Dynamic Programming:

Finding Recursive Structures

Hao WU

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/19

Dynamic Programming:Finding Recursive Structures

A string s is a subsequence of another string t if either s = t or we can
convert t to s by deleting characters.

1=ABCDE (4) (o) (» ()
IO EOREO,
s=ACD (A) @ () (p) @

2/19

Dynamic Programming:Finding Recursive Structures

(The Longest Common Subsequence Problem)

Given two strings x and y, find a common subsequence z of x and y with
the maximum length.

@ z is a longest common subsequence (LCS) of x and y.

+=ABDAB (1) (» () (B
eom (5) © @ O

) ® @ &
:—BDAB © @ ® @

Remark: If x = () (empty string) or y = (), their (only) LCS is ().

3/19

Dynamic Programming:Finding Recursive Structures

The key to solving the problem is to identify its underlying
recursive structure.

Specifically, how the original problem is related to subproblems.

4/19

Dynamic Programming:Finding Recursive Structures

n = the length of x; m = the length of y

Theorem (LCS Theorm): Let z be any LCS of x and y, and k
the length of z. Then:

Q If x[n] = y[m]
then z[k] = x[n] (hence, also = y[m]) and
z[1:k—1]isan LCS of x[1: n—1] and y[1: m— 1].

@ If x[n] # y[m], then at least one of the following holds:

o zisan LCS of x[1: n—1] and y
e zis an LCS of x and y[1: m—1].

Next, we will prove the theorem.

5/19

Dynamic Programming:Finding Recursive Structures

Lemma 1: If z[k] # x[n], then z is a subsequence of x[1 : n —1].

Proof: As z is a subsequence of x, we can convert x to z by deleting
characters repeatedly. The conversion must have deleted x[n]; otherwise,
x[n] must be the last character of z, which contradicts z[k] # x[n].

It thus follows that we can obtain z by repeatedly deleting characters
from x[1 : n — 1] and, hence, z is a subsequence of x[1 : n — 1]. O

6/19

Dynamic Programming:Finding Recursive Structures

Proof of Statement 1 (in the LCS Theorem):

Claim: If x[n] = y[m], then z[k] = x[n].

Assume that x[n] = y[m] but z[k] # x[n]. By Lemma 1, z is a common
subsequence of x[1: n— 1] and y[1: m — 1]. Now, we can obtain a
common subsequence z’' = zo x[n] of x and y. However, z’ will be a
length-(k + 1) common subsequence of x and y, contradicting the fact
that z is an LCS of x and y.

Remark: o means string concatenation. For example, ABC o DEF
= ABCDEF.

7/19

Dynamic Programming:Finding Recursive Structures

Proof of Statement 1:

Claim: If x[n] = y[m], then z[1 : k — 1] is an LCS of x[1 : n — 1]
and y[1:m—1].

Assume that z[1: k — 1] is not an LCS of x[1: n—1] and y[1: m —1].
Thus, x[1: n—1] and y[1 : m — 1] have an LCS z’ with length at least k.

However, z' o x[n] will be a length-(k + 1) common subsequence of x
and y, contradicting the fact that z is an LCS of x and y. 0

8/19

Dynamic Programming:Finding Recursive Structures

Proof of Statement 2:
Because x[n] # y[m], at least one of the following is false:

o z[k] = x[n]
o z[k] = y[m].
Consider first z[k] # x[n].

We argue that z must be an LCS of x[1: n—1] and y.

@ By Lemma 1, z is a subsequence of x[1 : n— 1]. Since z is also a
subsequence of y, z is a common subsequence of x[1: n—1] and y.

@ Suppose that z is not an LCS of x[1: n—1] and y. Thus,
x[1:n—1] and y have an LCS Z’ of length at least k + 1. This
means that x and y have a common subsequence of length k + 1,
contradicting the fact that z is an LCS of x and y.

A symmetric argument proves the statement when z[k] # y[m]. O

9/19

Dynamic Programming:Finding Recursive Structures

(Matrix—Chain Multiplication)

You are given an algorithm A that, given an a x b matrix Aand a b X ¢
matrix B, can calculate AB in O(abc) time. You need to use A to
calculate the product of A1 A,...A, where A; is an a; X b; matrix for

i € [1,n]. This implies that b;_1 = a; for i € [2, n], and the final result is
an a; X b, matrix.

