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Advances on BYY Harmony Learning: Information
Theoretic Perspective, Generalized Projection
Geometry, and Independent Factor Autodetermination

Lei Xu, Fellow, IEEE

Abstract—The nature of Bayesian Ying—Yang harmony learning
is reexamined from an information theoretic perspective. Not
only its ability for model selection and regularization is explained
with new insights, but also discussions are made on its relations
and differences from the studies of minimum description length
(MDL), Bayesian approach, the bit-back based MDL, Akaike
information criterion (AIC), maximum likelihood, information
geometry, Helmholtz machines, and variational approximation.
Moreover, a generalized projection geometry is introduced for
further understanding such a new mechanism. Furthermore,
new algorithms are also developed for implementing Gaussian
factor analysis (FA) and non-Gaussian factor analysis (NFA) such
that selecting appropriate factors is automatically made during
parameter learning.

Index Terms—Automatic model selection, Bayesian, bit-back,
Bayesian Ying-Yang (BYY) system, factor analysis, harmony
learning, information theoretic, minimum description length,
non-Gaussian factors, projection geometry.

1. INTRODUCTION

HE sprit of simultaneously building up two pathways, i.e.,

a bottom-up pathway for encoding an observed pattern
into a representation space and a top-down pathway for de-
coding or reconstructing a pattern from an inner representa-
tion back to a pattern in the observation space, has been widely
adopted in various studies of brain theory and neural networks.
Typical examples include ART theory [10], Kawato’s theory on
cerebellum and motor control [26], Helmholtz machines and
wake-sleep learning [12], [13], [17]. Moreover, the least mean
square error reconstruction (LMSER) self-organizing learning
proposed in 1991 [62] is also an effort that uses a bidirectional
architecture for unsupervised learning. The basic sprit of the
LMSER learning has been further developed into the Bayesian
Ying—Yang (BYY) harmony learning [59], which is firstly pro-
posed in 1995 and then systematically developed in past years
[45]-[50], [52].
The BYY harmony learning formulates the two pathway sprit as
shown in Fig. 1. This paper considers coordinately learning two
complement representations of the joint distribution p(x, )

p(z,y) = p(yle)p(z), q(z,y) =q(zly)e(y) 1)
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basing on p(z) that is estimated from a set of samples {j;t}i\; 1
while p(y|z), ¢(z|y) and ¢(y) are unknowns but subject to
certain prespecified structural constraints. The pair forms a
so called BYY system [59], in a compliment to the famous
Chinese ancient Ying—Yang philosophy. Interestingly, the
decomposition of p(z,y) coincides the Yang concept with
the visible domain by p(z) regarded as a Yang space and the
forward pathway by p(y|x) as a Yang pathway. Thus, p(z, y) is
called Yang machine. Similarly, ¢(x, y) is called Ying machine
with the invisible domain by ¢(y) regarded as a Ying space and
the backward pathway by g(z|y) as a Ying path.

This BYY system can lead us to a number of existing major
learning models as special cases from a unified perspective, in-
cluding

* those so called predictive/forward models by

p(y) = /p(ylrr)p(rr)dx- 2

One major type of examples is a deterministic mapping
y = W that performs either principal component anal-
ysis (PCA) for a Gaussian y or independent component
analysis (ICA) for a non-Gaussian ¥, through making that
p(y) becomes maximum entropy [7], [16] or matches the
following independent density [4]:

a(y) =[] « (y‘j)) 3)
j=1
¢ those so called generative/backward models by

q(x) = /q(l‘ly)Q(y)dy- )

One type of examples corresponds to the cases with y =
1,---,m and ¢(z|y) being Gaussian. In these cases, (4)
is a Gaussian mixture that is either directly used for den-
sity estimation via the maximum likelihood (ML) learning
with the expectation and minimization (EM) algorithm
[14], [30] or further simplified into the mean square error
(MSE) clustering and the elliptic clustering [48], [50],
[57]. One other type corresponds to the cases with y =
[y, ..., y(m)]T that satisfies (3). Typical examples are
multiple cause models, Gaussian factor analysis (FA), bi-
nary FA, and non-Gaussian FA as well as their extensions
[45], [49], [52], [53].

* those bidirectional models that trade off the features of the
above two. One is the Helmholtz machines that is moti-
vated by a fast approximation of the ML learning on the
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Fig. 1. Bayesian Ying—Yang system.

generative model (4) via adding in a forward path p(y|x)
[12], [13], [17]. The other is the LMSER learning [62] that
was experimentally found to implement ICA firstly in [25]
under the name of nonlinear PCA, and was further found
to actually implement a principal ICA that can be regarded
as either an extension of ICA with noise or a regularized
binary factor analysis [45], [48], [49], [53], [56].

Beyond all the above discussed as well as other variants of sim-
ilar types, this BYY system also leads to both typical super-
vised learning models such as mixture-of-experts (ME) [20],
[22], [23], the alternative ME model [60], radial basis function
nets and extensions [45], [50], [54], three layer nets [48], [50],
[54], and typical temporal models such as Kalman filter [9],
[24], Hidden Markov model and extensions [33], temporal FA,
temporal ICA and temporal LMSER, etc. [47], [49].

The name of BYY system not just came for the above di-
rect analogy between (1) and the Ying—Yang concept, but also
is closely related to that the principle of making learning on
(1) is motivated from the well known harmony principle of the
Ying—Yang philosophy, which is different both from making
p(z) by (4) fit a set of samples {I:f}?zl under the ML principle
[37] or its approximation [12], [13], [17], [38] as well as simply
the least MSE criterion [62], and from making ¢(y) by (2) sat-
isfy certain prespecified properties such as maximum entropy
or matching (3), [4], and [7]. Under this harmony principle, the
Ying—Yang pair by (1) is learned coordinately such that the pair
is matched in a compact way as shown in Fig. 1. In other words,
the learning is made in a twofold sense that

* The difference between the two Bayesian representations
in (1) should be minimized.
* The resulted entire BYY system should be of the least
complexity.
Mathematically, this principle can be implemented by [48],
[49], and [59]

wax H(8,m), (6, m) = H(pllg,0)

- /p(y|l’)p(l’)1n la(z|y)a(y)]
x p(dz)p(dy) — Z, o)

where p(.) is a given measure, 6 consists of all the unknown
parameters in p(y|z), ¢(x|y), and ¢(y) as well as p(z) (if any),
while m is the scale parameter of the inner representation y. It
is simply m for the case by (3). In a general case, m is a set
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of integers that acts as different types of scale parameters. The
task of determining @ is called parameter learning, and the task
of selecting m is called model selection since a collection of
specific BYY systems by (1) with different scale values corre-
sponds to a family of specific models that share a same system
configuration but in different scales.

As described in [48] and (5) introduces a new mechanism that
makes model selection implemented.

e either automatically during the following parameter
learning with scale parameters in m initialized large
enough:

max H(6), H(#)=H(0,m)=H(pllg.0) (6

which makes 6 take a specific value that is equivalent to
make m reduced to an appropriate one in its effect. On
a Gaussian mixture case of (4), it means that the cor-
rect number of Gaussian components or clusters is auto-
matically determined during learning. It was firstly im-
plemented in 1995 [59] by the so called hard-cut EM
algorithm without the regularization role of Z,. Further
improvements were subsequently obtained with regular-
ization imposed via either a Z, in a normalization term
or a particularly designed parametric p(y|x) [50], which
leads to a nature similar to the rival penalized competitive
learning (RPCL) learning [48], [50], [61]. Moreover, both
the hard-cut EM and RPCL type algorithms have been de-
veloped for implementing multisets mixture learning [46]
and binary FA [45].

* or after implementing parameter learning for 6* at each of
candidates of m via enumerating scale parameters in m
incrementally to large upper bounds, we select a best m*
via the following type of model selection criteria:
min J(m), J(m) = —H (0", m) = —H(pllg,0%). (7)

Making model selection by (7) is necessary in the cases that
(6) becomes not applicable. One case is, as to be discussed on
the case by (47) in Section IV-A, that certain constraint has to be
imposed on a part of § during learning 6* via (6). The other case
is that #* is obtained not by (6) but by the following Kullback
divergence based parameter learning:

mjn K1) = [ p(yfo)p(a) %uwm(dw ®)
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Fig. 2. Typical examples of J(m) and m, where d, d. are dimensions of , =
the one for IFA, is referred by the text via the notation “Egn.2(c) in Fig. 2.

which has been systematically investigated in the early study of
the BYY learning and actually shown being equivalent to the
ML learning on ¢(z) by (4) when p(y|z) is free [59].

In the above two cases, J(m) has a type of U-shape as to
be shown later in Fig. 8. When 6* is obtained via (6) without
any constraints on 6, it is not necessary to use (7) since m*
is determined automatically during implementing (6). Actually,
J(m) in this case will have a L-shape. As scale parameters in
m grows, J(m) first reaches m* decreasingly and then remains
unchanged as m further varies. In the cases that /V is very small,
the model selection can be improved with .J(m) in (7) replaced
by

mys+ Mgy

N C))

with the details refereed to (20) that will be encountered later in
Section II-B. The first application of (7) was given in 1995 [59]
for the number of Gaussians in a Gaussian mixture and of clus-
ters after clustering by the K-means algorithm. Subsequently,
specific criteria have been derived for various models of su-
pervised, unsupervised, and temporal learning [45], [47]-[49],
[52]. Several examples will be given in Fig. 2 in Section II-B.

o,G(x|m,X;)
m
]_Zla,G(x\m,,E,)

4. Three Layer Net!*475%% ¢(2| x) = G(z| As(Wx + d) + b, 6 21),

. s =[5 s(r™)] for y ="

to approximate p(/| x, ¢), m, = dim(¢)+m(d.d, +d,+1)

mg=m(l+d,.+d,)
Y In[s(w x, +d )1-s(w x,+d)))]
N ’

Do y™7 and s(r)= (e~ e™)/(e"+e™).

, and dim(¢) denotes the number of free parameters in ¢. Each criterion, e.g.,

The implementation of either (6) or (8) can be made by alter-
nating the following two steps:

Ying-step :  fixing p(x,y)
update unknowns in g(x, y)
Yang-step :  fixing ¢(x,y)

update unknowns in p(z, y) (10)

which is called the Ying—Yang alternative procedure. It is guar-
anteed that either of —H () and K L(6) gradually decreases
until becomes converged. The details are referred to [44] and
[48].

