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Let U be a finite set called the universe.

We are given a family $ where

@ each member of Sisaset S C U;

° Uses S=U.

A sub-family € C § is a universe cover if every element of U appears in
at least one set in C.

@ Define the cost of € as |C|.

The set cover problem:
Find a universe cover with the smallest cost.
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Example: U ={1,2,3,4,5,6,7,8} and 8§ = {5, S5, ..., S5} where

S5 = {1,2,3,4}
S, = {2,571}
53 = {67}

Se = {1,8}

Ss = {1,2,3,8).

An optimal solution is € = {51, S5, S3, S4}.
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The input size of the set cover problem is n =% ¢ ¢ |S].

The problem is NP-hard.

@ No one has found an algorithm solving the problem in time
polynomial in n.

@ Such algorithms cannot exist if P # NP.
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A = an algorithm that, given any legal input S with universe U, returns a
universe cover C.

Denote by OPTg the smallest cost of all universe covers when the input
family is 8.

A is a p-approximate algorithm for the set cover problem if, for

any legal input 8, A can return a universe cover with cost at most
p- OPTS

The value p is the approximation ratio.
We say that A achieves an approximation ratio of p.
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Consider the following algorithm.

Input: A family 8

1. e=0

2. while U still has elements not covered by any set in C

3. F < the set of elements in U not covered by any set in C
/* for each set S € 8, define its benefit to be |SN F| */

4, add to C a set in 8 with the largest benefit

5. return C

It is easy to show:
@ The C returned is a universe cover;

@ The algorithm runs in time polynomial to n.

We will prove later that the algorithm is (1 + In |U|)-approximate.
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Example: S; = {1,2,3,4}, S, ={2,5,7}, S3 ={6,7},
S ={1,8}, S5 = {1,2,3,8}
@ In the beginning, =0 and F = {1,2,3,4,5,6,7,8}.

@ Next, we can add S; or S5 to € (benefit 4). The choice is
arbitrary; suppose we add S;. Now, F = {5,6,7,8}.

@ Next, we can add S; or S3 (benefit 2). The choice is
arbitrary; suppose we add S;. Now, F = {6,8}.

@ Next, we can add S3, 54, or S5 (benefit 1). The choice is
arbitrary; suppose we add S;. Now, F = {8}.

@ Next, we cab add S; or S5 (benefit 1). The choice is
arbitrary; suppose we add S;. Now, F = ().

The algorithm terminates with € = {51, S5, S3, S4}-
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Theorem 1: The algorithm returns a universe cover with cost at
most 1+ (In|U]) - OPTs < (1+In|U|)- OPTs.
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© = the universe cover returned.
t=1C|.

Denote the sets in C as 51, 5, ..., S, picked in the order shown.

For each i € [1, t], define z as the size of F after S; is picked.
Specially, define z5 = |U].

z; =0 and z;_; > 1. Think: why?

Denote by C* an optimal universe cover, namely, OPTg = |C*|.
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We will prove later:

Lemma 1: For j € [1,t], it holds that

1
<z (1o ——).
fi=imt ( OPTS)
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From Lemma 1, we get:

1
zi 1 <z (1 - OPT5>

1 2
S zese (1 - OPT5>

1 t—1 1 t—1
< . - - . -
= (1 OPT5> U] (1 OPTS)

t—1

< |U]-e

where the last inequality used the fact 1 + x < e* for any real value x.
As z;_1 > 1, we have

1< |U]-e o5 (1)
which resolves to t <1+ (In|U|) - OPTg. This proves Theorem 1.
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(Proof of Lemma 1)

Before z; is chosen, F has z;_; elements.

At this moment, at least one set in C* has a benefit at least ‘Z@%l‘ = OZI";;%
(every element of F must appear in some set in C*).

Hence, S; must have a benefit at least OZ,";TIS (greedy). Therefore:

zi = [F\S|=|F|-|FN&]
< ) Zi—1
= 417 OpT,

- A OPTs
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Next, we will introduce a closely related problem called the hitting
set problem.

Set Cover and Hitting Set
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Let U be a finite set called the universe.

We are given a family $ where

@ each member of Sisaset S C U;

° Uses S=U.

A subset HC U hitsaset S€8if HNS # 0.
A subset H C U is a hitting set if it hits all the sets in 8.

The hitting set problem:
Find a hitting set H of the minimize size.
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Example: U ={1,2,3,4,5} and 8§ = {51, S5, ..., Sg} where
S = {1,4,5}
S, = {1,2,5}
S = {1,5}
Se = {1}
S = {2}
S = {3}
S = {2,3}
Ss = {4,5}
An optimal solution is H = {1,2,3,4}.
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The input size of the set cover problem is n =% ¢ ¢ |S].

The problem is NP-hard.

@ No one has found an algorithm solving the problem in time
polynomial in n.

@ Such algorithms cannot exist if P # NP.
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A = an algorithm that, given any legal input S with universe U, returns a
hitting set.

Denote by OPTg the smallest size of all hitting sets.

A is a p-approximate algorithm for the hitting set problem if,
for any legal input 8, A can return a hitting set with size at most
p-OPTg.

The value p is the approximation ratio.
We say that A achieves an approximation ratio of p.
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We can convert the hitting set problem to set cover.

Let (Uns, Shs) be the input to the hitting set problem. W.l.o.g., assume
that 8ps = {51, 52, ..., St}
We create an instance of the set cover problem as follows:

o U, ={1,2,....t}.

@ For each element e € Uy, define
OriginSe ={i |1 <i<tandeé€Ss}

@ Then, create S;c = {OriginSe | e € Ups}.
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Theorem 2: (Ups,Sps) has a hitting set of size s if and only if
(Usc, Ssc) has a universe cover of size s.

We therefore have a polynomial-time algorithm solving the hitting set
problem with approximation ratio 1 +InUse =1+ Int <1+ Inn.

Next we will prove the theorem.
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Proof of the = Direction: Namely, if (Ups, Sps) has a hitting set of size
s, then (Us, 8sc) has a universe cover of size s.

Let H be any hitting set. Construct
Cy = {OriginS, | e € H}.
We argue that Cy is a universe cover for (Us, Ssc)-
Suppose that this is not true. Then, there is an integer / € [1, t] that
does not belong to Cy. This means that i ¢ OriginS, for any e € H.

Hence, S; does not contain any element in H. This contradicts H being a
hitting set.
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Proof of the < Direction: Namely, if (Us, 8s.) has a universe cover of
size s, then (Ups, Sps) has a hitting set of size s.

Let C be any universe cover. Construct
He = {e | OriginS, € C}.

We argue that He is a hitting set for (Ups, Shs)-

Suppose that this is not true. Then, 8ys has an S; — for some integer

i € [1,t] — that contains no elements in He. This means that

i ¢ OriginSe for any e € He. Because C = {OriginS. | e € He}, we
conclude that / does not appear in any set of C. This contradicts C being
a universe cover. 0
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