
A Dichotomy Theorem for the Resolution Complexity of Random Constraint
Satisfaction Problems

Siu On Chan and Michael Molloy
Department of Computer Science

University of Toronto
{siuon,molloy}@cs.toronto.edu

Abstract

We consider random instances of constraint satisfaction
problems where each variable has domain size O(1), each
constraint is on O(1) variables and the constraints are cho-
sen from a specified distribution. The number of constraints
is cn where c is a constant. We prove that for every possi-
ble distribution, either the resolution complexity is almost
surely polylogarithmic for sufficiently large c, or it is al-
most surely exponential for every c > 0. We characterize
the distributions of each type. To do so, we introduce a clo-
sure operation on a set of constraints which yields the set of
all constraints that, in some sense, appear implicitly in the
random CSP.

1 Introduction

Constraint satisfaction problems (CSP’s) form an active
area of research in many areas of computer science. They
generalize SAT by allowing variables to take values from
a domain more general than {true, false}, and having more
general restrictions on values jointly taken by variables in
each clause. The widespread interest in random k-SAT has
spread to its generalisations, such as random instances of 1-
in-k-SAT [3], NAE-k-SAT [3, 5], k-XOR-SAT [17, 28] and
(2 + p)-SAT [4]. All of these can be expressed as CSP’s.
As a result, the interest has spread to random instances of
CSP’s, rigourously in e.g. [32, 18, 31, 30] and experimen-
tally even earlier (see [23] for a survey).

Unsatisfiability of k-SAT and CSP instances can be
demonstrated by resolution proof systems, and many nat-
ural algorithms for k-SAT and CSP can be simulated as
resolution proof procedures. In fact, virtually every com-
plete SAT-solver or CSP-solver used in practice is reso-
lution based. The running time of any such algorithm is
lower-bounded by the resolution complexity of the input.
In a seminal paper [13], Chvátal and Szemerédi consider the

resolution complexity of random k-SAT formulas, k ≥ 3;
i.e. the asymptotic order of the length of a shortest res-
olution refutation. As the clause-variable ratio c grows,
the resolution complexity decreases monotonically, but is
still almost surely (a.s.)1 exponential for any constant c.
This explained the empirical observation that SAT-solvers
take a very long time on these formulas when the num-
ber of clauses is high enough that the formula is a.s. un-
satisfiable [29]. Their result has been generalized and ex-
tended in many directions, to super-constant clause-variable
ratio [22, 10, 9], and to general classes of CSP’s [31, 34].
There are also a.s. exponential lower bounds on the res-
olution complexity of specific graph problems, such as k-
colourability and k-independent sets [8, 7].

In contrast, many random models a.s. have at most poly-
nomial resolution complexity when the clause-variable ratio
is a sufficiently large constant; we call this property POLY.
It is natural to ask which models of random CSP’s have
Property POLY, and for which models the resolution com-
plexity a.s. remains exponentially high for every constant
clause-variable ratio. This question has been resolved for
several specific models and family of models in the past (see
below). Our main contribution is to resolve this question
for every model from a very broad family which contains,
in some sense, all random models with constant clause and
domain size.

Practitioners have long been using random CSP’s to gain
insights into difficult problems. This paper may shed some
insight into what can cause CSP’s to have high resolution
complexity, even for a very high linear number of con-
straints. We show that for a high linear random num-
ber of constraints, polynomial resolution complexity can
arise only when there are many long path-like substructures,
called petals that constrain the joint assignments to pairs of
distant variables.

Roughly speaking, the models for random CSP’s we con-

1We say that an event A occurs almost surely if P(A) tends to 1 as n
tends to infinity.

1

sider are as follows (formal definitions will appear in Sec-
tion 3): One begins by randomly selecting k-tuples of n
variables on which to place a constraint. Then, for each cho-
sen k-tuple, one chooses a random constraint. The distribu-
tion P from which this random constraint is chosen is what
specifies the model. For example, with one distribution,
the model is random k-SAT, with another it is random k-
XOR-SAT and with yet another it is d-colourability of ran-
dom graphs. We denote a random instance by CSPn,M (P),
where M is the number of k-tuples selected.

The main result of this paper is a characterisation of ex-
actly which models have property POLY. Denote by suppP
the support of P , i.e. suppP = {C | P(C) > 0}. Infor-
mally, suppP is the set of “types” of constraints that appear
in the random CSP. It turns out that whether POLY holds for
CSPn,M (P) depends only on the set suppP and not on the
actual distribution over suppP .

For a particular P , let C denote suppP . It turns out that
it is a bit deceptive to focus only on C. The reason is that
long paths of constraints can induce a constraint, C ′, on
their endpoints. If those endpoints lie in a constraint C ∈ C
then, in effect, they are constrained by the more restrictive
constraint: C ′ ∪ C. So we determine all constraints C that
are likely to be induced by long paths, and for each, we form
C′ by adding C ′ ∪C for each C ∈ C. Naturally, we need to
iterate until we reach what we call the closure of C, cl(C).
We say that cl(C) is complete if it contains the unsatisfiable
constraint; i.e. the constraint that forbids every k-tuple of
values. These definitions appear more formally in Section
3.3.

It is possible that cl(C) will be applicable to other prob-
lems regarding random CSP’s, since it contains the con-
straints which appear implicitly in the CSP as opposed to the
constraints of C that appear explicitly. For the purposes of
this paper, focussing on cl(C) rather than C yields a simple
characterization of those P that have the property POLY:

Theorem 1.1. If cl(suppP) is complete and c is sufficiently
large, then a.s. CSPn,M=cn(P) has at most polylogarith-
mic resolution complexity.

Theorem 1.2. If cl(suppP) is incomplete and c >
0, then with uniformly positive probability (w.u.p.p.)2

CSPn,M=cn(P) has at least exponential resolution com-
plexity.

The above two theorems together form a dichotomy the-
orem. GivenP it is easy to determine cl(suppP) and hence
to decide POLY in O(1) time (see Remark 3.10).

Note that Theorem 1.1 is stronger than what we aimed
for: It implies not only a.s. polynomial, but a.s. polylog-
arithmic, resolution complexity. So we have the following
interesting corollary:

2We say that an event occurs with uniformly positive probability if
lim inf P(A) > 0.

Corollary 1.3. If for c sufficiently large, CSPn,M=cn(P)
has subexponential resolution complexity then for c suffi-
ciently large, CSPn,M=cn(P) has polylogarithmic resolu-
tion complexity.

For the case where POLY does not hold, i.e. the
case covered by Theorem 1.2, we determine whether
CSPn,M (P) in fact a.s. has exponential resolution com-
plexity. A cyclic CSP is a CSP whose underlying hyper-
graph forms a cycle (the formal definition appears in Sub-
section 3.3). See Definition 3.6 for the meaning of “null-
constraining”.

