. List in [11}).

The algorithms in this formulation all have two se-
rious limitations. The first one is that the number &
of clusters must be pre-known and fixed. Ej;sg mono-
tonically decreases with increasing k, and thus cannot
detect a correct k. However, a bad estimate of k can
cause serious problems as stated in {11]. To the best of
our knowledge, the selection of a correct k remains an
important open problem. It is usually tackled by some
heuristic techniques, e.g., ISODATA [1], [2], [3], and Ri-
val Penalized Competitive Learning (RPCL) [11]. The
other limitation is that the formulation implies that
samples come from a mixture of ¥ Gaussian densities
with equal proportion and equal variance 2. This
special case deviates from many practical situations.
In the literature, the so called Mahalanobis distance
clustering or elliptic clustering attempts to overcome
this limitation.

In this paper, the original adaptive RPCL learn-
ing has been extended to clustering of data clusters
with complicated shapes, via the finite mixture mod-
eling [6], [7] and multi-sets modeling [10], respectively.
Moreover, two general competition types are sugges-
tion, called Type A and Type B. The experiments will
be made to demonstrate the success of the proposed
extensions.
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2. Adaptive RPCL Learning with
Finite Mixture Modeling

Rival Penalized Competitive Learning (RPCL) is a
heuristic competitive learning algorithm proposed for
clustering with a favorable feature that it can drive
away extra neurons during learning with automatic
number selection[11]. The key idea of RPCL is that for
each input z; not only the winner is learned to approach
z, but also the second winner (rival) is de-learned away
from z; for a bit. That is,

Tn((:H'l) = mgt) + Ye(2i — me),

for ¢ = arg min; fj||z;s — m;||?

m£t+1) = mﬁt) — Yr (xi - m")’

for r = arg minjz. fj||lzi — my|f?

m§'t+l) = my)» forj#e j#r, (3)

with 7. > v, and f; being the frequency that m; wins
the competition up to now. Many experiments have
shown that RPCL works well although there is no the-
oretical justification. In Xu(1995a), via an incremental
EM algorithm, we have justified the RPCL’s heuristic
use of de-learning together with learning[9].

Two types of general forms of RPCL are proposed in
[8] based on the following finite mixture:

k
P(x)::Zaij(x,(?j), 4)
Jj=1
That is, we consider two types of competitions:
Competition Type A (MAP-RPCL):

¢= arg maz;ja; Pi(z,0;),
r= arg maz;g.a;Pj(z,0;). (5)

Competition Type B:

¢ = arg max;a;ln Pi(z,0;),
T= arg maljizco; In Pj((L’, 9_7) (6)

Then, for each input # we update parameters by

dlog P(zx,0.)
(t+1) — g(¢t) et - Rull Wt 74
00 — Hc + 76 agg(t) )
Olog P(z,0
ge+D) = g — 4, T2 )
7T e
6§-t+1) = 95-&), yFc, y#£r (M

The idea of this RPCL is to further enforce the win-
ner component in the mixture while weaken its rival
component in responsible to the current input z. As
a result, input data set will be divided into groups ac-
cording the above two types of decision.
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Type A is equivalent to ¢ = arg maz; P(j|z) because
P(jle) = a;Pj(z,0;)/P(z), which is usually called
Baysian or Maximum Posterior (MAP) Decision, so we
call the corresponding RPCL by MAP-RPCL. Also,
a.Pe(z,8.) is the largest component in the mixture
density P(z), which represents the average likelihood.

For Type B, acIn P.(z,6.) is the largest component
in the mixture log-likelihood function, which represents
the average log-likelihood. The two types become the
same when «; is equal for each j. They are differ-
ent in accounting the effect of a;, which can be simply
approximated by f;-the frequency that m; wins the
competition up to now. For a smaller «;, the neu-
ron’s competitive ability becomes weaker in Type A,
but strong in Type B. In the other word, Type B is
more conscience.

When Pj(z,0;) is a gaussian G(z, m;,Z;), we have:
Competition Type A (MAP-RPCL):

c= arg min;d;,
T = arg mazjz.d;,
d;j=(z— mj)Ej_l(:c - m;) + log [¥;] — 2log of8)

Competition Type B:

c= arg min;d;,

7= arg maz;z.d;, (9)

dj = aj{(z - mj)Ej_l(:c —m;) + log |Z;]].
and from eq.(7) the updating on parameters m; be-
comes exactly eq.(3). We can let the updating for a;
be simply approximated by f;-the frequency that m;
wins the competition up to now. In the special case
that 3; = I of spherical shape. This Type B returns
to exactly the original RPCL. In the general case for
X;, we need to update it too, for which a batch way
algorithm is suggested in [8].

