All-Pairs Shortest Paths

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/19

Yufei Tao All-Pairs Shortest Paths



In this lecture, we will study a problem called all-pairs shortest paths
which is closely related to the SSSP (single-source shortest path) problem
discussed in the previous lectures. We will learn two algorithms: the
Floyd-Warshall algorithm and Johnson’s algorithm.

2/19

Yufei Tao All-Pairs Shortest Paths



(All-Pairs Shortest Paths (APSP) )

Input: Let G = (V, E) be a simple directed graph. Let w be a function
that maps each edge in E to an integer, which can be positive, 0, or
negative. It is guaranteed that G has no negative cycles.

Output: We want to find a shortest path (SP) from s to t, for all
s,t € V. More specifically, the output should be | V| shortest-path trees,
each rooted at a distinct vertex in V.
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Shortest path distances:
spdist(a, a) = 0, spdist(a,b) =1, ..., spdist(a,g) = —
spdist(b, a) = oo, spdist(b,b) =0, ..., spdist(b, g) =

spdist(g, a) = oo, spdist(g, b) = oo, ..., spdist(g,g) =0

We omit the shortest paths in this example.
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If all the weights are non-negative, we can run Dijkstra's algorithm
|V| times. The total time is O(|V|(|V]| + |E|) log |V]).

For the general APSP problem (arbitrary weights), we can run
Bellman-Ford’s algorithm |V/| times. The total time is O(|V|?|E]).

We will solve the (general) APSP problem in time
O (min{|V, [VI(IV| + |E) log|VI]}) -

Note that the complexity strictly improves that in the second box.
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The Floyd-Warshall Algorithm
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Set n=|V|.
Assign each vertex in V a distinct id from 1 to n.

Example:

Let us assign to 1 vertex a, 2 to vertex b, ..., 7 to vertex g.
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Define spdist(i,j |< k) as the smallest length of all paths from the vertex
with id / to the vertex with id j that pass only intermediate vertices
with ids < k.

Example:

Vertex ids: 1 for a, 2 for b, ..., 7 for g.

spdist(1,5 | 1) = oo, spdist(1,5 | 2) = oo, spdist(1,5 | 3) =
spdist(1,5 | 4) = —1 spdist(1,5 | 5) = —1, spdist(1,5 | 6) = —
spdist(1,5|7) =
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Lemma: It holds for all i, j, k € [1, n] that

spdist(i,j |< k) =

min spdist(i,j |< k —1)
spdist(i, k |< k — 1) + spdist(k,j |< k — 1)

The proof is left as a regular exercise.

Observe that spdist(i, j |< n) = spdist(i, j).
Our goal is therefore to compute spdist(i,j |< n) for all i,j € [1, n].

This clearly points to a dynamic programming algorithm that fin-
ishes in O(|V[?) time.

Extending the algorithm to report paths is easy and left to you.
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Johnson's Algorithm
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Recall:

If all the weights are non-negative, we can run Dijkstra’s algorithm
|V| times. The total running time is O(|V|(| V| + |E|) log | V]).

We cannot apply Dijkstra’s because our graph may have negative-weight
edges. Can we convert all the weights into non-negative values while
preserving all shortest paths?

Interestingly, the answer is yes.
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Re-weighting

Introduce an arbitrary function h: V — Z, where Z represents the set of
integer values.

For each edge (u, v) in E, redefine its weight as:

w'(u,v) = w(u,v) + h(u) — h(v).

Denote by G’ the graph where
@ the set V of vertices and the set E of edges are the same as G;

@ the edges are weighted using function w'.
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Re-weighting

Lemma: Consider any path vi — vo — ... — v, in G where x > 1.

If the path has length ¢ in G, then it has length ¢ + h(vy) — h(vx)
in G'.

Proof: The length of the path in G’ is
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Re-weighting

Corollary: Let 7 be a shortest path from vertex u to vertex v in
G, it is also a shortest path from u to v in G.

Proof: Let 7’ be any other path from v to v in G’. Denote by ¢ and ¢
the length of 7 and 7’ in G, respectively. It holds that ¢ < ¢'. By the
lemma of the previous slide, we know that 7 and 7’ have length

£+ h(u) — h(v) and ¢ + h(u) — h(v) in G’, respectively. O
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Example:
a h(a) =0
Yaur h(b) =0
, g h(c)=0
@) O———» e
L f/,?/o h(d) 6
1 I g h(e) = —6
Ry h(F) = —7
- h(g) = -9
After re-weighting:
a
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We want to make sure
w'(u,v) >0

for all edges (u, v) in E. Not every function h(.) fulfills the purpose.

Next, we will introduce a dummy-vertex trick to find a good h(.).
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(A “Dummy-Vertex" Trick)

From G = (V, E), construct a graph G = (V2 E2) where:

(] \/A =Vu {Vdummy};
@ EA includes all the edges in E, and additionally, a new edge from
VA to every other vertex in V/;

@ Each edge inherited from E carries the same weight as in E. Every
newly added edge carries the weight 0.

Example:

Yufei Tao All-Pairs Shortest Paths

17/19




(A “Dummy-Vertex" Trick)

In G& = (VA ER), find the shortest path distance from Vgymm, to every
other vertex. This is an SSSP problem which can be solved by
Bellman-Ford's algorithm in O(|V/||E|) time.

Example:

spdist(Vdummy, a) =
spdist(Vaummy, b) =
spdist(Vdummy, C) =
spdist(Vdummy, d) = —6
spdist(Vdummy, €) =
spdist(Vdummy )
spdist(Vdummy, &) =
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C/—\ “Dummy-Vertex" Trick)

Recall that we are looking for a good function h(.) to re-weight the edges
of G. We now design the function as follows:

h(u) = spdist(Vaummy, t)

for every u € V.

Lemma: After re-weighting the edges of G with the above h(.),
all edge weights in G’ (i.e., the graph after re-weighting) are non-
negative.

The proof is left as an exercise.

We can now apply Dijkstra’s algorithm to solve the APSP problem in
time O(|V|(|V|+ |E[)log| V).
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