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A string s is a subsequence of another string t if either s = t or we can
convert t to s by deleting characters.

Example: t = ABCDEF

The following are subsequences of t: ABD, ACDF, and ABCDEF.
The following are not: ACB, ACG, and BDFE.
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(The Longest Common Subsequence Problem)

Given two strings x and y, find a common subsequence z of x and y with
the maximum length.

We will refer to z as a longest common subsequence (LCS) of x and y.

Example: If x = ABCBDAB and y = BDCABA, then BCBA is an LCS
of x and y, so is BCAB.

If x = () (empty string) and y = BDCABA, their (only) LCS is (.
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The key to solving the problem is to identify its underlying
recursive structure.

Specifically, how the original problem is related to subproblems.

The recursive structure will then imply a dyn. programming algorithm.
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n = the length of x; m = the length of y

Theorem: Let z be any LCS of x and y, and k the length of z.
Then:

Q If x[n] = y[m]
then z[k] = x[n] (hence, also = y[m]) and
z[1:k—1]is an LCS of x[1: n—1] and y[1: m—1].

@ If x[n] # y[n], then at least one of the following holds:

o zisan LCS of x[1: n—1] and y
o zisan LCS of x and y[1: m—1].

This is the recursive structure of the problem.
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Example:

@ Suppose x = BCBDA and y = BDCABA, which have an LCS
z = BCBA. By Statement 1 (of the theorem), BCB must be
an LCS of BCBD and BDCAB.

@ Suppose x = ABCBDAB and y = BDCABA, which have an LCS
z = BCBA. By Statement 2, at least one of the following is
true:

e BCBA is an LCS of ABCBDA and BDCABA;
e BCBA is an LCS of ABCBDAB and BDCAB.
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Proof of Statement 1:

We first prove z[k] = x[n]. Suppose that this is not true. Then, z must
be a common subsequence of x[1: n— 1] and y[1 : m — 1]. But then
7z’ ox[n] is a length-(k + 1) common subsequence of x and y,
contradicting the fact that z is an LCS of x and y.

Next, we prove z[1: k — 1] is an LCS of x[1: n—1] and y[1: m—1].

Suppose that this is not true. Thus, x[1: n—1] and y[1 : m — 1] have an
LCS Z’ with length at least k. However, 2z’ o x[n] will be a length-(k + 1)
common subsequence of x and y, contradicting the definition of z. O

Remark: o means string concatenation. For example, ABC o DEF
= ABCDEF.
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Proof of Statement 2:

Because x[n] # y[m], at least one of the following is false:
o z[k] = x[n]
o z[k] = y[m].

Consider first z[k] # x[n]. We argue that z must be an LCS of
x[1:n—1] and y. First, z must be a common subsequence of

x[1: n—1] and y (think: how is this related to z[k] # x[n])? Assume, on
the contrary, that z is not their LCS. Thus, x[1: n— 1] and y have an
LCS Z’ of length at least k + 1. This means that x and y have a
common subsequence of length k + 1, contradicting the fact that z is an
LCS of x and y.

A symmetric argument proves the statement when z[k] # y[m]. O
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Define x[1: 0] = y[1: 0] = 0 (empty string).
For any i € [0, n] and j € [0, m], define
opt(i,j) = the LCS length of x[1: ] and y[1 :j].

Note that opt(n, m) is the LCS length of x and y.

The theorem tells us

0 ifi=0o0rj=0
opt(i,j)=< opt(i—1,j—1)+1 if i,/ >0 and x[i] = y[j]
max{opt(i,j —1),opt(i —1,/)} if i,j > 0 and x[i] # y[j]

We can compute opt(n, m) in O(nm) time by dynamic programming
(last lecture).
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Wait! We still need to generate an LCS of x and y.

This can be done by slightly modifying the dynamic programming
algorithm without increasing the time complexity. Details are left as a
regular exercise.
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