Theorem 1.4. Suppose cl(suppP) is incomplete.

(a) If for some null-constraining subdomain D′, every
cyclic CSP formed from suppP is satisfiable using
only values from D′ then CSPn,M (P) a.s has at least
exponential resolution complexity for all c;

(b) else w.u.p.p. CSPn,M=cn(P) has at most polylogarith-
mic resolution complexity.

So in case (b) there is some ε > 0 such that with prob-
ability at least ε, CSPn,M=cn(P) has at most polyloga-
rithmic resolution complexity and with probability at least
ε, CSPn,M=cn(P) has exponential resolution complexity.
The proof implies that small resolution complexity must be
caused by problematic cycles of length O(1).

In the course of proving Theorem 1.1, we study a certain
convergence property of random walks on general directed
graphs (Theorem 5.1). This result may be of independent
interest.

2 Related Work

The first result along these lines was by Chvátal and Sze-
merédi [13] who proved that random 3-SAT a.s. has expo-
nentially high resolution complexity for every constant c;
i.e. it does not have property POLY. This result was ex-
tended to the case where c grows with n in [9, 10] and the
proof was simplified greatly by Ben-Sasson and Wigderson
in [11] where they introduced their Width Lemma (which
we use here). Achlioptas et al [2] began with the easy obser-
vation that random (2+p)-SAT, a mixture of random 2-SAT
and random 3-SAT has polynomial resolution complexity if
the number of clauses is so high that the 2-clauses alone
are unsatisfiable; thus random (2+p)-SAT has POLY. They
then proved that for any smaller clause-density, the reso-
lution complexity is exponentially high, thus establishing
a sharp threshold for exponential resolution complexity in
this model. They also showed how this can explain the em-
pirical observation that resolution-based SAT-solvers have a
difficult time with random 3-SAT even below the generally

conjectured value of the satisfiability threshold (see also [1]
for random k-SAT with k > 3).

Mitchell [31, 30] extended the (by then standard) tech-
niques for proving such theorems about random k-SAT to
the more general setting of random CSP’s. He used these
techniques to study the (d, k, t)-model – where the domain
size is d and the constraints are uniformly random amongst
those with k variables and t restrictions. He proved that for
a wide range of triples (d, k, t), the model does not have
property POLY. Molloy and Salavatipour [34] determined
precisely which triples (d, k, t) have property POLY; more-
over, for those that do have POLY they determined a sharp
threshold for exponential resolution complexity. See also
[7, 14] for other examples of specific models of random
CSP’s that are shown to not have property POLY.

All of these models are specific instances of the general
family of models considered in this paper. Thus Theorems
1.1 and 1.2 imply all the results described above, except for
those that actually determine the sharp threshold for expo-
nential resolution complexity and those where c is superlin-
ear.

There is also a body of work studying some random
CSP’s where the constraint-sizes and/or the domains grow
with n (see e.g. [37, 21, 18, 20]). Such models do not fall
into our general family and so this paper says nothing about
them. For example, our theorems do not imply the resolu-
tion lower bounds in [37].

3 Preliminaries

Here we give formal definitions of some of the concepts
discussed in the introduction, along with other concepts re-
quired for the remainder of the paper.

3.1 The Random Model

We use the family of models introduced in [32]. The
same family, in a slightly less general form, was introduced
independently by Creignou and Daudé [16]. The variables
of our problem all have the same domain of permissible val-
ues, D = {1, . . . , d}, and all constraints will have size k,
for some fixed integers d, k. Given a k-tuple of variables,
(x1, . . . , xk), a restriction on (x1, . . . , xk) is a k-tuple of
values (δ1, . . . , δk) where each δi ∈ D. A set of restric-
tions on a k-tuple (x1, . . . , xk) is called a constraint. A
constraint satisfaction problem (CSP) consists of a domain-
size d, a constraint-size k, a collection of variables, and a set
of constraints on k-tuples of those variables. We say that an
assignment of values to the variables of a constraint C satis-
fies C if that assignment is not one of the restrictions on C.
An assignment of values to all variables in a CSP satisfies
that CSP if every constraint is simultaneously satisfied.

It will be convenient to consider a set of canonical vari-
ables X1, . . . , Xk which are used only to describe the “pat-
tern” of a constraint. These canonical variables are not vari-
ables of the actual CSP. For any d, k there are dk possible
restrictions and 2dk

possible constraints over the k canoni-
cal variables. We denote this set of constraints as Cd,k. For
our random model, one begins by specifying a particular
probability distribution, P , over Cd,k. Different choices of
P give rise to different instances of the model.

The Random Model: Specify M , n and P (typically
M = cn for some constant c; note that P implicitly speci-
fies d, k). First choose a random constraint hypergraph with
M hyperedges, in the usual manner; i.e., where each k-
uniform hypergraph with n vertices and M hyperedges is
equally likely. Next, for each hyperedge e, we choose a con-
straint on the k variables of e as follows: we take a random
permutation from the k variables onto {X1, . . . , Xk} and
then we select a random constraint according toP , mapping
it onto a constraint on our k variables in the obvious man-
ner. We use CSPn,M (P) to denote a random CSP drawn
from this model with parameters n, M,P .

A constraint set is symmetric if for any permutation σ
of {1, . . . , k}, any C ∈ C, we have σ̃(C) ∈ C, where σ̃ is
the map induced by σ with the obvious definition: σ̃(C) =
{(δσ(1), . . . , δσ(k)) | (δ1, . . . , δk) ∈ C}. Since the random
model takes a random permutation from the k variables in a
hyperedge to the k canonical variables before selecting the
constraint, P can be assumed to be symmetric, i.e. P(C) =
P(σ̃(C)) for all σ̃ and all C.

The constraint hypergraph of a CSP is the k-uniform hy-
pergraph whose vertices correspond to the variables, and
whose hyperedges correspond to the k-tuples of variables
which have constraints. Of course, when k = 2, the con-
straint hypergraph is simply a graph, and so we often call it
the constraint graph.

Remark 3.1. Constraints on k variables can be simulated
by constraints on k′ variables for any k′ > k. This makes it
straightforward to extend our results to the case where the
constraint sizes can vary. We only require all constraints to
have the same size for convenience.

Remark 3.2. When d and/or k grow with n, the satisfia-
bility threshold will often occur at a superlinear number of
constraints (see e.g. [37, 21, 20]). The structure of the con-
straint hypergraph in that case is very different than that of
one with a linear number of constraints. This is why we
restrict our attention to the case d, k = O(1).

