Dynamic Programming 4:

Longest Common Subsequence

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/10

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



A string s is a subsequence of another string t if either s = t or we can
convert t to s by deleting characters.

Example: t = ABCDEF

The following are subsequences of t: ABD, ACDF, and ABCDEF.
The following are not: ACB, ACG, and BDFE.

2/10

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



(The Longest Common Subsequence Problem)

Given two strings x and y, find a common subsequence z of x and y with
the maximum length.

We will refer to z as a longest common subsequence (LCS) of x and y.

Example: If x = ABCBDAB and y = BDCABA, then BCBA is an LCS
of x and y, so is BCAB.

If x = () (empty string) and y = BDCABA, their (only) LCS is (.

3/10

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



The key to solving the problem is to identify its underlying
recursive structure.

Specifically, how the original problem is related to subproblems.

The recursive structure will then imply a dyn. programming algorithm.

4/10

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



n = the length of x; m = the length of y

Theorem: Let z be any LCS of x and y, and k the length of z.
Then:

Q If x[n] = y[m]
then z[k] = x[n] (hence, also = y[m]) and
z[1:k—1]is an LCS of x[1: n—1] and y[1: m—1].

@ If x[n] # y[n], then at least one of the following holds:

o zisan LCS of x[1: n—1] and y
o zisan LCS of x and y[1: m—1].

This is the recursive structure of the problem.

5/10

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



Example:

@ Suppose x = BCBDA and y = BDCABA, which have an LCS
z = BCBA. By Statement 1 (of the theorem), BCB must be
an LCS of BCBD and BDCAB.

@ Suppose x = ABCBDAB and y = BDCABA, which have an LCS
z = BCBA. By Statement 2, at least one of the following is
true:

e BCBA is an LCS of ABCBDA and BDCABA;
e BCBA is an LCS of ABCBDAB and BDCAB.

6/10

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



Proof of Statement 1:

We first prove z[k] = x[n]. Suppose that this is not true. Then, z must
be a common subsequence of x[1: n— 1] and y[1 : m — 1]. But then
7z’ ox[n] is a length-(k + 1) common subsequence of x and y,
contradicting the fact that z is an LCS of x and y.

Next, we prove z[1: k — 1] is an LCS of x[1: n—1] and y[1: m—1].

Suppose that this is not true. Thus, x[1: n—1] and y[1 : m — 1] have an
LCS Z’ with length at least k. However, 2z’ o x[n] will be a length-(k + 1)
common subsequence of x and y, contradicting the definition of z. O

Remark: o means string concatenation. For example, ABC o DEF
= ABCDEF.

7/10

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



Proof of Statement 2:

Because x[n] # y[m], at least one of the following is false:
o z[k] = x[n]
o z[k] = y[m].

Consider first z[k] # x[n]. We argue that z must be an LCS of
x[1:n—1] and y. First, z must be a common subsequence of

x[1: n—1] and y (think: how is this related to z[k] # x[n])? Assume, on
the contrary, that z is not their LCS. Thus, x[1: n— 1] and y have an
LCS Z’ of length at least k + 1. This means that x and y have a
common subsequence of length k + 1, contradicting the fact that z is an
LCS of x and y.

A symmetric argument proves the statement when z[k] # y[m]. O

8/10

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



Define x[1: 0] = y[1: 0] = 0 (empty string).
For any i € [0, n] and j € [0, m], define
opt(i,j) = the LCS length of x[1: ] and y[1 :j].

Note that opt(n, m) is the LCS length of x and y.

The theorem tells us

0 ifi=0o0rj=0
opt(i,j)=< opt(i—1,j—1)+1 if i,/ >0 and x[i] = y[j]
max{opt(i,j —1),opt(i —1,/)} if i,j > 0 and x[i] # y[j]

We can compute opt(n, m) in O(nm) time by dynamic programming
(last lecture).

9/10

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



Wait! We still need to generate an LCS of x and y.

This can be done by slightly modifying the dynamic programming
algorithm without increasing the time complexity. Details are left as a
regular exercise.

10/10

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



