
1/19

Dynamic Programming:
Finding Recursive Structures

Hao WU

Department of Computer Science and Engineering
Chinese University of Hong Kong

Dynamic Programming:Finding Recursive Structures



2/19

A string s is a subsequence of another string t if either s = t or we can
convert t to s by deleting characters.

A B C D E

A B C D E

A B C D E

t=ABCDE

s=ACE

s=ACD

Dynamic Programming:Finding Recursive Structures



3/19

The Longest Common Subsequence Problem

Given two strings x and y , find a common subsequence z of x and y with
the maximum length.

z is a longest common subsequence (LCS) of x and y .

A B D A B

B C D A B

x=ABDAB

y=BCDAB

z=BDAB

A B D A B

B C D A B

Remark: If x = ∅ (empty string) or y = ∅, their (only) LCS is ∅.

Dynamic Programming:Finding Recursive Structures



4/19

The key to solving the problem is to identify its underlying
recursive structure.

Specifically, how the original problem is related to subproblems.

Dynamic Programming:Finding Recursive Structures



5/19

n = the length of x ; m = the length of y

Theorem (LCS Theorm): Let z be any LCS of x and y , and k
the length of z . Then:

1 If x [n] = y [m]
then z [k] = x [n] (hence, also = y [m]) and
z [1 : k − 1] is an LCS of x [1 : n − 1] and y [1 : m − 1].

2 If x [n] 6= y [m], then at least one of the following holds:

z is an LCS of x [1 : n − 1] and y
z is an LCS of x and y [1 : m − 1].

Next, we will prove the theorem.

Dynamic Programming:Finding Recursive Structures



6/19

Lemma 1: If z [k] 6= x [n], then z is a subsequence of x [1 : n − 1].

Proof: As z is a subsequence of x , we can convert x to z by deleting
characters repeatedly. The conversion must have deleted x [n]; otherwise,
x [n] must be the last character of z , which contradicts z [k] 6= x [n].

It thus follows that we can obtain z by repeatedly deleting characters

from x [1 : n − 1] and, hence, z is a subsequence of x [1 : n − 1].

Dynamic Programming:Finding Recursive Structures



7/19

Proof of Statement 1 (in the LCS Theorem):

Claim: If x [n] = y [m], then z [k] = x [n].

Assume that x [n] = y [m] but z [k] 6= x [n]. By Lemma 1, z is a common
subsequence of x [1 : n − 1] and y [1 : m − 1]. Now, we can obtain a
common subsequence z ′ = z ◦ x [n] of x and y . However, z ′ will be a
length-(k + 1) common subsequence of x and y , contradicting the fact
that z is an LCS of x and y .

Remark: ◦ means string concatenation. For example, ABC ◦ DEF
= ABCDEF.

Dynamic Programming:Finding Recursive Structures



8/19

Proof of Statement 1:

Claim: If x [n] = y [m], then z [1 : k − 1] is an LCS of x [1 : n − 1]
and y [1 : m − 1].

Assume that z [1 : k − 1] is not an LCS of x [1 : n − 1] and y [1 : m − 1].
Thus, x [1 : n− 1] and y [1 : m− 1] have an LCS z ′ with length at least k.

However, z ′ ◦ x [n] will be a length-(k + 1) common subsequence of x
and y , contradicting the fact that z is an LCS of x and y .

Dynamic Programming:Finding Recursive Structures



9/19

Proof of Statement 2:
Because x [n] 6= y [m], at least one of the following is false:

z [k] = x [n]

z [k] = y [m].

Consider first z [k] 6= x [n].

We argue that z must be an LCS of x [1 : n − 1] and y .

By Lemma 1, z is a subsequence of x [1 : n − 1]. Since z is also a
subsequence of y , z is a common subsequence of x [1 : n− 1] and y .

Suppose that z is not an LCS of x [1 : n − 1] and y . Thus,
x [1 : n − 1] and y have an LCS z ′ of length at least k + 1. This
means that x and y have a common subsequence of length k + 1,
contradicting the fact that z is an LCS of x and y .

A symmetric argument proves the statement when z [k] 6= y [m].

Dynamic Programming:Finding Recursive Structures



10/19

Matrix-Chain Multiplication

You are given an algorithm A that, given an a× b matrix A and a b × c
matrix B, can calculate AB in O(abc) time. You need to use A to
calculate the product of A1A2...An where Ai is an ai × bi matrix for
i ∈ [1, n]. This implies that bi−1 = ai for i ∈ [2, n], and the final result is
an a1 × bn matrix.

A trivial strategy is to apply A to evaluate the product from left
to right. However, we may be able to reduce the cost by following
a different multiplication order.

