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Set Cover

Let U be a finite set called the universe.

We are given a family S where

each member of S is a set S ⊆ U;⋃
S∈S S = U.

A sub-family C ⊆ S is a universe cover if every element of U appears in
at least one set in C.

Define the cost of C as |C|.

The set cover problem:
Find a universe cover with the smallest cost.
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Example: U = {1, 2, 3, 4, 5, 6, 7, 8} and S = {S1,S2, ...,S5} where

S1 = {1, 2, 3, 4}
S2 = {2, 5, 7}
S3 = {6, 7}
S4 = {1, 8}
S5 = {1, 2, 3, 8}.

An optimal solution is C = {S1,S2,S3,S4}.
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Our Approximation Algorithm

1. C = ∅
2. while U still has elements not covered by any set in C

3. F ← the set of elements in U not covered by any set in C

/* for each set S ∈ S, define its benefit to be |S ∩ F | */
4. add to C a set in S with the largest benefit
5. return C

We proved in the lecture that the algorithm is (1 + ln |U|)-
approximate.

Next, we will prove that the algorithm is also h-approximate, where
h = maxS∈S |S |.
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Example: S = {S1,S2, ...,S5} where

S1 = {1, 2, 3, 4}
S2 = {2, 5, 7}
S3 = {6, 7}
S4 = {1, 8}
S5 = {1, 2, 3, 8}.

Then, h = 4.
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Theorem: The algorithm returns a universe cover with cost at
most h · OPTS.

Proof. Suppose that our algorithm picks t sets. Every time the
algorithm picks a set, at least one new element is covered. For each
i ∈ [1, t], denote by ei an arbitrary element that is newly covered when
the i-th set is picked.

Let C∗ be an optimal universe cover. Because each ei exists in at least
one set of C∗, we have:

t =
t∑

i=1

1 ≤
t∑

i=1

# sets in C∗ containing ei

≤
∑
e∈U

# sets in C∗ containing e

=
∑
S∈C∗

|S | ≤ |C∗| · h.
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Corollary: If h = O(1), then our algorithm achieves a constant
approximation ratio.

Remark: With a more careful analysis, we can actually prove that
our algorithm has an approximation ratio of 1 + ln h.

Not required in this course.
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Our set cover algorithm can be used to solve many problems with
approximation guarantees. Next, we will see two examples.
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Vertex Cover

G = (V ,E ) is an undirected graph. We want to find a small subset
V ′ ⊆ V such that every edge of E is incident to at least one vertex in
V ′. The optimization goal is to minimize |V ′|.

Convert the problem to set cover:

For every v ∈ V , define Sv = the set of edges incident on v .

Apply our algorithm on the set-cover instance: S = {Sv | v ∈ V }.

This gives an O(ln |V |)-approximate solution.

Remark: We have already learned how to ensure an approximation
ratio of 2. But the point here is to demonstrate the usefulness of
set cover, rather than improving the approximation ratio.
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Red-Black Coverage

R = a set of n red points in 2D space
B = a set of n black points in 2D space
ε = a positive integer.

A subset S ⊆ R is a B-guarding set if, for every black point b ∈ B,
there is at least one point r ∈ S with dist(r , b) ≤ ε.

ε

OPT = the smallest size of all B-guarding sets.

Goal: Return a B-guarding set with size OPT · O(log n) (assume that at

least one B-guarding set exists).
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Red-Black Coverage

ε

Convert the problem to set cover:

For every r ∈ R, define Sr = the set of black points b satisfying
dist(r , b) ≤ ε.

Apply our algorithm on the set-cover instance: S = {Sr | r ∈ R}.

This gives an O(log n)-approximate solution.
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Next, we will turn our attention to the hitting set problem, which
is in fact equivalent to set cover.
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Hitting Set

Let U be a finite set called the universe.

We are given a family S where

each member of S is a set S ⊆ U;⋃
S∈S S = U.

A subset H ⊆ U hits a set S ∈ S if H ∩ S 6= ∅.
A subset H ⊆ U is a hitting set if it hits all the sets in S.

The hitting set problem:
Find a hitting set H of the minimize size.
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Example: U = {1, 2, 3, 4, 5} and S = {S1,S2, ...,S8} where

S1 = {1, 4, 5}
S2 = {1, 2, 5}
S3 = {1, 5}
S4 = {1}
S5 = {2}
S6 = {3}
S7 = {2, 3}
S8 = {4, 5}

An optimal solution is H = {1, 2, 3, 4}.
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Next, we will provide a matrix-view of set cover and hitting set,
which hopefully will help you better understand their equivalence.
We will achieve the purpose through a “bridging problem” defined
on a matrix.
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M = an n ×m matrix.
M[i , j ] = 0 or 1 for every i ∈ [1, n] and j ∈ [1,m].
Constraint: At least one 1 at each row and at each column.
Row Cover: a set R of rows s.t. every column has at least one 1 at the
rows of R.
OPTrow : the minimum size of all row covers.

Example

M =


1 1 1 1 0 0 0 0
0 1 0 0 1 0 1 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1
1 1 1 0 0 0 0 1


An optimal row cover takes the first four rows.

Using our set-cover algorithm, we can find a row cover of size

OPT row · O(logm).
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Let us now relate the matrix problem to hitting set.

Consider the hitting set instance U = {1, 2, 3, 4, 5} and
S = {S1,S2, ...,S8} where S1 = {1, 4, 5}, S2 = {1, 2, 5}, S3 = {1, 5},
S4 = {1}, S5 = {2}, S6 = {3}, S7 = {2, 3}, and S8 = {4, 5}.

We can describe the instance with

M =


1 1 1 1 0 0 0 0
0 1 0 0 1 0 1 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1
1 1 1 0 0 0 0 1


where the i-th row corresponds to integer i ∈ U and the j-th column

corresponds to Sj . Now, the goal is to find an optimal row cover! We can

find an O(logm) approximation using our set-cover algorithm.
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We have seen why hitting set can be converted to set cover. We
will now discuss the opposite.

Consider the matrix row cover problem again.

Example

M =


1 1 1 1 0 0 0 0
0 1 0 0 1 0 1 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1
1 1 1 0 0 0 0 1


An optimal row cover takes the first four rows.

We can also interpret the problem as a hitting set problem!

See the previous slide.
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Consider the set-cover instance U = {1, 2, ..., 8} and S = {S1,S2, ...,S5}
where S1 = {1, 2, 3, 4}, S2 = {2, 5, 7}, S3 = {6, 7}, S4 = {1, 8}, and
S5 = {1, 2, 3, 8}.

We can describe the instance with

M =


1 1 1 1 0 0 0 0
0 1 0 0 1 0 1 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1
1 1 1 0 0 0 0 1


where each row corresponds to a set, and each column corresponds to an
integer in U. The goal is again to find an optimal row cover!

Hence, if we have a ρ-approximate algorithm for hitting set, we can

achieve approximation ratio ρ for set cover as well.
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