
1/1

Dynamic Programming:
Evaluating Recursive Functions

Shiyuan DENG

Department of Computer Science and Engineering
Chinese University of Hong Kong

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



2/1

Pitfall of Recursion

A recursive algorithm does considerable redundant work if the same
subproblem is encountered over and over again.

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



3/1

Problem 1

Let A be an array of n integers. Define a function f (x) — where x ≥ 0 is
an integer — as follows:

f (x) =

{
0 if x = 0
maxxi=1(A[i ] + f (x − i)) otherwise

Consider the following algorithm for calculating f (x):

algorithm f (x)
1. if x = 0 then return 0
2. max = −∞
3. for i = 1 to x
4. v = A[i ] + f (x − i)
5. if v > max then max = v
6. return max

Prove: The above algorithm takes Ω(2n) time to calculate f (n).

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



4/1

Solution

We will prove the statement by induction. Executing f (n) will launch
function calls f (n − 1), f (n − 2), · · · , f (0).

Let g(n) denote the running time of f (n). So we have:

g(0) ≥ 1,

g(1) ≥ 1,

g(n) ≥
n−1∑
i=0

g(i) for n ≥ 2.

We will prove g(n) ≥ 2n−1 for all n ≥ 1 by induction on n.

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



5/1

Solution

The base case n = 1 is obviously correct. Next, assuming g(n) ≥ 2n−1

for n ≤ k where k is an integer at least 1, we will prove g(k + 1) ≥ 2k .

As k + 1 ≥ 2, we have:

g(k + 1) ≥
k∑

i=0

g(k).

By the inductive assumption, we have:

g(k + 1) ≥ 1 +
k∑

i=1

2k−1 = 2k .

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



6/1

Principle of Dynamic Programming

Resolve subproblems according to a certain order. Remember the
output of every subproblem to avoid re-computation.

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



7/1

Problem 2

Let A be an array of n integers. Define function f (a, b) — where
a ∈ [1, n] and b ∈ [1, n] — as follows:

f (a, b) =

{
0 if a ≥ b

(
∑b

c=a A[c]) + minb−1
c=a+1{f (a, c) + f (c , b)} otherwise

Design an algorithm to calculate f (1, n) in O(n3) time.

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



8/1

Solution

List all the subproblems.

a
b

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

f(5, 8)

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



9/1

Solution

f (a, b) = 0 when a ≥ b.

a
b

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

our goal: f(1, n)

= 0

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



10/1

Solution

f (a, b) = (
∑b

c=a A[c]) + minb−1
c=a+1{f (a, c) + f (c , b)} when a < b.

Find out the dependency relationships.

a
b

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

f(4, 10)

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



11/1

Solution

f (a, b) = (
∑b

c=a A[c]) + minb−1
c=a+1{f (a, c) + f (c , b)} when a < b.

Let us start with the gray cells — they correspond to f (a, b) where
a = b − 1. These cells depend on no other cells.

a
b

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



12/1

Solution

Let us continue with the green cells — they correspond to f (a, b) where
a = b − 2. Every such cell depends on two gray cells, which have already
been computed.

a
b

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



13/1

Solution

Let us continue with the red cells — they correspond to f (a, b) where
a = b − 3. Every such cell depends on two gray cells and two green cells,
all of which have been computed.

a
b

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



14/1

Solution

The order can be summarized as follows.

All cells f (a, b) with b − a = 1, each computed in O(1) time.

All cells f (a, b) with b − a = 2, each computed in O(2) time.

...

All cells f (a, b) with b − a = k , each computed in O(k) time.

...

All cells f (a, b) with b− a = n−1, each computed in O(n−1) time.

There are O(n2) values to calculate.

Total time complexity = O(n3).

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



15/1

Problem 3 (Space Consumption)

In Lecture Notes 8, our algorithm for computing f (n,m) used O(nm)
space. Next, we will reduce the space complexity to O(n +m).

Recall the dependency graph:

0 1 2 3 4

0

1

2
3

y B D C A

x
A
B
C

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



16/1

Solution

We can calculate the values in the row-major order, i.e., row 0 to row 3
and left to right in each row. We used O(mn) space because we stored
all the values. Observe, however, that only two rows need to be stored at
any moment .

0 1 2 3 4

0

1

2
3

y B D C A

x
A
B
C

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



17/1

Solution

Same idea for the column-major order.

0 1 2 3 4

0

1

2
3

y B D C A

x
A
B
C

So the space complexity is O(min{m, n}), in addition to the O(n +m)

space needed to store x and y .

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions



18/1

Think: Can this trick be used to reduce the space in Problem 2?

Shiyuan DENG Dynamic Programming: Evaluating Recursive Functions