3.2 Resolution Complexity

The resolution complexity of a boolean CNF-formula
φ, denoted RES(φ), is the length of the shortest resolu-
tion proof that φ is unsatisfiable. (If φ is satisfiable, then

RES(φ) = ∞.) Mitchell [30] discusses two natural ways
to extend the notion of resolution complexity to the set-
ting of CSP, C-RES and NG-RES. All commonly used
resolution-type CSP algorithms correspond nicely to the
C-RES complexity of the input, but there are some that do
not correspond to the NG-RES. For that reason, we focus
in this paper on the C-RES complexity, as did Mitchell in
[30] (our results also translate to NG-RES complexity.) In
short, given an instance I of a CSP, we construct an equiv-
alent boolean CNF-formula CNF(I) in a specific natural
manner, and define the resolution complexity C-RES(I) =
RES(CNF(I)).

3.3 The Closure Operation

In this section, we formally define the closure of a con-
straint set. Then we characterize those constraint sets which
have a complete closure in terms of the existence of a sub-
domain of values which easily satisfies long paths. Such a
subdomain will be shown to cause exponential resolution
complexity. We begin with some definitions.

A constraint C on variables x1, . . . , xk permits (xi :
δ, xj : γ) if at least one of the dk−2 possible tuples
(δ1, . . . , δk) with δi = δ and δj = γ is not a restriction
of C. Otherwise C forbids (xi : δ, xj : γ). The constraint
{(δ1, . . . , δk) ∈ Dk | δi = δ∧δj = γ} forbidding precisely
(xi : δ, xj : γ) is called the (xi : δ, xj : γ)-forbidder and is
denoted F (xi : δ, xj : γ).

A path of length r in a k-uniform hypergraph H is a
sequence 〈x0, . . . , xr〉 of distinct vertices together with a
sequence 〈e1, . . . , er〉 of edges such that (1) the edges ei are
mutually vertex disjoint except at {x0, . . . , xr}; (2) among
{x0, . . . , xr}, the only vertices in ei are xi−1 and xi, for
1 ≤ i ≤ r. x0, . . . , xr are the connecting variables and
x0, xr are the endpoints of P . A cycle is defined the same
way as a path with the exception that x0 = xr.

A pendant path of length r is a path in which no vertices
other than the endpoints lie in any edges of H off the path.
In other words, there is no restriction on the degrees on the
endpoints, each connecting variable has degree 2 in H , and
every other vertex in the path has degree 1 in H . (The de-
gree of a vertex is the number of hyperedges to which it is
incident.)

A (pendant) path P of length r in a CSP is a sequence
of r constraints whose underlying edges form a (pendant)
path of length r in the underlying hypergraph. If some as-
signment α to the variables of P satisfies all the constraints
of P with α(x0) = δ and α(xr) = γ, we say that P per-
mits (x0 : δ, xr : γ); otherwise P forbids (x0 : δ, xr : γ).
Sometimes we say P permits/forbids (δ, γ), omitting the
endpoints when they are not important. Furthermore, for
any D′ ⊆ D, we say P permits (δ, γ) using only values
from D′ if such an α exists with Range(α) ⊆ D′.

A cyclic CSP is a CSP whose constraint hypergraph is a
cycle.

We now come to the key definitions. The following defi-
nitions (∼C , closure and completeness) will be motivated in
the discussion preceding Example 4.1 in Section 4.

For a constraint set C and values δ, γ ∈ D, we write
δ ∼C γ if there is some t such that every constraint path
over C of length at least t permits (δ, γ).

Proposition 3.3. ∼C is transitive. If C is symmetric, ∼C is
symmetric as well.

Definition 3.4. A symmetric constraint set C is closed if
for any δ, γ ∈ D such that δ 6∼C γ, any canonical variables
Xi, Xj and any C ∈ C, we have that C also contains the
constraint obtained from C by forbidding (Xi : δ,Xj : γ).
Formally, C ∪ F (Xi : δ,Xj : γ) ∈ C. The closure cl(C) of
a constraint set C is the smallest closed constraint set con-
taining C.

Definition 3.5. A closed, symmetric constraint set C is com-
plete if δ 6∼C γ for all δ, γ ∈ D. Equivalently, it is complete
if it contains the constraint that forbids all dk of the k-tuples.
A constraint set which is not complete is incomplete.

The key lemma of this section is the following character-
isation of incomplete constraint sets. It says that a constraint
set is incomplete precisely when, in some sense, long paths
can impose no constraint on a particular subdomain of val-
ues. This subdomain is called null-constraining.

Definition 3.6. Given C, a subdomain D′ ⊆ D is null-
constraining if there is some t such that for every constraint
path P on C of length at least t and every pair of values
δ, γ ∈ D′, P permits (δ, γ) using only values from D′.

Lemma 3.7. Let C be closed and symmetric. C is in-
complete iff some nonempty subdomain D′ ⊆ D is null-
constraining.

Proof. If some nonempty subdomain D′ is null-
constraining, then in particular δ ∼C δ for some δ ∈ D′, so
C is incomplete.

Suppose C is incomplete. There are δ1, δ2 ∈ D such that
δ1 ∼C δ2. Define D′ = {δ ∈ D | δ1 ∼C δ}, which is
nonempty. By Proposition 3.3, δ ∼C γ for all δ, γ ∈ D′;
that is, there is a t such that every path P of length at least
t permits (δ, γ), possibly using some values from D \ D′

for non-endpoint variables. It remains to show that P still
permits (δ, γ) if values can only be chosen from D′.

Claim 3.8. Any constraint C on P can be replaced by a
stronger constraint C ′ ∈ C, such that if some variable xi

in C ′ takes a value from D′, all other variables must take
values from D′ as well.

Proof. Let C ′ be a superset of C that is maximal in C, i.e.
C ′ is not properly contained in any constraint in C. Assume
C ′ permits (xi : δ, xj : γ) for some δ ∈ D′, γ 6∈ D′.
We must have δ 6∼C γ, for otherwise δ ∼C γ and δ1 ∼C
δ implies δ1 ∼C γ and hence γ ∈ D′, contradicting the
assumption that γ 6∈ D′. Since C is closed, C ′ ∪ F (xi :
δ, xj : γ) ∈ C. This contradicts the maximality of C ′.

By the above claim, we can replace every constraint in
P by a stronger constraint from C, none of which permits
any (δ, γ) ∈ D′× (D\D′). The end result is a path P ′ of C
of length at least t. Recall that all paths of length at least t
permit (δ, γ) for any δ, γ ∈ D′. Therefore P ′ permits (δ, γ)
using only values from D′, hence so does P .