In this paper, the model selection ability of the BY'Y harmony
learning and the regularization role of Z, are further explored.
In Section II, new justification is provided from an information
theoretic perspective, with comparative discussions made
on its relations to and differences from the studies on not
only minimum message length (MML) [41], [42], minimum
description length (MDL) [34], Bayesian approach, and the
bit-back based MDL [18], [19], but also Akaike information
criterion (AIC), maximum likelihood, information geometry
[2], [3], [11], Helmholtz machines [12], [13], [17] and varia-
tional approximation [36], [38]. In Section III, a generalized
projection geometry is introduced for further understanding
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such a mechanism of model selection and regularization. Then,
new algorithms are developed for implementing Gaussian FA
and non-Gaussian FA in Section IV, such that appropriate
factors are selected automatically during learning. Before
giving conclusions, experiments are demonstrated in Section V.

II. AN INFORMATION TRANSFER PERSPECTIVE

A. MDL and Bayesian Approach

In the past decade, extensive studies have been made on the
MDL [34]. Sharing the common sprit of the MML [41], [42], the
BIC model selection criterion [32], [39], and the celebrated Kol-
mogorov complexity [42], the key idea is to implement the well
known Ockham’s principle of economy to code a set of sam-
ples {:Et}ivzl for being transferred from a sender to a receiver
via a two-part coding. One is the amount of bits for coding the
residuals of using a parametric model p(z|6) to fit this set of
samples {:it}ivz 1- The 2nd part is the amount of bits for coding
the parameter set 6, provided that the function form of p(z|d)
has already known at the receiver and thus no need for being en-
coded. A best information transfer is reached when the bits for
both the parts are minimized.

In the existing literature, given a density model p(z|6) fora d
dimensional real random vector z, the amount of bits per sample
T4 to be transmitted is described by b5 = — Inp(Z|f) — d1n ¥,
where 6 > 0 is a prespecified constant resolution and thus its
role is usual?f/ ignored. The total amount of bits for the first part
is b* = ), ; bi. The amount bg of bits for the second part
is common to every sample, and thus only needs to be trans-
mitted one time in advance. Thus, the average amount of bits to
be transmitted is (1/N) Zi\;l b; + (b5/N). For a large size N
of samples, the second term becomes very small and thus can
be ignored. The minimization of the first term is actually equiv-
alent to the ML learning. However, this term does not contain
enough information to select an appropriate complexity (e.g.,
the number of parameters in ¢) for p(x|#). On a contrary, for a
finite size N of samples we encounter a so called over-fitting
effect that the larger the complexity is, the smaller the residual
of using p(z|f) to fit the set {i“t}i\;l is, and thus the smaller the
first term is. The second term bj described by — In p(#) takes its
role that balances off the over-fitting effect since by increases as
the complexity increases.

This two part coding b° 4 bg was firstly suggested under the
name of the MML for clustering analysis [41], [42]. It has been
also studied from an equivalent perspective that maximizes

S ng(z6) +1ng(6)

t=1

Y

under the name of Bayesian learning [15]. It is also called
the maximum posteriori estimate (MAP) when used for de-
termining 6 only. One key problem is that the priori ¢(6) is
usually not available and thus is estimated very roughly, e.g.,
by a noninformative uniform prior or Jeffery priori [21]. The
learning performance can be considerably deteriorated by an
inappropriate ¢(6).
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Under the name of the MDL [34], an improvement is pro-
posed by encoding = subject to the marginal distribution
o) = [ a(el6)a(®)n(as). (12

The total bits in this way is short than that by the MML. The

total bits by the MML contain a redundant amount of bits for
encoding 6 since a part of bits underlying

C g(ea)
PO = o alB)g (0 a0)

is already contained in the bits for encoding z subject to ¢(z|6).
Though obtained from a different perspective, the MDL is actu-
ally equivalent to the Bayesian information criterion (BIC) that
was proposed a decade earlier [32], [39], but recently widely
studied in the literature of machine learning under the name of
the evidence based or marginal Bayesian approach [27], [28],
featured by the maximization of Eivz 1 q(ze).

In spite of the differences in concept, all the above approaches
actually all crash into a same criterion in implementation after
q(8) is over-simplified into a noninformative uniform prior, as
will be further discussed at the end of Section II-D.

13)

B. BYY Harmony Learning With Full Representation

The BYY harmony learning can also be understood from an
information transfer perspective, with a new insight on its ability
for model selection and regularization. For this purpose, we start
at considering a generalized case of BY'Y harmony learning.

Instead of only considering y as an inner representation x in
(1), the parameter set @ is also partly a representation of the en-
tire sample set but not any individual sample Z; alone. Gener-
ally, we can extend (1) into

p(X, R) = p(R|X)p(X), q(X, R) = ¢(X|R)q(R)  (14)
for the joint distribution of the observation X and its inner rep-
resentation R as follows:

* X consist of a set of random vectors {z;} that may be
linked via certain topological relations [44]. The simplest
one can be a line topology, thatis, X = x1---2;---xn
denotes a sequence. A BY'Y system on this type of obser-
vation is called temporal BYY system on which studies
have been made in [43], [49], [53] with both new insights
and new results. In the simplest case, x1, - - -,
are mutually independent and identically distributed
(i.1.d.), which is the main focus of this paper.

* R={Y,0} with Y consisting of i.i.d. y1,---ys, -, yn-
Moreover, the parameter set § is randomly taken according
to either a priori distribution ¢(#) before observing any-
thing or a posteriori distribution p(f|X) after observing
instances of X.

Thus, (14) is added with the following details:

Ty o, TN
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p(RIX) =p (YIX #)p(6]X)

Hp Y|z, 0)

g(X|R) —q(XIY 0)

p(Y|X,0)

-Tt|yt7

| )a(6)
N
) I a(v:l6)

where G(x|m, 33) denotes a Gaussian density with mean vector
m and covariance matrix Y, and X = %y, ---,%,---, Ty is a
specific value of X in a sense that each x; takes a specific value
T

In an analogy to the process from (1) to H(pl|q, ) by (5), it
follows from (14) and (15) that:

H(pllg) = /p<R|X>p<X>
X Infg <X|R> (R)] p(dX)pu(dR) — 7,

~N / H(pllg, X.6)

s pu(d) p(dX) + EWX

Bx = [ p(0p(61%) b a(O)ud8)u(dX)

H(pllg. X.0) = / p(yele, O)p(ee)

X In [q(zt|ys, 0)q(ye|0)] p(dze) p(dy:) — Z,
G (4| T+, B21). (16)

%“:12

q(Y)

15)

p(6]X)

with p(z:) =

The above approximation is justified when A > 0 in
G(w¢|T¢, h®I) is small and there will be no approximation
when h = 0. Actually, H(p||q, X,0) is same as that in (5)
and the above H (pl||q) is equivalent to [51, eq. (27)]. H(p||q)
differs from H(pl||q, X, #) by taking in a consideration on the
randomness of # and X.

Usually, an appropriate a priori g(6) is not available. One way
is given as follows [51]:

_ Z4(0)
1) = 77, (6)u(d0)
q(Z+¢|Te, 0)q(7:16)
N N PR
N
Zy(0) = > a(@lgr, 0)a(5:19)

which can be inserted into (16) for a further study. However, its
computing is tedious.

In the existing literature [28], [32], [34], [39], a so called im-
proper noninformative uniform prior ¢(f) = 1 is used, in a
consideration that we naturally like that ¢(#) is uniform to any
values of # when there is no any a priori knowledge available.
However, this ¢(f) = 1 is not a proper uniform density on an in-
finite domain R™f. However, directly adopting ¢(6) = 1 leads
to Ex = 0in (16), which has no bias on parameter learning for
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6 but also no help on model selection for m. A better trick is
considering the integral over (12) via simply setting ¢(f) = 1,
which leads to an additional term for helping model selection
[28], [32], [34], [39].

This paper alternatively suggests to consider two extreme
cases of ¢(¢). One extreme case is that ¢(#) is free and thus de-
termined via maximizing H (pl||¢) or equivalently maximizing
Ex in (16), which leads to ¢(§) = p(#]|X). To get a specific
form of p(#|X), we consider an estimator § = T(X) on a
sample set X, e.g., §* via the parameter learning by (6) can be
denoted as #* = T(X). Assuming that § = T(X) is unbi-
ased to the true value #°, in help of the celebrated Cramer-Rao
inequality we can let p(#|X) to be given by the asymptomatic
form of the best unbiased estimator € on a size N of samples.
That is

p(8|X) =G <9|0°, %)
F () _/81ngéa:|9)
81%(;5@ p(xz|0)dx or equivalently
F) =~ [ Eorel?) gy a7

where F'() is known as Fisher-information matrix. Thus, we
have

Bx = [ p(00p(61%) lp(6l bl X)

2reo?

N
o (18)

— 0.5mg In
of = [F(6°)|™
where my denotes the number of free parameters in # and o2
acts effectively like a variance. Moreover, it follows from 6* by
(6) and Vo H(p||q, X, 6)|s=s+ = O that:
H(pllg, X, 0) ~ H(pllg, X, 07)
—0.5(0 — 0" h (°)(0 — 6%)

0%H(pl|q, X, 0

_H(pllq):/p()’()p(mx)
x H(pllg, X, 0)p(df)p (dX)-l-EWX
/p(X)p(6|X)

x H(pllq, X, 0)u(df)pu(dX)
=H(pllq, X,0%)

—0.5Tr KEHJF

X

B etor)] a9)

where T'r[A] is the trace of the matrix A and Xy =
E(6* — 6°)(6* — 6°)". Further assuming that #* = T(X)
is also unbiased, we can approximately let the above F'(6°)
replaced by F'(6*) and let ¥ given by the covariance matrix
E(9* — E6*)(6* — E6*)T. This covariance matrix may be
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estimated via cross validation with an expensive computing
cost.

Moreover, we can also simply let X replaced by the covari-
ance matrix of the best estimator as in (17). Together with (18),
it follows from (16) and —(1/N)H (p||q) that we get:

JG(m> ~ - H(p”anae*) +
mg=Tr [F_I(H*)hj((ﬂ*)]
mg, =0.5myg [ln % +In (271'0]%)}

mys+mgy

N

(20)

where my can be regarded as an effective number of free pa-
rameters.

Another extreme case is considering a prior ¢(f) =
G(6]6°, No>I) that becomes a noninformative uniform as
N — oo. It follows from (16) that:

Ex = —0.5my [lnN +1n(27r02)] —cN

me, =0.5mg [In N + In(270?)] 1)

where ¢y = 0.502Tr[F~1(#°)]/N? can be ignored as N in-
creases. One way is let 02 = 0121 given as in (18). In this case,
mpg, in (20) and (21) indicates two extreme settings. We may
also take their average as follows:

mey, = 0.5mg [0.5+ In (2707)] . (22)

Thus, model selection by (7) can be further improved into that
by (9) via Jg(m) by (20) with mg, by either of (20), (21) and
(22), especially when N is quite small. Typical examples are
listed in Fig. 2. For simplicity, we even may let m = my after
approximately regarding F'(6*) = hs(6*).