A trivial strategy is to apply A to evaluate the product from left
to right. However, we may be able to reduce the cost by following
a different multiplication order.

10/19

Dynamic Programming:Finding Recursive Structures

Example

Consider A;A>A3 where A; and A, are m X m matrices, but Az is
mx 1.

There are two multiplication orders:

] (A1A2)A3.
The cost of computing B = A1 Ay is O(m - m - m) =
O(m®) and B is an m x m matrix. The cost of BAj3 is
O(m-m-1) = O(m?). The total cost is O(m®).

] A1(A2A3).
The cost of computing B = AyAz is O(m - m - 1) = O(m?)
and B is an m x 1 matrix. The cost of A;B is
O(m-m-1) = O(m?). The total cost is O(m?).

11/19

Dynamic Programming:Finding Recursive Structures

Parenthesizing A; A;...A, at A, for some k € [1,n — 1] converts the
expression to (Aj...Ax)(Aks1..-Ap), after which you can parenthesize
each of Aj...A; and A;;1...A, recursively.

A fully parenthesized product is

@ either a single matrix or

@ the product of two fully parenthesized products.
For example, if n = 4, then (A;A,)(A3As) and ((A1A)A3)A, are fully
parenthesized, but A;(AzA3A,) is not.

A fully parenthesized product determines a multiplication order that, in
turn, determines the computation cost.

Goal: Design an algorithm to find in O(n®) time a fully parenthe-
sized product with the smallest cost.

12/19

Dynamic Programming:Finding Recursive Structures

(Recu rsive Structu re)

By parenthesizing at Ay, we obtain

(AlAk) (Ak+1-~~An)7
—_————

B, B>

where By is an a; X by matrix and B5 is an a1 X b, matrix.

The total cost is

cost of computing By + cost of computing By + O(a1 bib,).

13/19

Dynamic Programming:Finding Recursive Structures

We define cost(i,), where 1 < i < j < n, to be the smallest achievable
cost for calculating A;...A;. Our objective is to calculate cost(1, n).

If we parenthesize A;...A; at Ay, we obtain

(A,Ak) (Ak+1...Aj) .
——— — ——
cost(i,k) cost(k+1,j)
The total cost is

cost(i, k) + cost(k + 1, j) + O(aibib;).

14/19

Dynamic Programming:Finding Recursive Structures

To attain cost(i,), we should try all possible parenthesizations of
A;...A;. This implies:

cost(i,j) =

0(1) ifi=j
min’,_-(cost(i, k) + cost(k +1,j) + O(a;jbiby)) if i <j

By dyn. programming, we can compute cost(1, n) in O(n®) time.

15/19

Dynamic Programming:Finding Recursive Structures

Consider A;A,A3 A, where A; and A, are m X m matrices, Az is m x 1,
and Az is 1 x m.

cost(1,4)

_

= W N =
(==}
[=}

16/19

Dynamic Programming:Finding Recursive Structures

After solving all subproblems, we obtain:

1 2 3 4

1 | o |om®)|om?)|om?2)

2 0 [o®@ |om2|om?)

310 0 |ow |om?

410 0 0 [om

Next, we apply the “piggyback technique” to generate an optimal
parenthesization.

17/19

Dynamic Programming:Finding Recursive Structures

Define bestSub(i,j) =
e nil, if i =,

@ k, if the best parenthesization for A;A;;1...A} is
(Ai.. A) (At Aj).

1 2 3 4

1 |ow o(m3)|o(m2)|o(m?2)

2 0 o |om2)omm?)

3 0 0 o) [o(m?)

410 0 0 |[om

After cost(i,j) is ready for all i,j, we can compute all bestSub(i, j) in
O(n®) time.

18/19

Dynamic Programming:Finding Recursive Structures

. 1 2 3 4

i

1 | o) lom®)|om?|om?) Al: mX m

2 0 [o®@ [om2)omm?) A2' mxm
Asz: mx1

3 0 0 o(1) |o(m?) A4: 1 X m

410 0 0 |om

Example:

bestSub(1,4) = 3, i.e., the best way to calculate A;A;A3A, is

(A1 AA3)A,.

Similarly, bestSub(1,3) =1, i.e., the best way to calculate A; AyA3

is Al(A2A3).

Therefore, an optimal fully parenthesized product of A;AyA3A, is

(A1(A2A3))A;.

19/19

Dynamic Programming:Finding Recursive Structures