Proposition 3.9. If a path P of length r ≥ 2|D| forbids
(δ, γ), then infinitely many paths do so, one of which is
shorter than 2|D|.

Proof. Let P = 〈x0, . . . , xr〉. Suppose x0 takes the value
δ, and let D0 = {δ}. Define Di to be the set of val-
ues that xi can take without violating constraints in P , for
1 ≤ i ≤ r. Then γ 6∈ Dr because P is (δ, γ)-forbidding.
Since r ≥ 2|D|, two Di’s coincide, i.e. Di = Dj for some
0 ≤ i < j ≤ r. Removing the vertices xi+1, . . . , xj−1

and identifying xi and xj , we get a shorter (δ, γ)-forbidding
path. Vertex removal and identification can be repeated un-
til the resulting path is shorter than 2|D|. On the other hand,
if we repeat the subpath between xi and xj , we can get ar-
bitrarily long (δ, γ)-forbidding paths.

Remark 3.10. Given a distribution P , there is a sim-
ple finite-time procedure to test whether its support C =
suppP satisfies the preconditions of Theorem 1.4.

We close this section by sketching how Lemma 3.7 im-
plies our main theorems. If a constraint set has complete
closure, then for high clause-variable ratio, the CSP will a.s.
contain a small unsatisfiable subproblem, causing polylog-
arithmic resolution complexity (see Section 4). This proves
Theorem 1.1. If a constraint set has incomplete closure,
then by Lemma 3.7, there is a nonempty null-constraining
subdomain. This will cause exponential resolution com-
plexity, provided there are no short unsatisfiable cycles in
CSPn,M (P) (see Section 6). This will imply Theorem 1.2.

4 Complete Closures

In this section, we consider distributions P for which
cl(suppP) is complete. We will show that CSPn,M (P)
a.s. contains a small, structured, unsatisfiable subproblem,
called a forbidding flower. This structured subproblem gen-
eralizes the flower in [34], which is in turn inspired by the
snakes of [12].

A forbidding flower is a union of petals. Petals are recur-
sive structures: Each petal functions like a (δ, γ)-forbidding
path for appropriate (δ, γ), and subpetals may be attached to
adjacent connecting variables along the main path of a petal.

Intuitively, subpetals are needed to simulate constraints
in cl(C) \ C. Indeed, if C ∈ C is a constraint, xi, xj two of
its variables, and P a (δ, γ)-forbidding path from xi to xj ,
then P essentially strengthens C to forbid (xi : δ, xj : γ) as
well. More precisely, the constraint plus the path functions
like C ∪ F (xi : δ, xj : γ). Repeating this, we can simulate
any C ∈ cl(C). These simulated constraints can then be
used to simulate (δ, γ)-forbidding paths for any δ 6∼cl(C)

γ. If cl(C) is complete, then all (δ, γ)-forbidding paths can
be simulated. If these simulated paths share two common
endpoint variables x1 and x2, all assignments of x1, x2 are
forbidden from being satisfying, giving a small unsatisfiable
CSP. It is straightforward to show that this CSP has a short
resolution proof of unsatisfiability.

Example 4.1. Consider D = {1, 2, 3}, k = 2 and C =
{C1, C2}, where C1 = {(1, 1), (2, 2), (3, 3)} and C2 =
({1, 2} × {3}) ∪ ({3} × {1, 2}). It is easy to see that all
constraint paths of length at least 2 permit (1, 1). On the
other hand, one can check that 1 6∼cl(C) 1. Indeed, ev-
ery path made of the constraint C2 forbids (1, 3), hence
1 6∼C 3, implying 1 6∼cl(C) 3. Every such path forbids (2, 3)
as well, so similarly 2 6∼cl(C) 3. By definition of cl(C),
C ′ = C1 ∪ {(1, 3), (2, 3)} ∈ cl(C). Any path of odd length
made of the constraint C ′ forbids (1, 1). However, such a
path doesn’t exist in our CSP since C ′ 6∈ C.

We wish to forbid (1, 1), using some structure other than
paths. Consider the path P = 〈x0, . . . , xr〉 which is r
copies of C1, for some odd integer r. To every adjacent pair
of connecting variables (xi, xi+1) in P , attach two paths
from xi to xi+1, each consisting of ` copies of C2, for some
integer ` ≥ 1. The two paths along with C1 effectively for-
bids (xi : 1, xi+1 : 3) and (xi : 2, xi+1 : 3).3 The resulting
graph P ′ forbids (x0 : 1, xr : 1).

To describe these structures effectively, we shall intro-
duce configuration trees and forests. These trees and forests
serve only to describe the structure of the forbidding flow-
ers; they are not subproblems in CSPn,M (P).

Definition 4.2. A configuration tree T is a nonempty
rooted tree, each of whose nodes v gets a label from D2

(i.e. an ordered pair of values in D), call it (δ(v), γ(v)).

Labels in a configuration tree T specify which pairs of
values the petals and subpetals forbid. A petal forbids the
label at height 0, i.e. the label of the root. Subpetals are at-
tached to every adjacent pair of connecting variables along

3For the purpose of forbidding (xi : 1, xi+1 : 3) and (xi : 2, xi+1 :
3), one actually only needs to attach a single “C2 path” between xi and
xi+1. We attach two such paths in order to be consistent with Definition
4.5.

the main path of the petal, forbidding labels at height 1.
These subpetals could in turn have subsubpetals along their
main paths, forbidding values at height 2, and so on. As an
example, P ′ in Example 4.1 can yield a configuration tree
with three vertices; the root is labelled (1, 1) and its chil-
dren are labelled (1, 3) and (2, 3) respectively. In fact P ′

also forbids (2, 2), and corresponds to another configura-
tion tree with root (2, 2). The relation between configura-
tion trees and petals is defined more formally in Definition
4.5.

Definition 4.3. For a constraint path P and a subset ∆ ⊆
D2 of pairs of values, the path P augmented with ∆, de-
noted P ∪ ∆, is the constraint path with the same under-
lying hyperedges as P but with each constraint C between
(xi, xi+1) strengthened to forbid all (δ, γ) ∈ ∆, i.e. C is
replaced with C ∪

⋃
(δ,γ)∈∆ F (xi : δ, xi+1 : γ), for all i.

Notation 4.4. If a node v in a configuration tree has chil-
dren v1, . . . , vd, we denote by ∆(v) = {(δ(vi), γ(vi)) |
1 ≤ i ≤ d} the set of labels of v’s children.

Definition 4.5. A (T , C)-forbidding petal is defined recur-
sively as follows:

1. If T has only one vertex v labelled (δ, γ), a (T , C)-
forbidding petal is defined as an (δ, γ)-forbidding path
Pv over C.