Dynamic Programming:Finding Recursive Structures



11/19

Example

Consider A1A2A3 where A1 and A2 are m×m matrices, but A3 is
m × 1.

There are two multiplication orders:

(A1A2)A3.
The cost of computing B = A1A2 is O(m · m · m) =
O(m3) and B is an m ×m matrix. The cost of BA3 is
O(m ·m · 1) = O(m2). The total cost is O(m3).

A1(A2A3).
The cost of computing B = A2A3 is O(m · m · 1) = O(m2)
and B is an m × 1 matrix. The cost of A1B is
O(m ·m · 1) = O(m2). The total cost is O(m2).

Dynamic Programming:Finding Recursive Structures



12/19

Parenthesizing A1A2...An at Ak for some k ∈ [1, n − 1] converts the
expression to (A1...Ak)(Ak+1...An), after which you can parenthesize
each of A1...Ai and Ai+1...An recursively.

A fully parenthesized product is

either a single matrix or

the product of two fully parenthesized products.

For example, if n = 4, then (A1A2)(A3A4) and ((A1A2)A3)A4 are fully
parenthesized, but A1(A2A3A4) is not.

A fully parenthesized product determines a multiplication order that, in
turn, determines the computation cost.

Goal: Design an algorithm to find in O(n3) time a fully parenthe-
sized product with the smallest cost.

Dynamic Programming:Finding Recursive Structures



13/19

Recursive Structure

By parenthesizing at Ak , we obtain

(A1...Ak)︸ ︷︷ ︸
B1

(Ak+1...An)︸ ︷︷ ︸
B2

,

where B1 is an a1 × bk matrix and B2 is an ak+1 × bn matrix.

The total cost is

cost of computing B1 + cost of computing B2 + O(a1bkbn).

Dynamic Programming:Finding Recursive Structures



14/19

We define cost(i , j), where 1 ≤ i ≤ j ≤ n, to be the smallest achievable
cost for calculating Ai ...Aj . Our objective is to calculate cost(1, n).

If we parenthesize Ai ...Aj at Ak , we obtain

(Ai ...Ak)︸ ︷︷ ︸
cost(i,k)

(Ak+1...Aj)︸ ︷︷ ︸
cost(k+1, j)

.

The total cost is

cost(i , k) + cost(k + 1, j) + O(aibkbj).

Dynamic Programming:Finding Recursive Structures



15/19

To attain cost(i , j), we should try all possible parenthesizations of
Ai ...Aj . This implies:

cost(i , j) ={
O(1) if i = j

minj−1
k=i (cost(i , k) + cost(k + 1, j) + O(aibkbj)) if i < j

By dyn. programming, we can compute cost(1, n) in O(n3) time.

Dynamic Programming:Finding Recursive Structures



16/19

Consider A1A2A3A4 where A1 and A2 are m ×m matrices, A3 is m × 1,
and A4 is 1×m.

i
1

2

3

4

j
1 2 3 4

0

0

0

0

0 0

cost(1, 4)

Dynamic Programming:Finding Recursive Structures



17/19

After solving all subproblems, we obtain:

i

1

2

3

4

j
1 2 3 4

0

0

0

0

0 0

O(1)

O(1)

O(1)

O(1)

O(m3) O(m2) O(m2)

O(m2)O(m2)

O(m2)

Next, we apply the “piggyback technique” to generate an optimal

parenthesization.

Dynamic Programming:Finding Recursive Structures



18/19

Define bestSub(i , j) =

nil, if i = j ;

k, if the best parenthesization for AiAi+1...Aj is
(Ai ...Ak)(Ak+1...Aj).

i

1

2

3

4

j
1 2 3 4

0

0

0

0

0 0

O(1)

O(1)

O(1)

O(1)

O(m3) O(m2) O(m2)

O(m2)O(m2)

O(m2)

After cost(i , j) is ready for all i , j , we can compute all bestSub(i , j) in
O(n3) time.

Dynamic Programming:Finding Recursive Structures



19/19

i

1

2

3

4

j
1 2 3 4

0

0

0

0

0 0

O(1)

O(1)

O(1)

O(1)

O(m3) O(m2) O(m2)

O(m2)O(m2)

O(m2)

A1: m ×m
A2: m ×m
A3: m × 1
A4: 1×m

Example:
bestSub(1, 4) = 3, i.e., the best way to calculate A1A2A3A4 is
(A1A2A3)A4.

Similarly, bestSub(1, 3) = 1, i.e., the best way to calculate A1A2A3

is A1(A2A3).

Therefore, an optimal fully parenthesized product of A1A2A3A4 is
(A1(A2A3))A4.

Dynamic Programming:Finding Recursive Structures