C. An Information Transfer Perspective

As shown in Fig. 3, we consider a system in which z is
mapped to an inner representation y that is encoded and sent
to the receiver, and the receiver then decodes ¥ to reconstruct
x. Learning is made to obtain p(y|, f,,) for getting y from
x, the distribution ¢(y|6,) for the codes on y, and the decoder
q(z|y,0),) for getting x from y, under assumption that the
function forms of ¢(y|0,) and q(z|y,0,,) are already known
at the receiver.

We consider the problem of transferring a set X = { :Et}ivz 1
of known samples from p(z). The probability of getting
Z; for mapping is approximately p(Z:)u(6,(Z:)), where
0,(Z¢) is a small volume centering at Z; such that we
have Ex GX p(Ze)pu(6,(Z+)) ~ 1 as an approximation of
[ p(z = 1. Since there are N such small volumes, one
above constralnt is not enough to fix them and extra constraints
should be imposed. The simplest one is assuming that all of
them are same, i.e., 6,(Z+) = 6,(x) for every ¢. Thus,

N 1
NN oy
Et:1 p(Z+)

Moreover, each sample Z, may be encoded via a set Y; that
may consist of one sample 7; or a finite number of samples
of y. The probability of getting both z; and § € Y; is ap-
proximately p(4|@+, 0. )1(6p(y)) X p(T+)p(dp(x)) subject to

(23)
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o f ——-

ﬁ Y, is transmitted per each sample x,
’ 9016 6,,0,, are transmitted only once
1 g0)=
q(x|y, 9’\1".) P = J.,\q(r| »,6, ,)a’x
nylx6,) l l
L 3
3 e=x-g( y_) is_tra—nsmitted ?
per each sample x,
Po(x) X x=gte
Fig. 3. Bayesian Ying—Yang harmony learning from an information-theoretic

perspective.

Serex Sy P11 0,10)p(2) (6, (4) (8,(2)) ~ 1. Sim-
ilar to the discussion in Section II-A, we can encode ¥ via a two
part encoding subject to ¢(7|6,). One is an amount of bits for
coding §,,. The other is the amount of bits for coding the residual
information of ¥ that is not included in 6,,. The amount for one
sample 7 is — In[q(7]6,)u(64(y))] and thus in total is given as

follows:
= > p(@la, 0y )p(a) 1 (8p(x))

7, €X yeY,
X 11 (8 (y)) In [q(716y ) 1 (84 (y))]

=bj + 05

- Z Z p(??|57t:9y|z)p
T, €EX yeY;

x 1 (6p(y)) In q(716,),

==Y > (e, b0y0)p(Te)n (6p())
z,€X yeY;

X 11 (6p(y)) In pu (64 (y))

—Inp(64(y)) .-

To reconstruct T, from y € Y; atthe receiver we need to code an
amount of bits for coding 6, to get g(7) = [ zq(x|7, 0., )dx
at the receiver. Also, we need to code the res1dua1 er = Tr—g(7)
with an amount of bits as follows:

b* = — Z Zp(g|jt0y|m
z,eX JEY,
X (6 (y)) I [T |7, 0y ) 1t (8g())]
— 05+ 05

bi = = Z ZP(?ﬂjteym

z,eX JEY,

X (6p(y)) Inq(y16y)

by = — Z Z (@14, Oy1a )p(T0) 1 (6p ()

. ()

X/t( ())D (6
~ —Inp(6,(x)). (25)

Moreover, (b + b7)/N can be approximated by its limit as the
sizes of samples in X and Y; tend to infinite large and 6p,(z) —

by

Y
by

(@) (8p(2))

(24)

Q

(@) (6p())

(@) (6p())
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dz, 6,(y) — dy, which leads to the first term of the harmony
measure —H (p||q, 6) in (5). Also, we have

Zy=—Tn 1 (8,(9)) ~In 1.8, ()= = In [ (6,(1)) 1 (8,(2))] .

(26)
In other words, Y + b° leads to the harmony mea-
sure —H(p||g,6) in (5). Similar to (23), it follows from
S rex Lyer ATl 0aty) al7l0)ns, ()i, (x) ~ 1
that

1
Zitej' def’t q(i‘t|g7 0L|y)q(g|0y)
27
which introduces a type of regularization studied under the
name of normalization in [48], [50].
In the case that p(z) is estimated by the following Parzen
window estimate:

1 (6(y)) 1 (8¢ (2)) &

(28)

ph |zt h I

||Mz

with a small b # 0, H(p||q,6) in (5) becomes

]\7
1 _
H(pllg. 0) = Z/p(ylxtﬁyu)
t=1

xIn[q(Zely, O21y)a(y)] (dy) — B> Trlrg] - Z,

N _
1 _ 9%In q(xt|ylez\y)
=N ;/p(ylxt, Oy|c) S0 0aT u(dy).
(29)

Moreover, with py, () replacing g(x|y, f,,) in (27) we corre-
spondingly get that

1
Zitej( ph(it) Zgjefft q('(ﬂﬂy)

1 (6q(y)) 1 (6q()) = (30)

which introduces another type of regularization that was pre-
viously studied under the name of data-smoothing [46], [50].
Also, when Y, is not limited to each ¢ but consists of samples in
all ¢ we have

Z P(Z¢)

z,6X

+In [ > q(716,)

ey

3D

which provides an alternative implementation of normalization
regularization.

Further considering that the amount of bits b} + b for the
parameter set {f,,0,,} = 0 actually encodes the information
that is described by p(@ | X) but has not been covered by samples

={z1, -, x4, -, xNn}, we have — [ p(6|X) Inp(0)u(df)
that is equivalent to EX in (16). Therefore, — N H (p||q,0) +
by + b finally leads to —H (pl|q) by (16). In other words, the
BYY harmony learning with H (p||q) by (16) attempts to maxi-
mizing the best information transfer in a sense of the minimum
expected coding bits, while the BYY harmony learning with
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—H(p||q, ) by (5) implements this goal approximately by ig-
noring the bits by + b5.

D. Relation and Difference to MDL, Bayesian Approach,
Akaike Information Criterion, and Minimum Entropy

The above information transfer perspective shares the same
sprit of minimizing the coding bits of information with the MDL
approach discussed previously in Section II-A. However, there
are two differences.

One key difference is that the two coding parts by the previ-
ously discussed MDL have been replaced with the three coding
parts by the BYY harmony learning. By MDL, as discussed
in Section II-A, model selection is enabled via the balance be-
tween the bits by and the bits b°. Discarding the bits by, the MDL
degenerates back to the ML learning, with its model selection
ability disabled. By the BYY harmony learning, in addition to
the bits b° for encoding the residual part (i.e., the bits of = that
is unable to be described by the BY'Y system in consideration),
the role of by has now been jointly shared by the bits b¥ for en-
coding the inner representation y of = and by the bits b} + b§
as a counterpart of bg. Not only carrying the information about
x, the bits b¥ also encode the scales of representation that either
indicates model complexity directly or includes the core part of
model complexity. Thus, discarding the bits b + b5 will not
disable the model selection ability, though it may weaken the
performance of model selection when N is rather small.

The above difference also leads to an important difference
in implementing model selection. To avoid an inappropriately
chosen ¢(f) to deteriorate learning considerably, only a nonin-
formative uniform prior is used as ¢(¢) in MDL and thus has no
effect on parameter learning for determining #, which is still
made by a ML learning as the first step. The MDL criterion
comes in effect at the second step for model selection. This two
step implementation costs heavily since parameters learning on
getting 6 has to be made on all the candidate models in consider-
ation. By the BY'Y harmony learning, the job of model selection
is also performed via a family of densities ¢(y|6, ) with a given
parametric structure but unknown parameters 6, that is deter-
mined during learning process, which is a significant relaxation
from solely relying on a priori density ¢(#). As a result, not
only parameter learning is performed more accurately but also
model selection is made via the scale parameters of y that are
determined automatically during learning parameters in 0.

Another difference is that the term Z, replaces the role of
a prefixed quantization resolution ¢ that is currently widely
adopted in the MDL literature. Without considering what
type of data distribution it is, manually setting a constant ¢
is simply because there is no a better solution available but it
is clearly not a good solution. In the BYY harmony learning
by (5), the term Z, provides a regularization role [43], [46],
[48]. In the data smoothing implementation, Z, = Z4(h)
takes the input data distribution in consideration via the Parzen
window estimator by (28) with a smoothing parameter h.
This & takes a role similar to a quantization resolution 6, but
now it is also learned to adapt the set of samples {:Lt}iv 1-In
the normalization implementation, Z, = Z,(0,,,0,) takes
the input data distribution in consideration indirectly via the
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learned parametric densities q(z|y, f,,) and q(y|6,,) on the a
set of samples {a;}1_,.

It is interesting to further observe that H(p||q, ) degener-
ates back to the likelihood function after removing away both
the role of Z, by setting Z, = 0 and the inner representa-
tion y in Section II-B (i.e., having R = 6 only). Moreover,
—(1/N)H(p||q) degenerates into —(1/N) >~ Inp(a:]0) +
(mg 4+ mg, )/N), which is different from both AIC and BIC.
In addition, with Z, # 0, H(p||q,#) will degenerate to a like-
lihood function with a type of regularization similar to that dis-
cussed in Section II-A-2 of [48].

It also deserves to mention that
— [ p(RIX)p(X) In[q(X|R)q(R)]u(dR)u(dX) ~ becomes
equivalent to an entropy when p(R|X)p(X) = ¢(X|R)q(R).
However, maximizing harmony is generally different from
minimizing entropy. First, p(R|X)p(X) = ¢(X|R)q(R)
will not happen for making learning on a finite size N of
samples in X . Second, the minimization of neither the entropy
— J a(X|R)q(R) In[g(X |R)q(R)lu(dR)p(dX) ~ nor  the
entropy — [ p(R|X)p(X) In[p(R|X)p(X)]u(dR)u(dX)
can provide a meaningful tool for loading the information
in the sample set X to p(R|X) or ¢(X|R) and q(R).
However, after the parameters of ¢(X|R) and ¢(R) have been
determined via another learning principle (e.g., maximum
likelihood), a same specific criteria J(m) in (7) can be
obtained for model selection from either —H (pl||q,0*) or

— [ ¢(X|R)q(R) In[g(X|R)q(R)|u(dR)p(dX).

E. Relation and Difference to the Bits-Back Based MDL

Both the MDL implementation with a bits-back strategy in
[18], [19] and the BYY harmony learning share a common fea-
ture that = is mapped to y and then y is coded for transmission,
instead of coding z; directly for transmission. However, there
are differences again.