2. If T has more than one vertex, let v be its root,
let v1, . . . , vd be v’s children, and let T1, . . . , Td be
the subtrees rooted at v1, . . . , vd. Then a (T , C)-
forbidding petal is a path Pv = 〈y0, . . . , yr〉 over C,
together with a (Tj , C)-forbidding petal between ev-
ery adjacent pair of connecting variables (yi, yi+1), for
1 ≤ j ≤ d and 0 ≤ i < r. The (Tj , C)-forbidding
petals and Pv are mutually vertex-disjoint except at
the endpoints of the petals. Also, Pv augmented with
the children’s labels (i.e. Pv ∪ ∆(v)) is (δ(v), γ(v))-
forbidding. The endpoints of the (T , C)-forbidding
petal are y0, yr.

Note that Case 2 of the above definition actually covers
Case 1. Case 1 is included for clarity.

If cl(C) is complete, we shall argue later (Proposition
4.12) that forbidding petals exist for any (δ, γ) ∈ D2. Their
union is a forbidding flower.

Definition 4.6. A configuration forest F = {T(δ,γ)} is a
collection of |D|2 configuration trees, one for each (δ, γ) ∈
D2, such that T(δ,γ)’s root is labelled (δ, γ).

Definition 4.7. An (F , C)-forbidding flower between
(x1, x2) is a collection of (T(δ,γ), C)-forbidding petals be-
tween (x1, x2), one for each (δ, γ) ∈ D2. These petals are
mutually vertex-disjoint except at x1, x2.

Clearly, an (F , C)-forbidding flower between (x1, x2) is
unsatisfiable, because all possible assignments to (x1, x2)
are forbidden.

Following [12, 34], we will show that an (F , C)-
forbidding flower a.s. exists, using first and second moment
calculations. In the first moment calculation, we need to
know the probability that a particular flower exists. To this
end, we need to study the probability that a path of length r
is (δ, γ)-forbidding (Definition 4.8). We also study a similar
probability for petals (Definition 4.11).

Definition 4.8. For a distribution P and values δ, γ ∈ D,
let πPr (δ, γ) be the probability over P that a random con-
straint path of length r forbids (δ, γ). Define βP(δ, γ) =
lim supr πPr (δ, γ)1/r.

The definition of βP(δ, γ) takes a lim sup over a se-
quence, rather than simply a limit, because the sequence
may fail to converge. An example is suppP = {C}, where
C = {(1, 1), (2, 2)} and D = {1, 2}. In this case πr(1, 1)
alternates between 0 and 1 as r increases.

Proposition 4.9. If δ ∼suppP γ, then βP(δ, γ) = 0, other-
wise βP(δ, γ) > 0.

The proof is deferred to Section 5.

Definition 4.10. For a distribution P and a subset ∆ ⊆ D2,
the distribution of P augmented with ∆, denoted P ∪ ∆,
is the distribution obtained by first picking a constraint C ′

from P and then “strengthening C ′ with ∆.” Formally, for
any C ∈ C, define (P ∪∆)(C) =

∑
P(C ′), where the sum

runs over all C ′ such that C ′∪
⋃

(δ,γ)∈∆ F (x1 : δ, x2 : γ) =
C. (Since P is symmetric by assumption, the sum may as
well run over all C ′ such that C ′ ∪

⋃
(δ,γ)∈∆ F (xi : δ, xj :

γ) = C with arbitrary i 6= j.)

Definition 4.11. Let P be a distribution. For a node v in a
configuration tree T , define πPr (v) = π

P∪∆(v)
r (δ(v), γ(v))

and βP(v) = lim supr πPr (v)1/r. For a configuration tree
T , define its weight wP(T) as max{1/(βP(v)k(k − 1)) |
v ∈ V (T)}. For a configuration forest F , define its weight
wP(F) as the maximum of the weights of its trees.

Proposition 4.12. For any δ 6∼cl(C) γ, (T(δ,γ), C)-
forbidding petals exist, where T(δ,γ) is a configuration tree
whose root is labelled (δ, γ). Furthermore, wP(T(δ,γ)) <
∞.

If cl(C) is complete, the proposition implies that an
(F , C)-forbidding flower exists for some configuration
flower F of finite weight.

Proof. For h ≥ 0, define Ch iteratively as follows. Let C0 =
C and h = 0. We initially set Ch+1 = Ch. For any δ 6∼Ch

γ, any C ∈ Ch and any canonical variables Xi, Xj , add
C ∪F (Xi : δ,Xj : γ) to Ch+1. Then increase h and repeat.

Intuitively, Ch represents the set of constraints that can be
simulated by a constraint from C and a level h petal.

For any h ≥ 0, define ∆h = {(δ, γ) | δ 6∼Ch
γ}. For any

(δ, γ) ∈ ∆h \∆h−1 (where we set ∆−1 = ∅), define T(δ,γ)

be the tree whose root is labelled (δ, γ) and has subtrees
T(δ′,γ′), one for each (δ′, γ′) ∈ ∆h−1. Then (T(δ,γ), C)-
forbidding petals exist by induction on h. Moreover, each
T(δ,γ) has finite weight (apply Proposition 4.9 to the distri-
bution P ∪∆(v), where v is the root of T(δ,γ)).

We close this section by outlining the proof of Theorem
1.1. We will prove that if cl(suppP) is complete then for
sufficiently large c, CSPn,M=cn(P) will a.s. contain a small
forbidding flower. It is straightforward to show that such
a flower will have a short resolution refutation. The full
details of this proof will appear in the full paper.

Given a configuration forest F with wP(F) < ∞, we
will focus on (F , C)-forbidding flowers for which each
main path Pv has length r(v) = rn(v) for a specific func-
tion r(v) = Θ(log n). We have to be careful when choos-
ing the lengths r(v). Fix v ∈ F and consider the sequence
ar = πPr (v)1/r. Recall that lim sup ar = βP(v). We wish
to choose a length r(v) for which ar(v) is close to βP(v).
To do so, we find a nice subsequence of the integers along
which ar converges to βP(v), and we choose r(v) from that
subsequence. The following lemma, which will be proved
in the next section, shows that we can use an arithmetic pro-
gression:

Lemma 4.13. For any δ, γ ∈ D, πPr (δ, γ)1/r converges to
βP(δ, γ) along some arithmetic progression.

We let X denote the number of (F , C)-forbidding flow-
ers in CSPn,cn(P) where each petal path Pv has length
r(v). We then compute the first and second moments of
X to show that it is a.s. positive. This is inspired by the
similar calculations in [34] which were in turn inspired by
[12]. Those two papers proved the a.s. existence of much
simpler structures. In particular, the fact that we are deal-
ing with petals rather than paths causes our second moment
calculations to be much more complicated.