In this paper, we propose the following adaptive up-

dating for

2%t+1) = (1= %) Z0 + 7. (2 — me) (2 — me)T,
=D = 50 for y#ec. (10)

3. Adaptive RPCL Learning with
Multi-Sets Modeling

Given X = {z;}}L,, we restate the multisets mod-
eling learning [10] for the problem of parametric clus-
tering in a general paradigm that consists of two sub-
tasks. One is partitioning X' into K sets (or called
clusters) Cy,---,C;. The second is to model each set
Cj by a parametric expression, denoted by C;(6;) or
simply 6;. Suppose that the error or distortion of us-
ing this model to represent a sample z; is denoted by



e(xi,8;) > 0, our purpose is to assign each sample z;
into a Cj according to an indicator I(jlz;) = 1 if Cj
wins the following competition

N J1, ify=arg min; e(x;,0;)
Iyle:) = {0, otherwise (1)

such that the parameters {0}/, are obtained by

K

Mingyx > E(5,65),
j= 1

Z (klei)e(zi, ;). (12)

In general, again we propose to solve this problem
by an extension of RPCL algorithm. That is, get the
winner by k = arg min; fje(z;,0;) with f; being the
frequency that C; wins in the past, and get the rival
by r = arg minjzx fije(zi,0;); Then, update :

g+ — p() _ 35(0 bc)
[ c 60(t)
36(1’ 6,)
(t+1) — g(t) 2\
B'r i 07’ +Yr 805‘” ’

y#c, y#T. (13)

This Multi-Sets Modeling paradigm actually unifies
various types of clustering via using different paramet-
ric models for C; and different measures for (z;, 6;):

(t+1) _ o)
;"7 =07,

Type 1. Conventional Mean Square Er-
ror(MSE) Clustering ( having linear boundaries be-
tween clusters): Each Cj is of spherical shape in equal
scale and the task is to locate C;’s center point. Thus,
we have #; = m; and the error measure is &(z;,0;) =
||z; — m;||2. This kind of clustering has been widely
studied already. In fact, the above algorithms in this
case reduce to the case of eq.(1) and eq.(2) by the K-
means algorithm eq.(3) or the original RPCL algorithm

eq.(3).

Type 2. Weighted MSE (or called Ma-
halanobis distance) Clustering (having quadratic
boundaries between clusters): Cj is of elliptic shape,
with its location given by a point m; and its shape +
orientation by a positive definite matrix ¥;. That
iS, 9_,' = {mj,Ej}. The error 6(1),‘,9]') (3.’,' -
mj)TE;I(:c,- —m;) is the Mahalanobis distance between
z; and m;. When ¥; = 0’_,2-I , every cluster is still of
spherical shape but now can be of different scale fac-
tor oj. When X; is a general positive diagonal matrix,

every cluster is a canonical ellipse. Furthermore, when
¥; is general positive definite symmetric matrix, every
cluster is a general ellipse in any orientation and scale.

If ¥; is known in advance, its implementation is
the same as Type 1 except of using e(z;,8;) = (x; —
m;)T L7 !(z; — my) to replace £(z;, 6;) = ||z; — m;||? in
competition. When X; is unknown, we can use eq.(10)
for its updating.

Type 3. Local Least Mean Square Error Re-
construction (LMSER) or Local PCA Cluster-
ing (having quadratic boundaries between clusters):
Cj is a line passing through a point m; and along the
direction w; —m; which is the principal axis of C; with
maximum variance. Thus, 6; = {m;,w;}. The error
e(zs,05) = |(zi—mj) = (w; —m;)(wj —m;)T (2;—my)||>
is the Square Reconstruction Error ||z; —%;||? by the or-
thogonal project #; = m; + (w; — m;)(w; — m;)T (z; -
m;) of x; — m; on the principal direction w; — m;.
An equivalently measure can also be e(x;,0;) = ||z; —

[(w; "mJ) (zi=m; )]2
wi—m;i]