Similar to Section II-D, one difference is that the BYY
harmony learning uses the term Z, to replace the role of a
prefixed quantization resolution ¢ that is still adopted in the
bits-back based MDL. Also, the bits bj /N + by /N in H(p||q)
have not been taken in consideration by the bits-back based
MDL. Another even fundamental difference is that BYY
harmony learning does not adopt the bits-back strategy that is
the key feature of the bits-back based MDL [18], [19].

Considering the dependence among the inner codes generated
by p(y|z), it has been argued in [18], [19] that the total amount
of bits to be transferred should be subtracted by the following
amount of bits:

H(bya) = [ plole,byo)p(o) np(alo. Oy n(do)uldy).

' (32)
With this amount claimed back, the total amount of bits that has
been considered by [18], [19] is actually equivalent to the Kull-
back divergence K L(f) by (8), after discarding a term H, =
J p(z) In p(z)dz thatis irrelevant to learning when p(z) is given
by (28) with A = 0. In other words, the bits-back based MDL
[18], [19] actually provides an interpretation to the Kullback
learning by (8) from a information transfer perspective. In a
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contrast, without including H (f,,,) by (32), the discussion in
Section II-C provides an interpretation to the BYY harmony
learning by (5) and (20). As further discussed in the next subsec-
tion, the Kullback learning by (8) is equivalent to implementing
parameter learning under the ML principle or its certain regu-
larized variants in lack of model selection ability, while BY'Y
harmony learning provides a new mechanism that makes model
selection either after or during parameter learning.

An insight can also be obtained via observing the role of the
bits-back amount —H (f,|,.) by (32). With the dimension of
y fixed, the Kullback learning by (8) implements a stochastic
encoding by p(y|z, 0, ) that allows certain dependence among
the resulted codes. This dependence generates a redundant
amount —H (f,|,) of bits that is suggested in [18] and [19] to
be subtracted from computing the total amount of bits. In a
contrast, aiming at seeking appropriate representation scales for
vy, the BYY harmony learning by (5) with Z; by (26) actually
minimizes

—Inpu(6(2)) = Inp(84(y)) - (33)

Moreover, we have —H (6,,|,) — In pu(6,4(y)) > 0 and —H,. —
In p(64(x)) = 0 when p(z) is given by (28) with h = 0. Thus,
—H(6,k) > KL(0) is an upper bound of the total bits consid-
ered in [18] and [19].

When p(y|z) is free, max, ) H(pl|g,#) results in [48]
and[50]:

plyle) =6 (y —y(@)),  y(z) = argmaxq(z]y)a(yl6y)]-

(34)
It happens similarly when p(y|z) is parametric either directly in
a form of 6(y — y(z)) or tends to be pushed into this form via
max,(y|) H(pllg, 0). In these cases, —H (6,),) — Inu(64(y))
reaches its minimum value 0. Thus, the BY'Y harmony learning
will achieve the minimum total number of bits instead of acting
as one upper bound.

In other words, the BYY harmony learning reaches the op-
timal coding bits both by learning unknown parameters and by
squeezing out any stochastic redundancy that comes from al-
lowing one z to share more than one inner codes of y. As aresult,
all the inner codes will occupy a representation space as com-
pact as possible. That is, model selection occurs automatically
during the process of approaching the optimal coding bits. On a
contrary, the dimension for the inner codes of y is prespecified
for a bits-back based MDL case, and the task is learning un-
known parameters under this fixed dimension (usually assumed
to be large enough for what needed). Due to there is certain re-
dundancy in the representation space, it is allowed that one x
may be redundantly represented by more than one inner codes.
Instead of squeezing out this dependence, the redundant bits
of —H(f,|,) by a stochastic p(y|z) is not zero but discounted
in counting the total amount of bits. Though such a redundant
coding makes information transfer more reliable, allowing re-
dundancy in the representation space of y already means that
this representation space is not in its minimum complexity.
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F. Relation and Difference to Information Geometry,
Helmholtz Machine, and Variational Approximation

The minimization of K L(6) by (8) with respect to a free
p(y|z) will result in

q(zly)q(y)

p(ylz) = @)
q(x) = / q(zly)q(y)(dy)

p(x)
KL(9) = /p(:l:) In @) p(dx)
which is equivalent to the ML learning on ¢(z) when p(x) is
given by (28) with A = 0 [59]. This case relates to the informa-
tion geometry theory (IGT) [2], [3], [11] that is also equivalent
to the ML learning on ¢(z) by (4), and the well known EM al-
gorithm [14], [30] is reached by the em algorithm in IGT.
Making parameter learning by (8) also relates to the
Helmholtz machine learning (HML) when p(z) is given by
(28) with h = 0 and both p(y|z) and ¢(x|y) are both given
by the conditional independent densities based on the sigmoid
layered networks as used in [13], [17]. That is, the densities are
given with the following format

(35)

m

p(ulv) = H

]:

m(v) = [r1(0), - T (0)]"
s(Wv+c)

o0 = (5) s (4]

0 < s(r) < 1is a sigmoid function

_u(d)
u(7) l—ﬂ'j(v))l uld

(36)

where « is a binary vector. In this case, making parameter
learning by (8) actually becomes equivalent to an one layer
HML. Also, the well known wake-sleep algorithm for HML can
be regarded as a specific adaptive form of (10). With a general
insight via (10), other specific algorithms for implementing the
HML may also be developed.

It is also deserve to notice that making parameter learning
by (8) with a parametric p(y|w) € Pyja(0y) is different
from a free p(ylz) € PO )| i that a parametric family
Pylz(fy)z) is a subset of the family 733‘32 containing all the
density functions in the form p(y|z). Thus, we always have
minp(y|z)€py|m(9y‘m) KL > minp(y\m)el’g‘m K L. When p(.fl?) is
given by (28) with h = 0, it follows from (35) that the latter
becomes equivalent to the ML learning on ¢(z) by (4). In other
words, making parameter learning by (8) with a parametric
p(y|z) actually implements a type of constrained ML learning
on ¢(z), which is also called a variational approximation to the
ML learning on ¢(z) [36], [38].

The BYY harmony learning are different from the three ex-
isting approaches as follows.

First, the BYY harmony learning minimizes the harmony
measure —H(p||¢,6) instead of a Kullback divergence
KL(p|lq) in (8), not only for parametric learning but also
for model selection. Even using the Kullback learning by (8)
for parameter learning, it is still followed by making model
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selection via (7) or (9). In contrast, making parameter learning
via minimizing Kullback divergence is the only target in IGT,
HML, and variational approximation, while the issues of
regularization and model selection are out of the scopes of their
studies.

Second, as discussed later in (45), the harmony learning may
also be regarded as implementing a type of constrained ML
learning, especially when p(y|z) € Py.(0,,) is parametric.
However, it is different from the above discussed constrained
ML learning via variational approximation [36], [37]. As shown
in (45), an additional constraint should be imposed on both types
of learning to make them become equivalent.

Third, even focusing on the common part, i.e., making
parameter learning via minimizing Kullback divergence for
implementing parameter learning, these studies are made from
different perspectives with different purposes. IGT studies the
general properties possessed by (8) and alternative minimiza-
tion for two general p, ¢ from the perspectives of geometry
structure [11] and differential geometry structure [2], [3]. HML
and variational approximation consider developing efficient
algorithms for implementing empirical parameter learning on a
forward-backward net via an approximation of the ML learning
on the marginal density ¢(z) in (4). In contrast, the BYY
learning studies two distributions in the two complementary
Bayesian representations in (1) by systematically investigating
not only three typical architectures for different learning tasks,
but also regularization by either a conscience de-learning type
via normalization or a Tikhonov-type via data smoothing with
its smoothing parameter h estimated in an easy implementing
way. While IGT, HML and variational approximation have
neither explicitly and systematically considered the two com-
plementary representations in (1) nor the regularization of such
two types.

III. A PROJECTION GEOMETRY PERSPECTIVE

Through obtaining a quasi-Pythagorean relation under the
Kullback divergence by (8), this divergence based learning has
been further theoretically studied from the perspective of both
the ordinary geometry and differential geometry under the name
of information geometry [2], [3], [11]. Actually, neither the har-
mony measure by (5) nor the Kullback divergence by (8) satis-
fies all the properties of the conventional metric measure. More-
over, the harmony measure by (5) even does not satisfy a quasi-
Pythagorean relation that the Kullback divergence satisfies. In
this section, we suggest to investigate both the harmony mea-
sure based learning and the Kullback divergence based learning
from a geometry perspective, relaxed from a metric level to a
projection level.

We denote U, = {u : u € R and |[ul]> =
027 for a constant ¢ > 0}, which is a sphere shell with
the radius c. As illustrated in Fig. 4, from the concept of the
inner product u”'v at its special case ||ul]| = 1 we can get a
concept of the projection IIY, of v on u. Moreover, a residual
vector v — w also has a projection II,~* on u. Furthermore, we
have the following interesting nature

When v, ulocate on a same shell U,,

the concepts of mazimizing the projection v to u,
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minimizing the residual projection (v — u) to u,
of making residual v — u being orthogonal to u,

and the equality v = u are all the same thing. (37

In an analogy, we consider a functional space
0= {a(w: atw) 2 vand [ atwuiin) <o} 9

where u € S, C R? and y is a given measure on the support
Su. A useful subspace P, C Qis

P.= {p(u) :p(u) > Q/p(u)u(du) =c, for a constant ¢ > 0}.
(39)
Particularly, when ¢ = 1, P; is the probability density space.
Given p(u) € P., q(u) € P, we define the projection of
q(u) on p(u) under the constraint of a set of samples {ut}i\; 1
as follows:

Hllo) = [ pw) gl - 2,
N
Zy= =y plur)p (6,(u)) In o (64 (u))
t=1 .
~ Inp(6,(u)) subject to Zp(ut)/t (6p(w))

t=1

~1
’

(40)

which acts as a counterpart of II!, as shown in Fig. 4. Specifi-
cally, from Zf\;l q(ue)p(d4(u)) = 1 we have

1
§q(1)) = ————,
1 (6¢(u)) SHTOR

Alternatively, we can also let pu(6, (1)) = 11(6,(u)) and get from
Sisy p(u)n(Ep(w)) 1 that

]\T
Z, = —anq(ut). 1)
t=1

1
8q(w) = p(8p(u) = ———
1 (6q(w)) & pu(6p(u)) SN ()
Zym Zy ==Y pluy). (42)

Also, it can be observed that (40) leads to (5) when p(u) =
p(z,y), ¢(u) = q(z,y) and to (16) when p(u) = p(R| X )p(X),
a(u) = q(X|R)a(R).

