
CSCI3160: Midterm Exam Solutions

Problem 1.
1. T
2. F
3. F
4. T
5. T
6. T
7. F
8. T

Problem 2. [1, 10], [20, 30], [40, 50], [60, 70]

Problem 3. Many solutions exist, e.g., bd, de, eg, cg, df , ae. Total cost = 9.

Problem 4. Many solutions exist, e.g., a = 00100, b = 00101, c = 0011, d = 010, e = 011, f = 000,
g = 10, and h = 11. Here is another solution: a = 0000, b = 0001, c = 001, d = 100, e = 101,
f = 110, g = 111, and h = 01.

Problem 5. If k = 1, simply return the maximum element in S in O(n) time. Otherwise,
spend O(n) time finding the median e of S (i.e., the element with rank n/2 in S). Divide S into
S1 = {e′ ∈ S | e′ ≤ e} and S2 = {e′ ∈ S | e′ > e}, which can also be done in O(n) time. Recursively
find the (k/2)-split set T1 of S1 and the (k/2)-split set T2 of S2. Return T1 ∪ T2.

To analyze the running time, denote by f(n, k) the time of our algorithm on parameters n and
k. It holds that f(n, 1) = O(n) and f(n, k) = O(n) + 2f(n/2, k/2). We can derive:

f(n, k) = O(n) + 2f(n/2, k/2)

= O(n) + 2(O(n/2) + 2f(n/4, k/4)) = 2 ·O(n) + 4f(n/4, k/4)

= 2 ·O(n) + 4(O(n/4) + 2f(n/8, k/8)) = 3 ·O(n) + 8f(n/8, k/8)

...

= log2 h ·O(n) + h · f(n/h, k/h)
...

= log2 k ·O(n) + k · f(n/k, 1) = O(n log k)

Problem 6. 1. Consider d1 = 4 and d2 = 3. The algorithm is not optimal for n = 6.

2. Take an arbitrary optimal solution that uses x′1, x
′
2, and x′3 coins of d1, d2, and d3, respectively.

Hence:

5x1 + 2x2 + x3 = 5x′1 + 2x′2 + x′3 (1)

We will show

4x1 + x2 ≥ 4x′1 + x′2. (2)

Plugging (2) into (1) yields: x1+x2+x3 ≤ x′1+x′2+x′3, which indicates that {x1, x2, x3} is optimal.

To prove (2), first observe that x1 ≥ x′1 (because otherwise 5x′1 ≥ 5(x1+1) > n). We distinguish
two cases:

1

Case 1: x1 = x′1. We must have x2 ≥ x′2 because otherwise 2x′2 + x′1 ≥ 2(x2 + 1) + x1 > n. It
follows that (2) holds.

Case 2: x1 > x′1. It suffices to prove x′2 ≤ 4 because this will yield 4(x1 − x′1) + x2 ≥ 4 ≥ x′2, which
then gives (2). To prove x′2 ≤ 4, observe that if x′2 ≥ 5, we can replace 5 coins of 2 dollars with 2
coins of 5 dollars, contradicting the optimality of {x′1, x′2, x′3}.

Problem 7. 1. a1 is greater than (n/2)− 1 elements in A1 and at most (n/2)− 1 elements in A2;
hence, its rank in S is at most 1 + (n/2)− 1 + (n/2)− 1 = n− 1. b1 is greater than the first n/2
elements in A1 and the first (n/2)− 1 elements in A2; hence, its rank in S is at least n.

2. We will deal with a more general problem. Let A be an array of size n, and B be an array of
size m, where n and m are powers of 2. Each array is sorted in ascending order, and all the n+m
integers in A ∪B are distinct. Given an integer k ∈ [1, n+m], we will find the element with rank k
in A ∪B in O(log n+ logm) time. We will use the notation A[i : j] to refer to the subarray storing
A[i], A[i+ 1], ..., A[j]; B[i : j] is defined similarly.

If n = 1, then we compare A[1] with B[k]. If A[1] < B[k], return B[k − 1]; otherwise, return
B[k]. The cost is O(1). Similarly, the problem can also be solved in constant time if m = 1.

Next, we consider n ≥ 2 and m ≥ 2. Let a = A[n/2] and b = B[m/2]. Assume, w.l.o.g., that
a < b. By an argument similar to how we proved question 6(1), we know that the rank of a in A∪B
is at most n+m

2 , and that of b is at least n+m
2 .

• If k ≤ (n+m)/2, none of the elements in B[m2 + 1 : m] can be the final answer. We recurse
on A, B[1 : m/2], and k (i.e., looking for the k-th smallest in A ∪B[1 : m/2]).

• If k > (n+m)/2, none of the elements in A[1 : n/2] can be the final answer. We recurse on
A[1+n/2 : n], B, and k−n/2 (i.e., looking for the (k−n/2)-th smallest in A[1+n/2 : 1]∪B).

In either case, we spend constant time before entering recursion. Each time we recurse, either A
shrinks in half or B does. The recursion depth is therefore O(log n+ logm).

2