Since the solution of thls clustering is that m; is the
mean of C; and w; — m; is the principal axis of Cj
with Xj(wj — m;j) = Amaz(wj — m;). One adaptive
way for solving it is to cooperate in Oja rule [4] and its
anti-hebbian variant[12]:

m;l|? —

m(t+1) —d m(t) + (xz — m(t))
Ye gz - Tr,(t+1))T(w(t) (t+1))
wittD) = oty

’Yy[(-’c mty — g, (t)__m(t+1) ,

°(cl)’_m(e°> 7)(_,,5 _(mm) <

W = 2o

m{tY = 5”, ide, j#T (14)
Type 4. Local MCA Clustering (having

quadratic boundaries between clusters): C; is a hy-
perplane passing through a point m; with its normal
direction w; — m; which is the minor axis of C; with
the minimum variance. Thus, 6; = {m;,w;}. The
'“mJ) (-”’-"mz)]z

llwsi—m;l|?

Its adaptive implementation is quite similar to Type
3. More specifically, the part for updating m; is still

the same. However, updating for w; are replaced by

error measure is e(z;, §;) = (L

(t+1) T
T —
Ye = ( : (t))
||we
w£t+1) — wgt)

(w(t) gt+1))
mt
C

(wﬁz) _ mgt+1))
c—“wgt) m((;t+1)”],
() _ £t+1))

Yyel(zi — m{*Y) —

_ (1’,‘ _ (H-l))T

Yr =
”w(t)

(wr
m

(15)
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w$t+l) — w1(‘t)+
(t+1)) (w(t) +1)) |
m£‘+”n ’

19 [(zi = my Y

wy
(+1) _ () (E+1) () ;
m; = my w; =w;’, j#Fec jET

Type 5. Local Principal Subspace Cluster-
ing (having quadratic boundaries between clusters):
C; is a r-dimensional subspace spanned by W; =
[wJ(-l), . .w(.r)] with the subspace’s origin located at a
point m;. Thus, §; = {m;, W;}. The error mea-
sure is (z;,0;) = (I — P)(z:i — my)||* with P =
W;(W}W;)~'W} for a nonorthogonal matrix W; or
equivalently P = VVJVVJT, W/J-T W; = I for an orthogo-
nal matrix Wj.

Its adaptive implementation is an extension of Type
3 to higher dimension cases. Similarly, we use Oja sub-
space rule [5] and its anti-Hebbian variant for its up-
dating:

Ye = (We(t) = mIHI(L, - 1) (2 — m{*Y),
W) = W(t>+

Yel(zi — (”1)) W(’) m{[1, . ]gyc]yc ;
yr = (W’gt) _ (t+1 [ 1])T(z m(H- )’
W(t+l) W(t) (16)
¥ [(z; = mEHD) — (WO — m{EHD[L, - 1)y
m§+1) (t) W(H‘l) W(‘) jFe jE

Type 6. Nonlinear Manifold Clustering: Cj is
represented by some nonlinear manifold and e(z;, §;) is
some kind of projection error to this manifold.

Type 7. Hybrid Clustering: Cy,---,C; and its
related error are not necessary to be represented in the
same type, but can be a mixture of more than one of
the above types.

Through the following Gibbs distribution

1 .
Pj(z,0;) = m—eap(=Xe(3,67)), A >0, (17)
J
we can link the Multi-Sets Modeling to the finite mix-
ture eq.(4). Moreover, in the special case that Z;, A;

are the same for all j or if we can approximately ig-
nore the difference between Z;, A; for different j. Then,

the above discussed RPCL learning algorithms for each
type of multi-sets are the same as the TYPE B RPCL
learning in Sec.2.

4. Experiments

In the experiments, as shown in Fig.1, 2-dimensional
data sets with different shapes and degree of overlap-
ping are used. They all have four clusters and each

contains 500 data points. The clusters in data set 1 and
2 are very clearly separated with the later one contains
ellipse-shaped clusters. For data set 3, there are two
ellipse shaped clusters overlapping together on the left
and those in data set 4 also similar but with overlapping
clusters on each side. In this paper, only the results on
comparison with (i) the original RPCL eq.(3) (denoted
by Point case since each cluster is simply presented
by its center point), (ii) the TYPE A RPCL learning
eq.(3) (simply denoted by Type A), eq.(8) & eq.(10)
and (iil) the TYPE B RPCL learning eq.(3), eq.(10) &
eq.(10) (simply denoted by Type B), are considered.