Extending the property that the self-projection of wu
is simply the norm ]J|u||, the self-projection of p(u)
s Hplp) = SN, plun)i(6,(us) Wlp(ur) (8 (uz))
~ [ p(u)Inp(u)p(du) — In p(8,(w)), which can be regarded
as a type of norm of p and it represents the negative entropy
of the probability distribution p(u)u(é,(u)) when p(u) € Py
is a density. Also, extending the property that the projection
ITY is maximized when v is co-directional with u, H(p||q) is
maximized if and only if g(u) = (¢//¢)p(u), i.e., ¢(u) may not
be equal to p(u) but has the same shape as p(u), which can
be observed from [ p(u)Ing(w)p(du) < [ p(u)Inp(u)p(du)
with cp(u) = p(u), ¢d(u) = q(u) and (i), d(u) € Pr.

However, there are three differences in comparison with the
situation of II7). One is that each density represents a point of

v w
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Inner product u'v = cc'cos(6, - 6,)
Projection of vonu: IT), = ¢'cos(6, —6,) < ¢'and '=' holds if and only if 6, =6,

Projection of g(u)on p(u): H= Ip(u)]nq(u)y(dzt)—Zq

c'<c

c'>c
v=ceel,
u=céd"el,

™ I I =0

: v E v—=u v
l_‘[u ]‘_‘[u Hu
v-u 0, 0y,
Hu =HV_UHCOS(0u _Hv—u) =|c'e"r—ce™ ui COS(&M _ev—u)
When ¢'<e, [T} 2c-c' When ¢'>¢, || >0

Equality holds if and only if 6, =6,.  Equality holds iff |6, -6, ,|=0.57.

ul=

Projection of

q(u) . _ p(u)
e pu): KL= j p(u)lnm 1(d)

Fig. 4. From an inner product back to a projection in the vector space.

infinite dimension. Second, each component is constrained to
be nonnegative. Third, the constraint [ p(u)u(du) = cis a
first-order linear constraint, instead of the quadratic constraint
lul* = 2.

Due to these differences, the maximization of H(p||q) makes
not only that p(«) and ¢(«) has a same shape in the sense ¢(u) =
(¢’ /¢)p(u) but also that p(u) prefers to have a simplest shape
cb(u — u*), where u* = arg max, q(u). When p(u) is free to
be any choice in P, and ¢(u) is free to be any choice in P/, the
maximization of H (p||q) will finally make that both p(u) and
q(u) become impulse functions. When p(u) € P, q(u) € Q
are constrained to be unable to become impulse functions, the
maximization of H (p||q) will make that p(u) and ¢(u) become
close in a shape of a least complexity but not able completely
equal. Therefore, the maximization of H(p||q) onaBYY system
(1) indeed implements the harmony principle as described in the
introduction section, while the maximization of the projection
u to v only ensures u and v become co-directional but does not
have such a least complexity.

In addition, H(p||q) does not share the symmetry that pos-
sessed by IT% at ||v|| = ||ul|. If exchanging the positions of p, g,
though max H (p||q) still makes that p(u) and ¢(u) have a same
shape, it is different in a sense that ¢(u) but not p(u) is now
pushed to a shape of ¢/6(u — u*).

Moreover, if we use p(u) € P. to represent g(u) € Pe
and define the discrepancy or residual! by p(u) © q(u) =
p()oy (u)/q(u)8,(u) ~ p(u)/q(u) under 8, (u) ~ 8, (u). we
get that this residual projection on p(u) as follows:

Rollo) = [ pa)in [%] ()

= H(pllp) — H(pllq)
~ ot 12D g
~ [t 565

Since p(u) = cp(u), q(u) = '§(u) with p(u), G(u) € Py, it
follows that:

(43)

R(pllg) e [KLG1G) +1n 5]

'Under this definition, p(u) © ¢(u) is not guaranteed to still remain in Q, a
further discussion is referred to [44].
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KLl = [t B . @

q(u)

From which we can observe the following properties:

* Minimizing R(p||q) is equivalent to both minimizing the
self-projection of p(u) and maximizing the projection of
q(u) on p(u). When the self-projection H(p||p) is fixed at
a constant, minimizing the residual projection is equiva-
lent to maximizing H (p||q).

* The residual p(u) © ¢(u) is said to be orthogonal to p(u)
when the residual projection R(pl|q) becomes 0 that hap-
pens when the norm of p and the projection of ¢ on p be-
come the same, i.e., H(p||p) = H(p||q).

* When ¢ = ¢/, the minimum value of R(pl||q) is O which
is reached if and only if p(u) = ¢(u). Moreover, when
¢ =c =1, p(u) and q(u) are densities and R(p||q) =
KL(pllq).

From the above discussions, we see that the concepts of
maximizing H (p||q) and of minimizing the residual projection
R(p||q) are related, but not equivalent. Even when ¢ = ¢ = 1,
we do not have the equivalence that exists between II! and
IT;, =™ as given in (37), as illustrated in Fig. 5. This provides
a geometry perspective on why and how the maximization of
H(pl|lg) on a BYY system (1), which is a generalization of
maximizing the projection for the co-directionality, is different
from the minimization of K L(p||q) on a BYY system (1)
or equivalently the maximum likelihood learning, which is a
generalization of minimizing the residual projection. Moreover,
the latter does not have the least complexity nature that enables
the former to make model selection.

However, imposing an additional constraint that H (p||p) is
fixed at a constant H, we have

H(p||q) is equivalent to

K L(p||q)-

max
pEP,GEQ, s.t. H(p|lp)=Ho
min

(45)
pEP,qEQ, s.t. H(p|lp)=Ho

With p(z) given by (28), the constraint H(p||p) = Hp means
certain constraint imposed on p(y|z). In these cases, (45) can
also be regarded as implementing a type of constrained ML
learning, which is different from those of variational approxi-
mation [36], [37] that also implements min,cp 4e K L(pl|q)
with p(y|x) in a constrained structure but without requiring the
constraint H (p||p) = Hp.
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]._.[: ]._.[ :/’—u
IT, = cos(6, -6,) M =[v=—uloosd, -6,.,)
u u v & = e"sv - e"HHH COS( 0;/ - ewu)
IT,, =max if and only if 0, =0,.
4 by I1,™ = 0if and only ifg, = 6,.
[puten) =1, [qu)u(du) =1
_ pu)
H = [p)n g(u)utdi) - 2, b KL= ot S

max, H resultsin g(u) = p() minq KL results in g(u) = p(u)

mapo results in p(u) = S(u—u") minp KL results in p(u) = q(u)

max ,, H results in g(u) = p(u) = 5u-u") min , . KL results in g(u) = p(u)

Fig.5. Unitnorm based projection: from the vector space to a functional space.

IV. BYY INDEPENDENCE LEARNING AND FACTOR
AUTODETERMINATION

A. BYY Independence Learning on Linear Real Factor Model

Under the constraint by (3), the BYY harmony learning by
(5) is called the BY'Y independence learning and can be further
classified into various types according to the specific differences
in p(y|z), ¢(y|z), ¢(y), and p(x) as well as Z,.

In this paper, we concentrate on a special class of the BY'Y in-
dependence learning that bases on a free Yang path and a linear
Ying path z = Ay + e with y being real and e being a Gaussian
noise. That is

q(zly) = G(z|Ay,X), and p(y|z) is free. (46)
Moreover, an additional constraint on the scaling of y should
be imposed since (3) remains satisfied and ¢(z) by (4) remains
unchanged under any scaling transform y = Dy with a diagonal
matrix D. This indeterminacy can be removed by imposing the
unit variance constraint E(yy?) = I with E(y) = 0 because
E(gyT) = D? # I forany D # I. Given in (47) at the bottom
of the page are three typical examples: where the Gaussian case
leads to the classic factor analysis (FA) [5], [29], while the other
cases can be called non-Gaussian FA [47], [49]. Also in (47),
H,(y) is the nth-order Chebyshev-Hermite polynomials, p;
is the third-order moment of y(j ), and n? > 0 is the fourth-order
moment of /), and 6, consists of a set of unknown parameters

q(y) is given by eq. (3) with
G (y¥0,1)

1 (y10,) = { G DN0.1) [1+ FHa (y9) + 557
S BiiG (YD i, 0%;) , st B (y<j))2 =1

Gaussian

2
nj3

H, (y(j ))} Gram-Charlier expansion 47)

Gaussian mixture
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shown in (48) at the bottom of the pageSince a free p(y|z) is
actually determined from max,,|.) H(pl|q) as in (34), we get
one y; = y(z;) per each sample z;. For an example, at the
Gaussian case in (47), we have simply

1A]_1ATE_1(:1:t =0
where p = 0 for eq. (46).

=[I+AT%~
(49)
For other cases, y; = y(x) is obtained via a nonlinear optimiza-

tion that can be made by anyone of existing iterative algorithms,
denoted as

ynew (wt)

Specific algorithms of this type are proposed [44], [48], [49].
For the Gaussian mixture case in (47), the detailed form of (50),
under the name of the fixed posterior approximation in [49],
consists of two steps:

= ITER (y*(z)) . (50)

BirG (yD|pjr, 0%,
Sy B5iG (yD i, %)
k; ki
Pjr DjrHir
b; = Z O_LQ dj = Z Jg—zj
r=1 J7T r=1 I
) bm]) -
(51

Step (a) : pj, =

Step (b) : yp™ = (ATE 1A + diag[bs, - -

x (ATS 1z, + d).
Summarizing all the above discussions and discarding certain

irrelevant constant terms, and considering p(z) given by (28),
H(p||q,0) by (5) takes the following simplified form [44], [47]:

H(,m)= —0. 51n|2| —0.5R*Tr[271 — J,
ZZlnq t(j)|9y
t 15=1 ( )
1 X
_ 12 T
E—h +N;€t€t
et =1t — Ay, yr = y(x4) (52)

either without regularization via h = 0 or with data-smoothing
regularization via h # 0.

Learning by (6) can be made per each pair x4, y; to increase
this H (6, m) via updating q(z|y) by (46) and q(y) by (47).
Specifically, ¢(z|y) is updated via a least mean square like al-
gorithm as follows:
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parameters, e.g., it may be chosen differently for updating A,
3., respectively. In the rest of paper, the notation 7 is always
used in such a sense.

