
1/10

Dynamic Programming 4:
Longest Common Subsequence

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



2/10

A string s is a subsequence of another string t if either s = t or we can
convert t to s by deleting characters.

Example: t = ABCDEF

The following are subsequences of t: ABD, ACDF, and ABCDEF.
The following are not: ACB, ACG, and BDFE.

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



3/10

The Longest Common Subsequence Problem

Given two strings x and y , find a common subsequence z of x and y with
the maximum length.

We will refer to z as a longest common subsequence (LCS) of x and y .

Example: If x = ABCBDAB and y = BDCABA, then BCBA is an LCS
of x and y , so is BCAB.

If x = ∅ (empty string) and y = BDCABA, their (only) LCS is ∅.

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



4/10

The key to solving the problem is to identify its underlying
recursive structure.

Specifically, how the original problem is related to subproblems.

The recursive structure will then imply a dyn. programming algorithm.

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



5/10

n = the length of x ; m = the length of y

Theorem: Let z be any LCS of x and y , and k the length of z .
Then:

1 If x [n] = y [m]
then z [k] = x [n] (hence, also = y [m]) and
z [1 : k − 1] is an LCS of x [1 : n − 1] and y [1 : m − 1].

2 If x [n] ̸= y [n], then at least one of the following holds:

z is an LCS of x [1 : n − 1] and y
z is an LCS of x and y [1 : m − 1].

This is the recursive structure of the problem.

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



6/10

Example:

Suppose x = BCBDA and y = BDCABA, which have an LCS
z = BCBA. By Statement 1 (of the theorem), BCB must be
an LCS of BCBD and BDCAB.

Suppose x = ABCBDAB and y = BDCABA, which have an LCS
z = BCBA. By Statement 2, at least one of the following is
true:

BCBA is an LCS of ABCBDA and BDCABA;
BCBA is an LCS of ABCBDAB and BDCAB.

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



7/10

Proof of Statement 1:

Assume that z [1 : k − 1] is not an LCS of x [1 : n − 1] and y [1 : m − 1].
Thus, x [1 : n− 1] and y [1 : m− 1] have an LCS z ′ with length at least k.

However, z ′ ◦ x [n] will be a length-(k + 1) common subsequence of x and
y , contradicting the fact that z is an LCS of x and y .

Remark: ◦ means string concatenation. For example, ABC ◦ DEF

= ABCDEF.

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



8/10

Proof of Statement 2:

Because x [n] ̸= y [m], at least one of the following is false:

z [k] = x [n]

z [k] = y [m].

Consider first z [k] ̸= x [n]. We argue that z must be an LCS of
x [1 : n − 1] and y . First, z must be a common subsequence of
x [1 : n− 1] and y (think: how is this related to z [k] ̸= x [n])? Assume, on
the contrary, that z is not their LCS. Thus, x [1 : n − 1] and y have an
LCS z ′ of length at least k + 1. This means that x and y have a
common subsequence of length k + 1, contradicting the fact that z is an
LCS of x and y .

A symmetric argument proves the statement when z [k] ̸= y [m].

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



9/10

Define x [1 : 0] = y [1 : 0] = ∅ (empty string).

For any i ∈ [0, n] and j ∈ [0,m], define

opt(i , j) = the LCS length of x [1 : i ] and y [1 : j ].

Note that opt(n,m) is the LCS length of x and y .

The theorem tells us

opt(i , j) =


0 if i = 0 or j = 0

opt(i − 1, j − 1) + 1 if i , j > 0 and x [i ] = y [j ]

max{opt(i , j − 1), opt(i − 1, j)} if i , j > 0 and x [i ] ̸= y [j ]

We can compute opt(n,m) in O(nm) time by dynamic programming

(last lecture).

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



10/10

Wait! We still need to generate an LCS of x and y .

This can be done by slightly modifying the dynamic programming

algorithm without increasing the time complexity. Details are left as a

regular exercise.

Yufei Tao Dynamic Programming 4: Longest Common Subsequence