5 Random Walks on Directed Graphs

This section is mainly devoted to proving Lemma 4.13,
which says that πPr (δ, γ)1/r converges to βP(δ, γ) along
some arithmetic progression. The behaviour of πPr (δ, γ)1/r

is best studied as a random walk on a related digraph, thus
we are led to the analysis of convergence of such a random
walk (Theorem 5.1). We remark that the directed graph is,
in general, neither strongly connected nor periodic.

Let G = (V,E) be a fixed digraph with positive edge
weights. so that at any vertex, the sum of the outgoing edge
weights is 1. A random walk on G from u is one which

starts at u, and at any stage of the walk at a vertex v, we go
to a neighbour w of v with probability the weight of the arc
vw.

Theorem 5.1. For any u ∈ V (G), V ′ ⊆ V (G), define
πr(u, V ′) to be the probability that a random walk from
u of length r lands on a vertex in V ′, and R(u, V ′) =
lim supr πr(u, V ′)1/r. Then πr(u, V ′)1/r converges to
R(u, V ′) along some arithmetic progression.

The theorem may be of independent interest. Quite pos-
sibly it has appeared elsewhere, but we could not find it. It
will be proved using the following sequence of propositions.

Proposition 5.2. Let T be a finite set. Assume every t ∈ T
is associated with a sequence {ar(t)}, such that ar(t) ≥ 0
and lim supr(ar(t))1/r = a(t). Let br =

∑
t∈T ar(t) and

b = lim supr b
1/r
r . Then b = maxt∈T a(t).

Proof. Assume a(s) maximizes a(t). Clearly br ≥ ar(s).
Taking r-th root and then lim supr on both sides, we get
b ≥ a(s). On the other hand, ar(t) ≤ (a(t) + o(1))r for
any t, yielding br ≤ |T |(a(s) + o(1))r. Taking r-th root
and then lim supr on both sides, we get b ≤ a(s).

Proposition 5.3. For any u, v ∈ V (G), define πr(u, v)
to be the probability that a random walk from u of length
r lands on v, and R(u, v) = lim supr πr(u, v)1/r. Then
R(u, V ′) = max{R(u, v) | v ∈ V ′}.

Proof. Apply Proposition 5.2 with T = V ′ and ar(v) =
πr(u, v). Observe that br becomes πr(u, V ′).

It turns out R(u, v) depends only on the strongly con-
nected components of u and v.

Proposition 5.4. Assume u, u′ belong to the same strongly
connected component, and so do v, v′. Then R(u, v) =
R(u′, v′).

Proof. Let p be a path from u to u′, and q a path from
v′ to v. Let a > 0 be the probability of traversing p, and
b > 0 that of traversing q. Let ` be the sum of lengths of
p and q. One way to go from u to v in r + ` steps is to
go along p, then go from u′ to v′ in r steps and finally go
along q. Hence πr+`(u, v) ≥ abπr(u′, v′). Taking (r + `)-
th root and then lim supr on both sides, we get R(u, v) ≥
R(u′, v′). Reversing the roles of (u, v) and (u′, v′), we get
R(u′, v′) ≥ R(u, v).

For a vertex u in G, we denote by [u] the strongly con-
nected component of u. If we let R([u], [v]) = R(u, v), the
previous proposition shows that R([u], [v]) is well-defined.
For convenience, we let4 R([u]) = R([u], [u]). For the

4Readers familiar with quasi-stationary distribution of absorbing
Markov processes (see e.g. [19, 25]) may have realized that R([u]) is
the spectral radius of the probability transition matrix on [u].

given digraph G, let us denote by GC the component di-
graph of G. It is obtained from G by contracting every
strongly connected component. For a strongly connected
component [u] in G, we denote by uC its corresponding ver-
tex in GC. For a walk w in G, its induced (simple) path
wC is the path in GC obtained by contracting every strongly
connected component of G along w.

Proposition 5.5. Let p be a (simple) path starting from
uC in GC. Define πr(p) to be the probability that a ran-
dom walk in G from u of length r has p as its induced
path, and R(p) = lim supr πr(p)1/r. Then R([u], [v]) =
max{R(p) | p is a uC, vC-path in GC}.

Proof. Apply Proposition 5.2 with ar(p) = πr(p) for any
uC, vC-path p. Observe that br = πr([u], [v]).

Lemma 5.6. Let p be a path from uC to vC in GC. Then
R(p) = max{R([w]) | wC ∈ V (p)}.

Proof. Suppose p is a uC, vC-path in GC. Assume w0 in G
maximizes R([w]) among wC ∈ V (p). Take a u, w0-path p
and a w0, v-path q in G, and let ` be their sum of lengths.
A possible walk of length r + ` with its induced path being
p is like this: It begins with p, then goes from w0 to w0 in
r steps, finally ends with q. Let a > 0 be the probability
of traversing p and b > 0 be that of q. Then πr+`(p) ≥
abπr(w0, w0). Taking (r + `)-th root and then lim supr on
both sides, we get R(p) ≥ R(w0, w0) = R([w0]).

For the reverse inequality, assume v(1)C, . . . , v(t)C are
the vertices of p. Let w be a walk such that wC = p.
Renaming if necessary, we may assume w enters [v(i)] at
the vertex v(i). For 1 ≤ i ≤ t, let s(i) be the num-
ber of steps that w makes within [v(i)]. Now for any
1 ≤ i ≤ t, the probability of w staying in [v(i)] for
s(i) steps is πs(i)(v(i), [v(i)]) ≤ (R([v(i)]) + f(s(i)))s(i),
where f(s(i)) = o(1). Note that t− 1 +

∑
i s(i) = r, and

let Sr = {(s(1), . . . , s(t)) | t−1+
∑

i s(i) = r} be the set
of all such t-tuples. We have

πr(p) ≤
∑
s∈Sr

∏
1≤i≤t

(R([v(i)]) + f(s(i)))s(i).

Let R0 = R([w0]) (hence R0 ≥ R([v(i)]) for any i). There
are |Sr| ≤ rt terms in the sum in (5) (a loose upper bound
suffices), each upper bounded by (R0 + f(s(i)))r−t+1.

We can use this to show that πr(p) ≤ rt(R0 +
o(1))r−t+1 (details will appear in the full paper). Taking
r-th root and then lim supr on both sides, we get R(p) ≤
R0 = R([w0]).

Lemma 5.7. For any vertex v in G, πr(v, v)1/r converges
to lim supr πr(v, v)1/r along multiples of an integer.