While for ¢(y), no updating on 6, is made for the Gaussian
case. For the other two cases, updating on 6, is made to increase
In g(y)) as follows:

* For the Gram-Charlier expansion case, we can simply do
it in a gradient ascent way

pold g2 old _ .
9; =1+ ~5—Hs ( (])) TR (ym>
H; (y(J))
new old
P =p; N
J J GQJ
2r0ld — 3
K? new _ ?old n 77;4—H4 ( (J)> ) (54)

For the Gaussian mixture case, we have an EM-like up-
dating as follows [49]:

Bjr (y(j)|m]’r>032'r)
Yy B5iG (yD |myi, 0%,
e =(1— 770)/30 Mt nopje

Djr =

?

M2 =mOt + nopjr (y(j ) — m?f)

2
~ 2 new ] old
O—er = (1 - ﬁopﬂ-) + TloPjr (y( 9 — mgy )

k;

mj = A
r=1
k.

f]
2 new 42 new
o5 =2 B,

r=1

(55)

In order to insure Ey) = 0, E(yY))? = 1, a normaliza-
tion is followed as below:

A new . ~2 new
new __ (m]T mJ) 2new __ _Jr
m. = 7 g2 =

ar O r 0-2_

J J

(56)

In a summary, the Ying—Yang alternative procedure by (10)
takes the following detailed form given by (57) at the bottom of
the next page. For a large size IV of samples, regularization is
not necessary and thus the above Yang-step (b) can be disabled
via simply setting h = 0. For a small size N of samples, a
data-smoothing regularization takes its role with Yang-step (b)

APV = A°M e, implemented as follows:
er =x; — Ay, h 1 hi
= -T —1 o
ynew (1 ’I’])ZOM + n (hQ 4 etef) (53) gn d ’I"[ ] + - + h3
. . . . . 1
whers: n > .0 is a given learning step size. Though in a same _ = Z Zpt,rﬂxt — .2
notation, 7 is usually different for updating different types of d =1 =
empty Gaussian
0, = { Pj K?} Gram-Charlier expansion (48)

{,quj,p/ji, 0'12-1-} , s.t. Zfil ﬂji =1,0< ,811 <1 Gaussian mixture
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2
_llzg ==l
e~ 2nr2old

N N
Zt:l ET:l €

h? is given by either h? =

Pt = (58)

_llzg—ar]?
2n2 old

2h2
14 /1+4hZd=1Tr[E-1]
or h%°' 4 pp, g, with a step size nn > 0

where d is the dimension of x. The details on this updating are
referred to Section 2 in [46] and [48].

It should be noticed that the mechanism of automatically se-
lecting m during learning by (6) has been disabled due to the
constraint E(yy’?) = I that actually fixes the dimension m.
With the learning by (57) made at each value of m that is enu-
merated from a small value incrementally, an appropriate 1 can
be selected by either (7) or (9) with J(m) and my given by
Egn.2.(a) in Fig. 2.

B. Decorrelated FA and Independence Embedded
Decorrelated FA

The constraint E(yyT) = I removes the scaling indetermi-
nacy, but unfavorably disables the mechanism of automatic se-
lection on m too. As a result, we have to compute J(m) with
a very expensive cost. What we really want is to remove the
scaling indeterminacy but keep the automatic selection mech-
anism. This can be achieved via reconsidering the nature of
(4) and the difference between the BY'Y harmony learning and
the ML learning. Actually, the ML learning or equivalently the
Kullback learning by (8) remains equivalent under any linear
transform ¢ = By since ¢(z) by (4) remains unchanged. How-
ever the situation of the BYY harmony learning will be quite
different.

We consider the following singular value decomposition

A=UDVT = djup], U=lug, - un]
j=1
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Moreover, g(x|y) by (46) and ¢(y) by (47) have been mapped
into

q(2l) = G(z|Ug,%), a(y) = [DI"'a(VD ™ 5l6,).

on which ¢(z) by (4) remains unchanged and thus its ML
learning or equivalently the Kullback learning by (8) also
remains unchanged. In the existing literature, there are efforts
that preprocess input data of x via prewhitening such that
E(xzT) = I and thus a linear model 2 = Uy + ¢, UTU = I
or equivalently G(z|Uy,X) can be considered. However, in
this way there is still no driving force that pushes an extra d;
toward O since the ML learning is still made in these studies.

On a contrary, the BYY harmony learning on (61) will
push an extra d; toward zero via maximizing lng(y) =
~In|D| + lg(VD~'l6,) = — 7 In|d;| + lnq(y]6,).
In other words, model selection is made automatically during
making parameter learning by (6).

Except for the case that ¢(g) is derived from ¢(y) by (47) in
the Gaussian case, the constraint by (3) becomes broken for all
the other cases. What still remains to be satisfied is the constraint
by (60). In other words, the components of y remains decorre-
lated but are not guaranteed to be independent. Precisely, we
should use the name of decorrelated FA instead of the name of
independent FA on the level of 3. This decorrelated FA still falls
in the paradigm of the conventional FA [29]. Interestingly, this
decorrelated FA with a non-Gaussian ¢(y) by (47) implies that
components of y = V D~1¢ will become independent. That is,
an independent FA on the level of y is actually embedded in this
decorrelated FA on the level of g. So, we call it Independence
Embedded Decorrelated FA.

Because the mapping V D~1y is invertible, the joint density
q(z|y)q(y) differs from q(x|9)q(y) only in |D|. There is no dif-
ference on getting §j; = DV Ty either via y; by (49) and (50) or
directly by (49) and (50) in term of y with

(61)

= (AP UTSTIO)TUTYS T (2 — )

= - T = T _
Vi=lv, o], UTU=1 VYT =1 (59) where p = 0 for eq. (46). (62)
where u; is a d-dimension vector and v; is a m-dimension .
C ding to H by (52), h
vector. It can be observed that d; = (0 means that the term ujvJT orresponding (o H (pllg) by (52), now we have
has no contribution to A and thus is effectively equivalent to re- H(f,m) = —0.5In|%| — 0.5h2Tr[271]
duce the dimension of m by 1. However, neither the ML learning 1 N
on ¢(z) by (4) nor the BYY harmony learning via maximizing —In|D|+ N Z Ing(VD™ ')
In G(z|Ay, ¥) can drive an extra d; toward 0 for this purpose. t=1
Considering § = DV Ty, wehave Ay = UDV 7Ty = Uy and 1 XN
Y =h+ — Z erel
Eyy" = DV'VD = D*. (60) N =
Ying Step : (a) updating ¢(z|y) by eq. (53)
do nothing, Gaussian
(b) updating q(y) by < by eq. (54) Gram-Charlier expansion
by egs. (55)&(56) Gaussian mixture.
Yang Step : (a) getting y; by eq. (49) or eq. (50)
0 without regularization
2 )
(b) h% = {updated data-smoothing regularization. (57
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(63)

€t =Tt — U:l}t

Instead of (53), ¢(z|y) is now updated subject to the constraint
UTU = I by

€t =Tt — UOZdZJt
_ 0InG(z|Uy, %)
gu = — aou
_ gteg"zold -1
Urev — Uold + 10 (g’IU" _ UolngUold)

nrew =(1 — UO)EOM + noetetT. (64)

While for ¢(), the updating on 6,, of ¢(y|6, ) remains the same
as by (54) and (55), plus D and V being updated as follows:

yew _ Vold +7 (gV _ Voldggvold)

pDrew — {(1 _ 770)] — Mo (dlag [VT(,ZS(Ut)U;TV] }Dold
_ Olng(VD ty,|0,)

oV
=y )yl V
y =V D™y,
_aln(l(y|9y)
Hap) = =g I (©5)

Similar to U, the updating on V' is made under the constraint
VTV = I. In addition to updating as in (64) and (65), U,
V may also be updated by other orthogonal flow algorithms
[47]. The above updating on D comes from D lgp D1 =
D=1 g(VD~'4/0,)/0D)D™" = —diag[V" (y.)i}]
and D" = D' — o (diag[VT $(y)y{ V] + I) D',

In a summary, the Ying—Yang alternative procedure by (57)
now takes the following detailed form:

Ying Step : (a) updating ¢(z|y) by eq. (64)
(b) updating ¢(y) same as in eq. (57)
and update V and D by eq. (65)
(c) Tf d? tends to 0 constantly, discard y©)

and all the parameters related to y(j ).
Yang Step : (a)&(b) same as in eq. (57). (66)

Being different from the procedure by (57) and those existing
FA algorithms [29], [35], [55], the procedure by (66) makes pa-
rameter learning with appropriate factors selected automatically
via Ying-step (c) in help of the least complexity nature of the
BYY harmony learning that pushes the corresponding variance
dj2- toward zero.

In some special cases, we have V' = I and the procedure by
(66) can be simplified correspondingly.

Finally, it should be noted that it is y; but not ¥, acts as the
recovered independent factors. That is, the mapping x; — ¥
performs the ICA under the noise e;.

C. Determination of Module Number of Each Dimensional
Representation

For the first two cases of ¢(y/)|f,) in (47), the representa-
tion scale of y is fully specified by the determination of the di-
mension m. However, for the third case, the determination of
the dimension mm has only completed a part of model selection
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task, since the number k; of modules in each dimension, i.e.,
the number k; of Gaussians in each scalar Gaussian mixture,
has not be discussed yet. These {k; } can also be determined via
considering the structure of the representation space of y.

The inner representation by (3) can be regarded as a de-
generated case of a joint real-discrete inner representation
q(y,0) = q() T}, q(yP[¢) in place of y, with £ taking a
finite number of integers. That is, we have a ¥ — II type of
qly) = 4, q(f) [T, a(y'9]¢). As shown in [48], this type
of y-representation will lead us to various local extensions of
independent analysis.

The inner representation by (3) with (/) |6,,) being the third
case in (47) can be regarded as a degenerated case of the fol-
lowing joint real-discrete inner representation:

q(y,0) = ﬁ q (y(j)7g(j))
j=1

q (yu), g(j)) —q (y<j>| g(j)) q (g(j))
y= [yu),...’y(m)]

/= [g(l),...,g(m)}

09 =1, k. (67)
That is, we have a Il — X type of
m kj
q(y) = H Z q (y(z)|g(1)) q (g(])) (68)
J=1¢0) =1

which returns to (3) with ¢(y©) |6,) being the third case in (47)
when

q (y(n | g(j)) —-q (ym i, 0?7;)
q (f(j) = 6) =Bji, Bji >0, iﬂji =1 (69)
=1

With the above ¢(y, £) replacing ¢(y) in (5), it follows from
(34) and (52) that:

o %gg [mq(yt(j)lfﬁj)) +Ing (zgﬂ)}
Yt = [yt(l) ’y’gm)]
to= 60, 0]

[yt, 4] = arg max {In q(x+|y)
{y,¢}
’ () ()
+j§::1 [lnq(yj If’)
e ()]}

_ @) (p0)
ye(xt) argm;zx lnq(xt|y)+21nq(y | )

J=1

yr =ye, (z4)
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by =arg max {Inq (zt|ye(zs))
n i [lnq ( |g(a))
()]}

For (69), instead of using an iterative algorithms as in (50), the
above maximization for y,(z) is a quadratic optimization that
can be analytically solved as follow:

(70)

ve(wy) = [A7 4+ ATS AT [ATS ey + A ]

T
e = [H1e)s s Hypetm)]

Ag :dlag [012_[(1)7"'70'?271[(771)] . (71)
Then, ¢, is given via the discrete optimization by the last line in
(70).

