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oOutline  
l Kruskal’s algorithm for solving the MST problem.

l Correctness proof.
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Review: the MST Problem

Let 𝐺 = (𝑉, 𝐸) be a connected undirected graph. Let 𝑤 be a function that maps 
each edge 𝑒 of 𝐺 to a positive integer 𝑤(𝑒) called the weight of 𝑒.

A spanning tree 𝑇 is a tree satisfying the following conditions:
l The vertex set of 𝑇 is 𝑉.
l Every edge of 𝑇 is an edge in 𝐺.

The cost of 𝑇 is the sum of the weights of all the edges in 𝑇.

The goal of the minimum spanning tree (MST) problem is to find a spanning tree 
of the smallest cost.
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Example
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Kruskal’s algorithm 

The algorithm maintains a forest 𝐹 where each vertex belongs to exactly one tree 
in F. 

Define t as the number of trees in the current 𝐹.

At the beginning, t = |V|: F has |V| trees each containing a single vertex. 
At the end, 𝑡 = 1: F becomes our final MST.

Cross edge: An edge 𝑢, 𝑣 where 𝑢 and 𝑣 belong to different trees in F.

Greedy: The algorithm works by repeatedly taking the lightest cross edge.
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Example

At the beginning, 𝑉 = 8 trees: each tree has only one vertex.

Every edge is a cross edge at the moment. 
Edge 𝑎, 𝑏 is the lightest cross edge.
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Example

We pick 𝑎, 𝑏 , marked red in the figure, and merge the trees of 𝑎 and 𝑏.

Cross edges are shown in black. 
𝑒, 𝑓 is the lightest cross edge.
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Example

We pick 𝑒, 𝑓 , merging the trees of 𝑒 and 𝑓 into one.

Cross edges are shown in black solid segments. 
𝑎, 𝑐 and 𝑏, 𝑐 are both the lightest cross edges.
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Example

We pick 𝑎, 𝑐 (you could also pick {b, c}), merging the trees of 𝑎 and 𝑐 into one.

Cross edges are shown in black solid segments. 
o 𝑏, 𝑐 is no longer a cross edge.

𝑐, 𝑓 is the lightest cross edge.
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Example

We pick 𝑐, 𝑓 , merging the trees of 𝑐 and 𝑓 into one.

Cross edges are shown in black solid segments. 
o 𝑎, 𝑓 , {𝑏, 𝑒} are no longer cross edges.

𝑐, ℎ is the lightest cross edge.
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Example

We pick 𝑐, ℎ , merging the trees of 𝑐 and ℎ into one.

Cross edges are shown in black solid segments. 
o 𝑎, ℎ is no longer a cross edge.

𝑔, ℎ is the lightest cross edge.
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Example

We pick 𝑔, ℎ , merging the trees of 𝑔 and ℎ into one.

Cross edges are shown in black solid segments. 
o 𝑏, 𝑔 is no longer a cross edge.

𝑑, 𝑔 is the lightest cross edge.
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Example

We pick 𝑑, 𝑔 , merging the trees of 𝑑 and 𝑔 into one.

Cross edges are shown in black solid segments. 
o 𝑑, 𝑒 is no longer a cross edge.
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Example

Now, there is only one tree 𝑇! in forest 𝐹, which is our final MST.
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Correctness Proof

Next, we will prove that Kruskal’s algorithm returns an MST.

Let 𝑒" (𝑖 ∈ [1, 𝑉 − 1]) be the i-th edge picked, that is, the algorithm picks edges 
in this order: 𝑒!, 𝑒#, … , 𝑒 $ %!.

Claim: For any 𝑘 ∈ 1, 𝑉 − 1 , there is an MST containing 𝑒!, 𝑒#, … , 𝑒&.

We will prove the claim by induction.

Base Case: 𝑘 = 1. We have proved this in class.
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Correctness Proof

Claim: For any 𝑘 ∈ 1, 𝑉 − 1 , there is an MST containing 𝑒!, 𝑒#, … , 𝑒&.

Inductive Case: Assuming the claim’s correctness for 𝑘 = 𝑖 − 1 (𝑖 ≥ 2), we will 
prove it for 𝑘 = 𝑖.

By the inductive assumption, there is an MST 𝑇 that includes 𝑒!, … , 𝑒"%!.

If 𝑇 includes 𝑒", the claim already holds and we are done.
Next, we will focus on the case where 𝑇 does not include 𝑒".
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Correctness Proof
By the inductive assumption, there is an MST 𝑇 that includes 𝑒!, … , 𝑒"%!.

Consider the graph 𝐺' = 𝑉, 𝑒!, … , 𝑒"%! ; this is the forest maintained by the 
algorithm after picking 𝑒"%!.

Here is an example of 𝑇 and 𝐺' where i = 7, and 𝑒!, … , 𝑒"%! are shown in red.
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Correctness Proof

By how the algorithm runs, the edge 𝑒" = {𝑢, 𝑣} must be a cross edge in 𝐺', i.e., 𝑢
and 𝑣 are in different trees.

Since 𝑇 does not include 𝑒", adding 𝑒" to 𝑇 creates a cycle.
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Correctness Proof

Walk on this cycle in the following manner: 
l start from 𝑢;
l cross 𝑒! to reach 𝑣 and continue in this direction;
l stop right after having crossed an edge 𝑒′ that takes us back to the tree of 𝑢.

Both 𝑒! and 𝑒" are cross edges before the algorithm picks the i-th edge.
Hence 𝑒! cannot be heavier than 𝑒".
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Correctness Proof

Remove 𝑒' from T and add 𝑒".
This yields another MST 𝑇', which contains 𝑒!, … , 𝑒".

We thus have proved the claim for 𝑘 = 𝑖.
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Running Time

Kruskal’s algorithm can be implemented in 𝑂( 𝐸 & log 𝐸 ) time.
o This is not trivial 

(but you have learned all the data structures required in the implementation).
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