Proof. Let ar = πr(v, v)1/r. If ar = 0 for all r > 0,
the conclusion is trivial, so assume some ar > 0. Let
S = {r | ar > 0}. For any m,n ∈ N, πm+n(v, v) ≥
πm(v, v)πn(v, v), hence

ar+s ≥ ar/(r+s)
r as/(r+s)

s . (1)

This implies S is closed under addition. It follows that S
contains all sufficiently large multiples of d, where d =
gcd(S). Equation (1) also implies ar are supermultiplica-
tive, and by Fekete’s Lemma (e.g. [36]), ar converges to
lim supr ar along multiples of d.

Proof of Theorem 5.1. The theorem is trivial if V ′ is not
reachable from u, so let us assume this is not the case.
Propositions 5.3, 5.5 and Lemma 5.6 together imply
R(u, V ′) = R(w,w) for some w lying on some path from
u to V ′. Lemma 5.7 asserts that πr(w,w)1/r converges to
R(w,w) along some arithmetic progression S ⊆ N. We
consider paths p from u to w and q from w to V ′, and
use the same analysis as in the first part of Proposition
5.6 to show that πr(u, V ′)1/r converges to R(u, V ′) along
S + `.

We are now ready to prove Lemma 4.13.

Proof of Lemma 4.13. Consider a constraint path P =
〈x0, . . . , xr〉 with constraints chosen randomly according
to P . Suppose x0 is allowed to take values from D0. Let
Di be the set of values that xi can take without violating
constraints in P , for 1 ≤ i ≤ r. Then 〈D0, . . . , Dr〉 corre-
sponds naturally to a random walk on a digraph G defined
as follows. The vertex set V (G) is the power set of D. For
any subdomain D′ ⊆ D and any C ∈ suppP , consider
two canonical variables X1, X2 in a constraint C. Define
θ(C,D′) to be the set of values δ2 such that there is δ1 ∈ D′

such that C permits (X1 : δ1, X2 : δ2). Then we put an arc
(D′, θ(C,D′)) of weight P(C) in G.

Now let D0 = {δ} and V ′ = {D′ ⊆ D | γ 6∈ D′}. It
is easy to see that πPr (D0, V

′) is the probability over P that
a constraint path of length r on suppP is (δ, γ)-forbidding.
The result follows by Theorem 5.1.

We close this section by proving Proposition 4.9.

Proof of Proposition 4.9. If δ ∼C γ, πPr (δ, γ) = 0 for all
sufficiently large r, hence βP(δ, γ) = 0. If δ 6∼C γ, let P
be a (δ, γ)-forbidding path over C of length at least 2|D|.
Consider the digraph G defined in the proof of Lemma
4.13. P corresponds to a walk w from {δ} in the digraph.
Since G has only 2|D| vertices, w visits some vertex (at
least) twice, say w. Then the portion of w between the two
visits is a circuit from w to itself, say of length s ≥ 1.
Hence πs(w,w) > 0. The numbers ar = πr(w,w)1/r

are supermultiplicative (see the proof of Lemma 5.7), hence

R(w,w) ≥ πs(w,w)1/s > 0. If u = {δ} and V ′ = {D′ ⊆
D | γ 6∈ D′}, then R(u, V ′) ≥ R(w,w) by Propositions
5.3, 5.5 and Lemma 5.6. Hence βP(δ, γ) = R(u, V ′) >
0.

6 Incomplete Closures

In this section, we turn to constraint sets whose closures
are incomplete (Theorems 1.2 and 1.4).

Let C = suppP , and assume cl(C) is incomplete. By
Lemma 3.7, some nonempty subdomain D′ ⊆ D is null-
constraining. In other words, there is some integer t such
that all constraint paths of length at least t permit all (δ, γ) ∈
D′ × D′ using only values from D′ (such D′ and t will be
fixed throughout this section). This implies, in particular,
that all cycles of length at least t are satisfiable.

We prove that a.s. there is no subexponential resolution
proof that the random CSP cannot be satisfied using only
values from D′ unless it contains a cycle that cannot be
satisfied by those values. The underlying hypergraph will
w.u.p.p. have girth at least t and hence have no such a cy-
cle. This implies Theorems 1.2 and 1.4(a).

The proof uses what are by now standard arguments.
There is some α > 0 such that a.s. every non-cyclic sub-
CSP of size at most αn has either (i) a constraint where all
but one variable has degree one or (ii) a path of length at
least t in which all internal variables do not lie in any other
constraint. If that sub-CSP cannot be satisfied using the val-
ues of D′ then neither can the sub-CSP formed by deleting
the constraint of (i) or the constraints of the path of (ii). It
follows recursively that it can indeed be satisfied using D′.
Furthermore, if it has size at least 1

2αn then there must be
Θ(n) such constraints and/or paths and they can serve as
the boundaries. The details will appear in the full paper.

For Theorem 1.4(b) the rough argument is as follows:
We show that D can be partitioned into null-constraining
subdomains D′

1, ...D′
t. The random CSP will w.u.p.p. con-

tain cycles C1, ..., Ct such that each Ci cannot be satisfied
using the values from D′

i. It will also contain a vertex x and
for each Ci and each v ∈ Ci a path of length O(log n) from
x to v that forbids every pair (δ, γ) with δ ∈ D′

i and γ /∈ D′
i.

It is easy to see that there is a short resolution proof that this
sub-CSP is unsatisfiable. The details will appear in a full
version of this paper.

7 Future Work

Corollary 1.3 might, in fact, extend to the stronger state-
ment that for every P and every c, with the possible ex-
ception of some “threshold values” of c, a.s. the shortest
resolution refutation of CSPn,M=cn(P) is either exponen-
tial or polylogarithmic. This is true for random 2-SAT and
for all models studied in [34].

For those models that have property POLY, it is natural
to ask for their thresholds of polynomial resolution com-
plexity. [2] and [34] actually determine, for each of their
random models for which POLY holds, a precise value c∗,
above which the random CSP has a.s. polynomial resolu-
tion complexity and below which it has a.s. exponential
resolution complexity. We would like to determine such a
value for every CSPn,M=cn(P) for which POLY holds; i.e.
for which cl(suppP) is complete. Upon reading Section
4, some readers may guess that c∗ is the threshold for the
appearance of the first forbidding flower. This is the case
for random 2-SAT and for all the models in [2] and [34].
However, we have examples of other models for which it is
not the case.

8 Acknowledgement

We would like to thank anonymous referees and Toniann
Pitassi for helpful comments on an earlier draft of this paper.

References

[1] Dimitris Achlioptas, Paul Beame, and Michael Molloy. Ex-
ponential bounds for dpll below the satisfiability threshold.
In Proceedings of the 15th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 132–133, 2004.