(1) Cluster Number Detection In this part, the cluster
number detection ability of the algorithms are studied.
For all the tests, five units are initialized. All the mean
vectors randomly initialized with range [-1,1], and all
the covariance matrices (if any) are positive diagonal
random matrix with entries ranged in [0,1]. The se-
lected mean movements (learning paths of mean vec-
tors) by the original RPCL and TYPE B RPCL on
the data set 2 are shown in Fig. 2 and Fig.3. The
successful rates on four data sets within ten tests are
summarized in Table 1. It can be seen that although
all the algorithms work well for Data set 1 and Data
set 2, as the overlap increases, the original RPCL de-
generates quickly and usually will fail. Moreover, Type
B RPCL performs the best and can always success.

(2) The Confusion Matrices of the successful cluster-
ing. In this part, assume that we already know the
number of clusters and fix the number of neurons on
the correct number k¥ = 4. The confusion matrices on
clustering results on the four data sets by the three al-
gorithms are shown in Tables 3, 4, 5 & 6 respectively.
The averaged percentage of correctness in clustering
each data set are shown in Table 2. It can be observed
again, that the performance of the original RPCL de-
generates considerably as the overlaps between clus-
ters increases. However, Type A RPCL and TYPE B
RPCL both work very well even for the very strongly
overlapped Data set 4, and there is no obvious differ-
ences between the performance of Type A and Type
B. It means that both types of RPCL work well if the
number of cluster is set correctly.

5. Conclusions

For clusters of complicated shapes with strong over-
lapping, the performance of original RPCL algorithm
degenerates considerably, however both Type A and
Type B RPCL work well and improved the original
RPCL considerably. Moreover, the Type B RPCL is
the best in automatic selection of correct number of
clusters.
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Fig. 2 The Five
ncuron movements
in learning by the
original RPCL on
Data Set 2
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Fig. 3 The

neuron movements in
learning by Type-B
RPCL on Data Set 2

61 82 83 84 01 a2 a3 84
Cl 99.6 0 0.4 0 C1 94.4 5.6 0 0
c2 0 100 0 0 c2 0.2 99.8 0 [
Cc3 0 02 99.8 0 C3 0 0 98.4 1.6
C4 0.4 0 0 99.6 C4 0 0 04 99.6

(a) Original RPCL

(a) Original RPCL

81 62 83 84

61 62 63 84

Ct 98.0 1.0 0 1.0 Cl 98.2 0 18 0
2 0.6 98.2 12 0 cz 0.4 99.6 i 0
Cc3 0 02 98.4 1.4 C3 0 0 95.0 5.0
C4 0.8 0 0.4 98.8 C4 0 0 08 992

(b) Type-A RPCL

(b) Type-A RPCL

81 62 63 84 81 62 63 84
Ct 984 0.8 0 0.8 Ci 97.0 30 0 0
c2 04 98.6 1.0 0 c2 08 992 0 0
C3 0 0.2 9.0 0.8 Cc3 0 0 98.0 2.0
C4 0.2 0 0 99.8 C4 0 0 0 100

Table 3 The confusion
matrix on the clustering

(¢) Type-B RPCL

results on Data Set 1

(c) Type-B RPCL

Table 4 The confusion
matrix on the clustering
results on Data Set 2

81 82 83 84 61 02 83 64
Ct 772 20.2 5.6 0 Cl 85.8 14.0 0.2 0
2 18.0 774 0 4.6 (ov3 210 78.8 0 0.2
c3 0 0 98.6 14 c3 0.2 0 86.8 13.0
Cc4 0 0 0.4 99.6 C4 0 0 232 76.8

(a) Original RPCL

(a) Original RPCL

91 62 03 94 o1 ) 03 04
Cr | 914 18 68 0 Cl | 976 14 10 0
c2 | 118 878 0 0.4 c2 | 102 82 02 04
c3 0 0 986 14 c3 0 0 978 22
ca 0 02 08 990 ca 0 0 120 880
(b) Type-A RPCL (b) Type-A RPCL

91 a2 93 94 91 [ 93 94
Gl | 862 132 06 0 Cl | 946 50 04 [}
c2 | 22 946 o 32 cz2 | 04 974 o 22
c3 0 0 9956 04 c3 0 0 956 44
c4 0 0 36 964 ca 0 0 22 978

Table § The confusion
matrix on the clustering

(c) Type-B RPCL

results on Data Set 3
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(¢) Type-B RPCL

Table 6 The confusion
matrix on the clustering
results on Data Set 4