The learning is still made by (57) with

fOTj :17"'7m7
pii = { 1, ifi=¢9,
7 0, otherwise,
and update all of §j;, f4i, 012-1;
by eq. (55) and eq. (56) (72)
which is implemented at each setting of m, {k;}7_, that are
enumerated from small values incrementally, then an appro-
priate m = {m, {k;}} can be selected by (7) or (9) with J(m)
and my given by Eqn.2.(c) in Fig. 2.
To make learning with automatic selection on m, {k;}7L,,
corresponding to (61) with y = V D~'¢ we can also get (63)
modified into

H (6,m, {k-}m 1) = —05In|¥| — 0.50*Tr[x7]
N;E:llﬂ[ ﬂ(])G(yt ;00,0 g(n)} (73)
J

with ¥ as in (63) and ¥, and /; as in (70).
In implementation, we modify (66) as follows:

Ying Step : (a) U, ¥ are still updated by eq. (64)
(b) with p;; by eq. (72), update all of 3};
Wi, 012»1- by eq. (55) and eq. (56), update
V still by eq. (65) with ¢(y;) taking a
simple form ¢(yr) = — A, (ye — fie
(c) If B;; tends to O constantly, discard the
corresponding G (y 3)|uﬂ a; ) If
Bji =1ando in tends to 0 constantly,
discard the dimension y) and all the
parameters related to y(j ).
Yang Step :
get ye(x+) by eq. (71) then make (b)

eq. (57). (74)

get £; by the last line in eq. (70) and
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V. EXPERIMENTS

Experiments are made on comparing the non-Gaussian factor
analysis (NFA) and the EM based exact ML learning algorithm
[31] that is called independent factor analysis (IFA) in [6].

By the IFA, the product of ¢(y")) by a Gaussian mixture as
in (47) is used via introducing a set of random variable 2,
3 = 1,---,m such that the product of m summations in (3) is
equivalently exchanged into a summation of | | ; mj products. As
a result, the integral in (4) becomes a summation of the [ N
analytically computable integrals on Gaussians and thus ¢(z)
becomes a mixture of || I Gaussians. Thus, they were able to
implement the ML learning on g(x) with the EM algorithm. At
each step, however, a summation of ] ; mj terms has to be com-
puted. The complexity increases exponentially with the number
m of factors, i.e., O(n™) with n = max; n,.

In contrast, for the NFA by (57) on a Gaussian mixture, the
integral is replaced by finding ¥; via a nonlinear optimization
by (50) and (51) (NFA-O) with its complexity being consider-
ably less, in comparison of making the integral in getting g(z).
Moreover, we usually need only a few iterations by (50) instead
of waiting it to converge.

We consider data sets from a model z = Ay + e with y
consisting of four, six, and eight factors, respectively. One half
of factors are from uniform distribution (sub-gaussian) while
the other half are from standard log-normal distribution (super-
gaussian). Also, e is randomly generated from G(e|0,0.047),
where I denotes a unit matrix.

With each Gaussian mixture by (47) consisting of three
gaussian components, both the NFA-O and IFA work well.
Shown in Fig. 6 are the recovered factors of a 4-factor model
in comparison with the corresponding original sources, respec-
tively. Shown in Fig. 7(a) are the MSEs between the recovered
factors and the original factors. Moreover, shown in Fig. 7(b)
are the corresponding time complexities by NFA-O and IFA. As
the number m of factors increasing from 4 to 6, the time used
by NFA-O increases from 36.63 s to 58.86 s (about (6/4) = 1.5
times) while that consumed by IFA increases from 76.25 s to
646.4 s (about 3(6=% times). We get a similar situation as m
increases from 6 to 8. That is, we found empirically that the
time complexity of NFA-O increases linearly with the number
m of factors while IFA increases exponentially with 7. In other
words, with a similar or even improved performance, NFA-O
outperforms IFA significantly in the aspect of computing
complexity.

Furthermore, on a set of data that consists of 50 samples of
five-dimension generated from two sources of uniform distribu-
tions (sub-gaussian) and two sources of log Gaussian distribu-
tion (super-gaussian), with noise e generated from a gaussian
G(e]0,0.01 * I'). We perform the NFA learning by (57) on the
Gaussian mixture case with h = 0 and m increased from 1 to
6. Shown in Fig. 8(a) is the obtained .J(m) given by Eqn.2.(c)
in Fig. 2. We observe that the minimum corresponds to 4. That
is, the correct number of factors has been detected. In contrast,
the number m of factors has to be pregiven for the IFA learning
(6], [31].
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Fig. 6. Snapshots of one of the four factors, with “x” for the recovered and “o” for the original. The top for IFA, the middle for NFA by (57) via optimization in
help of (50) and (51), (NFA-O); and the bottom for NFA by (57) via (71) analytically in help of (70) and (72)(NFA-A).

6000 5634.1
5000 -
E NFA M IFA
4000 -
O
8 3000 -
Q@
[
£
2000 -
Factor NFA-A NFA-O IFA
1 .0369 .0379 .0426
2 .0401 0299 .0292 1000 - 646.4
3 .0446 .0336 .0400
36.6376.25 58.86. 76.77
4 .0189 .0245 .0344 0 . .
Mean 0351 0315 0366 4-factor model 6-factor model 8-factor model
(@) (b)

Fig. 7.

Also, we perform the NFA learning by (66) on the Gaussian
mixture case with h = 0 and k; = 3 for all j, for param-
eter learning with automatic model selection. Initially, we set
D? = diag[6.99,.89,.62,.18,.12]. As learning tends to con-
verged, we get D? = diag[7.84, .85, .42, .36,.002]) such that a
correct number of 4 factors has been automatically determined
during learning.

For the NFA learning by (57) with ¢(y) given by (3) and (47)
as in Section IV-A, each k; has to be known and prefixed, which
however is usually difficult to know in advance. We can also se-
lect appropriate m = {m, {k;}} by (7) with J(m) given by
Eqn.2.(c) in Fig. 2. Mlustrated in Fig. 8(b) is an example that
is an counterpart of Fig. 8(a), under the setting h = 0 and

Comparisons between NFA and IFA. (a) On the MSEs between the recovered factors and the original factors. (b) On time complexity.

k =k = ky = ... = ky, for simplicity. It can be observed
that the minimum is correctly found at m = 4 and &k = 3. If
we do not impose k = k; = ky = ... = k,,, the cost of
searching a minimum of J(m, {k;}) will be very expensive and
also increases exponentially with K, where K is the max-
imum upper bound that every k; has to be enumerated.

The problem is tackled by the NFA learning by (57) with
q(y, ) given by (67) and (69) as in Section IV-C. In implemen-
tation, the process of finding 4; be made via (71) analytically in
help of (70) and (72) (NFA-A). To get an insight on this replace-
ment, shown in Fig. 6 are the results of NFA-A in a comparison
with the results of NFA-O. It can be observed that a similar or
slightly improved performance is achieved by NFA-A.
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Fig. 8.

Learning has also be implemented by (66) with
automatic model selection. We initialize m = 5
and k; = 4, j = 1,...,5 with the initial D? =

diag[8.37,0.86,0.40,0.21,0.11]. As the learning converged,
we get D? = diag[7.96,0.87,0.38,0.34,0.001] such that the
number m is automatically determined as 4, during which k1,
ko, and k4 are automatically determined as 3 by observing
one (3;; tending to O constantly while k3 is automatically
determined as 2 with two (33, tending to O during the learning.
The results are consistent with that obtained in Fig. 8(b).

VI. CONCLUSION

The ability of the BY'Y harmony learning for model selection
and regularization is reexamined from both an information theo-
retic perspective and a generalized projection geometry perspec-
tive. Comparative discussions are made on its relations and dif-
ferences from the studies on MML/MDL, Bayesian approach,
the bit-back based MDL, maximum likelihood, AIC, informa-
tion geometry, Helmholtz machine, and variational approxima-
tion. Moreover, new algorithms are proposed for implementing
Gaussian FA and non-Gaussian FA, such that appropriate fac-
tors is determined during learning.

ACKNOWLEDGMENT

The author would like to thank Z. Y. Liu for experiments.

REFERENCES

[1] H. Akaike, “New look at the statistical model identification,” IEEE
Trans. Automat. Contr., vol. 19, pp. 714-723, Dec. 1974.

[2] S. Amari, Differential Geometry Methods in Statistics.
Springer-Verlag, 1985, Lecture Notes in Statistics 28.

[3] S.Amariand H. Nagaoka, Methods of Information Geometry. London,
U.K.: Oxford Univ. Press, 2000.

[4] S. Amari et al., “A new learning algorithm for blind separation
of sources,” in Advances in Neural Information Processing 8, D.
S. Touretzky et al., Eds. Cambridge, MA: MIT Press, 1996, pp.
757-763.

[5] T. W. Anderson and H. Rubin, “Statistical inference in factor analysis,”
in Proc. 3rd Berkeley Symp. Mathematical Statistical Problems,
Berkeley, CA, 1956, pp. 111-150.

[6] H. Attias, “Independent factor analysis,” Neural Computat., vol. 11, pp.
803-851, 1999.

New York:

(71

(8]

(91
[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]

(18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]

(28]

901

(b)

Model selection via criteria. (a) On the factor number; (b) on both the number of factors and the number of Gaussian components for each factor.

A.J. Bell and T. J. Sejnowski, “An information-maximization approach
to blind separation and blind de-convolution,” Neural Computat., vol. 7,
pp. 1129-1159, 1995.

H. Bozdogan, “Model selection and Akaike’s information criterion: the
general theory and its analytical extension,” Psychometrika, vol. 52, pp.
345-370, 1987.

R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and
Applied Kalman Filtering. New York: Wiley, 1997.

G. A. Carpenter and S. Grossberg, “A massively parallel architecture
for a self-organizing neural pattern recognition machine,” Comput. Vis.,
Graph. Image Process., vol. 37, pp. 54-115.

I. Csiszar and G. Tusnady, “Information geometry and alternating min-
imization procedures,” Statistics and Decisions, no. 1, pp. 205-237,
1984.