[2] Dimitris Achlioptas, Paul Beame, and Michael Molloy. A
sharp threshold in proof complexity yields lower bounds for
satisfiability search. Journal of Computer and System Sci-
ences, 2004. An earlier version appeared in the 33rd An-
nual ACM Symposium on the Theory of Computing (STOC)
2001.

[3] Dimitris Achlioptas, Arthur Chtcherba, Gabriel Istrate, and
Cristopher Moore. The phase transition in 1-in-k SAT and
NAE 3-SAT. In Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 721–722,
2001.

[4] Dimitris Achlioptas, Lefteris M. Kirousis, Evangelos
Kranakis, and Danny Krizanc. Rigorous results for random
(2 + p)-SAT. Theoretical Computer Science, 265(1-2):109–
129, 2001.

[5] Dimitris Achlioptas and Cristopher Moore. Random k-sat:
Two moments suffice to cross a sharp threshold. SIAM Jour-
nal on Computing, 36(3):740–762, 2006.

[6] Noga Alon and Joel H. Spencer. The Probabilistic Method.
Wiley-Interscience, 2nd edition, 2000.

[7] Paul Beame, Joseph Culberson, David Mitchell, and Cristo-
pher Moore. The resolution complexity of random graph k-
colorability. Discrete Applied Mathematics, 153(1):25–47,
2005.

[8] Paul Beame, Russell Impagiazzo, and Ashish Sabharwal.
Resolution complexity of independent sets in random graphs.
In 16th Annual IEEE Conference on Computational Com-
plexity (CCC), pages 52–68, 2001.

[9] Paul Beame, Richard M. Karp, Toniann Pitassi, and
Michael E. Saks. The efficiency of resolution and
Davis-Putnam procedures. SIAM Journal on Computing,
31(4):1048–1075, 2002. An earlier version appeared in the
30th Annual ACM Symposium on the Theory of Computing
(STOC) 1998.

[10] Paul Beame and Toniann Pitassi. Simplified and improved
resolution lower bounds. In Proceedings of the 37th An-
nual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), page 274, Washington, DC, USA, 1996. IEEE
Computer Society.

[11] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow-
resolution made simple. Journal of the ACM, 48(2):149–169,
2001.

[12] Vašek Chvátal and Bruce Reed. Mick gets some (the odds
are on his side). In Proceedings of the 33rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS),
1992.

[13] Vašek Chvátal and Endre Szemerédi. Many hard examples
for resolution. Journal of the ACM, 35(4):759–768, 1988.

[14] Harold Connamacher and Michael Molloy. The exact satis-
fiability threshold for a potentially intractable random con-
straint satisfaction problem. In Proceedings of the 45th An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS), 2004.

[15] Stephen A. Cook. The complexity of theorem-proving proce-
dures. In Proceedings of the 3rd Annual ACM Symposium on
the Theory of Computing (STOC). ACM, New York, 1971.

[16] Nadia Creignou and Hervé Daudé. Generalized satisfiability
problems: minimal elements and phase transitions. Theoret-
ical Computer Science, 302(1-3):417–430, 2003.

[17] O. Dubois and J. Mandler. The 3-XORSAT threshold. In
Proceedings of the 43rd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 769–778, 2002.

[18] Martin Dyer, Alan Frieze, and Michael Molloy. A probabilis-
tic analysis of randomly generated binary constraint satisfac-
tion problems. Theoretical Computer Science, 290(3):1815–
1828, January 2003.

[19] Seneta Eugene. Non-negative Matrices and Markov Chains.
Springer-Verlag, New York, 1981.

[20] Alan M. Frieze and Michael Molloy. The satisfiabil-
ity threshold for randomly generated binary constraint sat-
isfaction problems. Random Structures and Algorithms,
28(3):323–339, 2006. An earlier version appeared in the In-
ternational Workshop on Randomization and Approximation
Techniques in Computer Science (RANDOM) 2003.

[21] Alan M. Frieze and Nicholas C. Wormald. Random k-SAT:
A tight threshold for moderately growing k. Combinatorica,
25:297–305, 2005.

[22] Xudong Fu. On the complexity of proof systems. PhD thesis,
University of Toronto, Toronto, Ont., Canada, Canada, 1996.

[23] Ian P. Gent, Ewan Macintyre, Patrick Prosser, Barbara M.
Smith, and Toby Walsh. Random constraint satisfaction:
Flaws and structure. Constraints, 6(4):345–372, 2001.

[24] Svante Janson, Tomasz Łuczak, and Andrzej Ruciński. Ran-
dom Graphs. Wiley-Interscience, 1st edition, 2000.

[25] James Ledoux, Gerardo Rubino, and Bruno Sericola. Ex-
act aggregation of absorbing markov processes using the
quasi-stationary dsitribution. Journal of Applied Probabil-
ity, 31:626–634, 1994.

[26] Colin McDiarmid. On the span of a random channel assign-
ment problem. Combinatorica, 27(2):183–203, 2007.

[27] M. Mézard, G. Parisi, and R. Zecchina. Analytic and algo-
rithmic solution of random satisfiability problems. Science,
297:812–815, August 2002.

[28] M. Mézard, F. Ricci-Tersenghi, and R. Zecchina. Two solu-
tions to diluted p-spin models and XORSAT problems. Jour-
nal of Statistical Physics, 111(3–4):505–533, May 2003.

[29] David Mitchell, Bart Selman, and Hector Levesque. Hard
and easy distributions of SAT problems. In Proceedings
of the 10th National Conference on Artificial Intelligence,
1992.

[30] David G. Mitchell. Resolution Complexity of Constraint Sat-
isfaction. PhD thesis, University of Toronto, 2002.

[31] David G. Mitchell. Resolution complexity of random con-
straints. In Proceedings of Principles and Practices of Con-
straint Programming, 2002.

[32] Michael Molloy. Models and thresholds for random con-
straint satisfaction problems. SIAM Journal of Computing,
pages 935–949, 2003.

[33] Michael Molloy. When does the giant component bring un-
satisfiability? Combinatorica, to appear.

[34] Michael Molloy and Mohammad R. Salavatipour. The res-
olution complexity of random constraint satisfaction prob-
lems. SIAM Journal of Computing, 37(3):895–922, 2007.
An earlier version appeared in the 44th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS) 2003.

[35] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and
L. Troyansky. Determining computational complexity from
characteristic ‘phase transitions’. Nature, 400:133–137, July
1999.

[36] Jacobus H. van Lint and Richard M. Wilson. A Course in
Combinatorics. Cambridge University Press, 1993.

[37] Ke Xu and Wei Li. Many hard examples in exact phase
transitions with application to generating hard satisfiable in-
stances. Theoretical Computer Science, 355:291–302, 2006.