P. Dayan et al., “The Helmholtz machine,” Neural Computat., vol. 7, pp.
889-904, 1995.

P. Dayan and G. E. Hinton, “Varieties of Helmholtz machine,” Neural
Netw., vol. 9, pp. 1385-1403, 1996.

A. P. Dempster et al., “Maximum- likelihood from incomplete data via
the EM algorithm,” J. Roy. Statist. Soc. B, vol. 39, pp. 1-38, 1977.

R. O. Duda and P. E. Hart, Pattern Classification and Scene Anal-
ysis.  New York: Wiley, 1973.

C. Fyfe, “Introducing asymmetry into interneuron learning,” Neural
Computat., vol. 7, pp. 1167-1181, 1995.

G. E. Hinton et al., “The wake-sleep algorithm for unsupervised learning
neural networks,” Science, pp. 1158-1160, 1995.

G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description
length and Helmholtz free energy,” Advances NIPS, vol. 6, pp. 3-10,
1994.

G. E. Hinton and D. van Camp, “Keeping neural networks simple by
minimizing the description length of the weights,” in Proc. 6th ACM
Conf. Computational Learning Theory, Santa Cruz, CA, July 1993.

R. A. Jacobs et al., “Adaptive mixtures of local experts,” Neural Com-
putat., vol. 3, pp. 79-87, 1991.

H. Jeffreys, Theory of Probability. Oxford, U.K.: Clarendon Press,
1939.

M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the
EM algorithm,” Neural Computat., vol. 6, pp. 181-214, 1994.

M. I. Jordan and L. Xu, “Convergence results for the EM approach to
mixtures of experts,” Neural Netw., vol. 8, pp. 1409-1431, 1995.

R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Trans. ASME, J. Basic Eng., pp. 35-45, Mar. 1960.

J. Karhunen and J. Joutsensalo, “Representation and separation of
signals using nonlinear PCA type learning,” Neural Netw., vol. 7, pp.
113-127, 1994.

M. Kawamoto, “Cerebellum and motor cobtrol,” in The Hand-
book of Brain Theory and Neural Networks, 2nd ed, M. A. Arbib,
Ed. Cambridge, MA: MIT Press, 2002, pp. 190-195.

P. Kontkanen et al., “Bayesian and information-theoretic priors for
Bayeisan network parameters,” in Machine Learning: ECML-98. New
York: Springer-Verlag, 1998, vol. 1398, Lecture Notes in Al, pp. 89-94.
D. Mackey, “A practical Bayesian framework for backpropagation,”
Neural Computat., vol. 4, pp. 448-472, 1992.



902

[29]
[30]

[31]

[32]

[33]
[34]
[35]
[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

R. McDonald, Factor Analysis and Related Techniques.
Lawrence Erlbaum, 1985.

G. J. McLachlan and T. Krishnan, The EM Algorithm and Exten-
sions. New York: Wiley, 1997.

E. Moulines, J. Cardoso, and E. Gassiat, “Maximum likelihood for blind
separation and deconvolution of noisy signals using mixturemodels,” in
Proc. ICASSP ’97, Munich, Germany, Apr. 1997, pp. 3617-3620.

A. A. Neath and J. E. Cavanaugh, “Regression and time series model
selection using variants of the Schwarz information criterion,” Commun.
Statist. A, vol. 26, pp. 559-580, 1997.

L. Rabiner and B. H. Juang, Fundamentals of Speech Recogni-
tion. Englewood Cliffs, NJ: Prentice-Hall, 1993.

J. Rissanen, “Stochastic complexity and modeling,” Ann. Statist., vol.
14, pp. 1080-1100, 1986.

D. Rubi and D. Thayer, “EM algorithm for ML factor analysis,” Psy-
chometrika, vol. 57, pp. 69-76, 1976.

M. Sato, “Online model selection based on the vairational Bayes,”
Neural Computat., vol. 13, pp. 1649-1681, 2001.

E. Saund, “A multiple cause mixture model for unsupervised learning,”
Neural Computat, vol. 7, pp. 51-71, 1995.

L. Saul and M. L. Jordan, “Exploiting tractable structures in in-
tractable networks,” in Advances in Neural Information Processing
Systems. Cambridge, MA: MIT Press, 1995, pp. 486-492.

G. Schwarz, “Estimating the dimension of a model,” Ann. Statist., vol.
6, pp. 461-464, 1978.

A.N. Tikhonov and V. Y. Arsenin, Solutions of lll-posed Problems: V.H.
Winston and Sons., 1977.

C. S. Wallace and D. M. Boulton, “An information measure for classifi-
cation,” Comput. J., vol. 11, pp. 185-194, 1968.

C. S. Wallace and D. R. Dowe, “Minimum message length and Kol-
mogorov complexity,” Comput. J., vol. 42, pp. 270-280, 1999.

L. Xu, “Temporal BYY encoding, markovian state spaces, and space
dimension determination,” IEEE Trans. Neural Networks, 2004.

——, “Bayesian Ying Yang Learning (I): A Unified Perspective for
Statistical Modeling,” in Intelligent Technologies for Information Anal-
ysis, N. Zhong and J. Liu, Eds. New York: Springer-Verlag, 2004, pp.
607-652.

—, “BYY learning, regularized implementation, and model selection
on modular networks with one hidden layer of binary units,” Neuro-
comput., vol. 51, pp. 227-301, 2003.

, “Data smoothing regularization, multi-sets-learning, and problem
solving strategies,” Neural Netw., vol. 15, pp. 817-825, 2003.

, “Independent component analysis and extensions with noise and
time: a Bayesian Ying-Yang learning perspective,” Neural Inform. Pro-
cessing Lett. Rev., vol. 1, pp. 1-52, 2003.

, “BYY harmony learning, structural RPCL, and topological self-
organizing on mixture models,” Neural Netw., vol. 15, pp. 1125-1151,
2002.

—, “BYY harmony learning, independent state space and general-
ized apt financial analyzes,” IEEE Trans. Neural Networks, vol. 12, pp.
822-849, July 2001.

—, “Best harmony, unified RPCL and automated model selection for
unsupervised and supervised learning on gaussian mixtures, ME-RBF
models and three-layer nets,” Int. J. Neural Syst., vol. 11, pp. 3-69, 2001.
, “BYY harmony learning, model selection, and information ap-
proach: further results,” in Proc. 2001 Int. Conf. Neural Information
Processing (ICONIP), vol. I, Shanghai, Nov. 14-18, 2001, pp. 30-37.

, “Temporal BY'Y learning for state space approach, hidden Markov
model and blind source separation,” IEEE Trans. on Signal Processing,
vol. 48, pp. 2132-2144, 2000.

, “Bayesian Kullback Ying-Yang dependence reduction theory,”
Neurocomput., vol. 22, pp. 81-112, 1998.

Hillsdale, NJ:

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 4, JULY 2004

[54] ——, “RBF nets, mixture experts, and Bayesian Ying-Yang learning,”
Neurocomput., vol. 19, pp. 223-257, 1998.

, “Bayesian Ying-Yang learning theory for data dimension reduc-
tion and determination,” J. Computat. Intell. Finance, vol. 6, pp. 6—18,
1998.

L. Xu, C. C. Cheung, and S.-I. Amari, “Learned parametric mixture
based ICA algorithm,” Neurocomput., vol. 22, pp. 69-80, 1998.

L. Xu, “Bayesian Ying-Yang machine, clustering and number of clus-
ters,” Pattern Recognit. Lett., vol. 18, pp. 1167-1178, 1997.

, “Bayesian-Kullback Ying-Yang learning scheme: reviews and
new results,” in Proc. 1996 Int. Conf. Neural Information Processing
(ICONIP), vol. 1, Hong Kong, China, Sept. 24-27, 1996, pp. 59-67.
—, “Bayesian-Kullback Coupled YING-YANG Machines: Unified
Learning and New Results on Vector Quatization,” in Proc. Int. Conf.
Neural Information Processing (ICONIP96), Oct.—Nov. 1995, pp.
977-988.

L. Xu, M. I. Jordan, and G. E. Hinton, “An alternative model for mixtures
of experts,” in Advances in Neural Information Processing Systems 7, J.
D. Cowan, Ed. Cambridge, MA: MIT Press, 1995, pp. 633-640.

L. Xu, A. Krzyzak, and E. Oja, “Rival penalized competitive learning for
clustering analysis, RBF net and curve detection,” IEEE Trans. Neural
Networks, vol. 4, pp. 636-649, July 1993.

L. Xu, “Least mean square error reconstruction for self-organizing
neural-nets,” Neural Netw., pp. 627-648, 1993.

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

Lei Xu (SM’94-F’01) received the Ph.D. degree
from Tsinghua University, Beijing, China, in 1987.

He is a Chair Professor with the Department of
Computer Science and Engineering, the Chinese
University of Hong Kong (CUHK), Hong Kong. He
joined the National Key Lab on Machine Perception,
Peking University, Beijing, China, in 1987, where
he became one of ten university-level exceptionally
promoted young Associate Professors in 1988 and
was exceptionally promoted to a Full Professor in
1992. From 1989 to 1993, he worked at several
universities in Finland, Canada, and the United States, including Harvard Uni-
versity and the Massachusetts Institute of Technology, both in Cambridge, MA.
He joined CUHK in 1993 as a Senior Lecturer, became a Professor in 1996 and
then took the current Chair Professor position in 2002. He has published over
100 academic journal papers, with several well cited contributions to pattern
recognition and statistical learning for neural networks. He has given a number
of keynote/plenary/invited/tutorial talks in international major neural networks
(NN) conferences, such as WCNN, IEEE-ICNN, IJCNN, ICONIP, etc.

Prof. Xu is one of the past Governors of the International Neural Networks
Society, a past President of Asia-Pacific NN Assembly, a past Chair of the Com-
putational Finance Technical Committee of the IEEE NN Society, and an As-
sociate Editor for six international journals on NN, including Neural Networks
and the IEEE TRANSACTIONS ON NEURAL NETWORKS from 1994 to 1998. He
was an ICONIP’96 Program Committee Chair, a Joint-ICANN-ICONIP’03 Pro-
gram Committee Co-Chair and a General Chair of IDEAL’98, IDEAL 00, and
IEEE CIFER’03. He has served as one of the program committee members in
international major NN conferences over the past decade, including the Interna-
tional Joint Conference on Neural Networks, the World Conference on Neural
Networks, and the IEEE-International Conference on Neural Networks. He has
received several Chinese national prestigious academic awards, including the
National Nature Science Prize, as well as international awards, including the
1995 INNS Leadership Award. He is a Fellow of the International Association
on Pattern Recognition and a Member of the European Academy of Sciences.

E



