
CSCI3160: Regular Exercise Set 7

Prepared by Yufei Tao

Problem 1. Let x be a string of length n, and y a string of length m. Define opt(i, j) to be the
length of an LCS of x[1 : i] and y[1 : j] for i ∈ [0, n] and j ∈ [0,m]. In the lecture, we already
discussed how to calculate opt(i, j) for all possible (i, j) pairs. Based on that discussion, explain an
algorithm that can output an LCS of x and y in O(nm) time.

Solution. Recall:

opt(i, j) =


0 if i = 0 or j = 0

opt(i− 1, j − 1) + 1 if i, j > 0 and x[i] = y[j]

max{opt(i, j − 1), opt(i− 1, j)} if i, j > 0 and x[i] ̸= y[j].

We will now apply the “piggyback technique” discussed in the lecture to generate an LCS. For
this purpose, let us define

bestSub(i, j) =


nil if i = 0 or j = 0

nil if i, j > 0 and x[i] = y[j]

shrink y if i, j > 0, x[i] ̸= y[j], and opt(i− 1, j) ≥ opt(i, j − 1)

shrink x if i, j > 0, x[i] ̸= y[j], and opt(i− 1, j) < opt(i, j − 1)

After computing opt(i, j) for all (i, j) pairs, we can compute each bestSub(i , j ) in constant time.
The total time is O(nm).

We can now construct an LCS z of x and y as follows. First, if x or y is the empty string, set
z to the empty string. Second, if x[n] = y[m], recursively obtain an LCS z′ of x[1 : n − 1] and
y[1 : m− 1] and then set z = z′ ◦ x[n], where ◦ means concatenation. Finally, if x[n] ̸= y[m], we act
differently according to bestSub(n,m):

• If it is “shrink x”, we recursively obtain an LCS z′ of x[1 : n− 1] and y and then set z = z′.

• If it is “shrink y”, we recursively obtain an LCS z′ of x and y[1 : m− 1] and then set z = z′.

Problem 2 (Matrix-Chain Multiplication). The goal in this problem to calculate A1A2...An

where Ai is an ai × bi matrix for i ∈ [1, n]. This implies that bi−1 = ai for i ∈ [2, n], and the
final result is an a1 × bn matrix. You are given an algorithm A that, given an a × b matrix A
and a b× c matrix B, can calculate AB in O(abc) time. To calculate A1A2...An, you can apply
parenthesization, namely, convert the expression to (A1...Ai)(Ai+1...An) for some i ∈ [1, n− 1], and
then parenthesize each of A1...Ai and Ai+1...An recursively. A fully parenthesized product is

• either a single matrix or

• the product of two fully parenthesized products.

For example, if n = 4, then (A1A2)(A3A4) and ((A1A2)A3)A4 are fully parenthesized, but
A1(A2A3A4) is not. Each fully parenthesized product has a computation cost under A; e.g., given
(A1A2)(A3A4), you first calculate B1 = A1A2 and B2 = A3A4, and then calculate B1B2, all

1



using A. The cost of the fully parenthesized product is the total cost of the three pairwise matrix
multiplications.

Design an algorithm to find in O(n3) time a fully parenthesized product with the smallest cost.

Solution. Given i, j satisfying 1 ≤ i ≤ j ≤ n, we define cost(i, j) to be the smallest achievable cost
for calculating AiAi+1...Aj with parenthesization. Our objective is to calculate cost(1, n).

A key observation is that B1 = Ai...Ak is an ai× bk matrix and B2 = Ak+1...Aj is an ak+1× bj
matrix (where bk = ak+1); so it takes O(aibkbj) time to compute B1B2. This means that if we start
with the parenthesization (Ai...Ak)(Ak+1...Aj), the best achievable cost is cost(i, k) + cost(k +
1, j) +O(aibkbj). This implies:

cost(i, j) =

{
O(1) if i = j

minj−1
k=i(cost(i, k) + cost(k + 1, j) +O(aibkbj)) if i < j

Using dynamic programming, we can compute cost(1, n) in O(n3) time. Using the “piggyback
technique”, we can produce an optimal parenthesization in O(n3) extra time.

Problem 3 (Longest Ascending Subsequence). Let A be a sequence of n distinct integers. A
sequence B of integers is a subsequence of A if it satisfies one of the following conditions:

• A = B or

• we can convert A to B by repeatedly deleting integers.

The subsequence B is ascending if its integers are arranged in ascending order. Design an algorithm
to find an ascending subsequence of A with the maximum length. Your algorithm should run in
O(n2) time. For example, if A = (10, 5, 20, 17, 3, 30, 25, 40, 50, 60, 24, 55, 70, 58, 80, 44), then a longest
ascending sequence is (10, 20, 30, 40, 50, 60, 70, 80).

Solution. We say that B is an end-aligned ascending subsequence of A if A[n] is the last integer in
B. In the example given in the problem statement, (5, 20, 30, 40, 44) is an end-aligned ascending
subsequence of A, while (10, 20, 30, 40, 50, 60, 70, 80) is not. Given an i ∈ [1, n], we use len(i) to
denote the maximum length of all end-aligned ascending subsequences of A[1 : i]. In our example,
len(16) = 5 because (5, 20, 30, 40, 44) is a longest end-aligned ascending subsequence of A, but
len(15) = 8 because (10, 20, 30, 40, 50, 60, 70, 80) is longest end-aligned ascending subsequence of
A[1 : 15].

Let B be an (arbitrary) end-aligned ascending subsequence of A[1 : i], and define k to be the
length of B. There are two possibilities.

• k = 1. This implies that A[j] > A[i] for all j < i.

• k > 1. In this case, let j be the integer such that B[k − 1] = A[j]. Then, B[1 : k − 1] must be
an end-aligned longest subsequence of A[1 : j].

Given an i ∈ [1, n], define S(i) = {j | j < i and A[j] < A[i]}. The above discussion implies:

len(i) = 1 + max
j∈S(i)

len(j)

Using dynamic programming, we can compute len(i) for all i ∈ [1, n] in O(n2) time.

2



The maximum length of all ascending subsequences of A is

n
max
i=1

len(i).

By the “piggyback technique”, we can produce a longest ascending subsequence of A in O(n2) extra
time.

Problem 4*. In this problem, we will revisit a regular exercise discussed before and derive a faster
algorithm using dynamic programming.

Let A be an array of n integers (A is not necessarily sorted). Each integer in A may be
positive or negative. Given i, j satisfying 1 ≤ i ≤ j ≤ n, define subarray A[i : j] as the sequence
(A[i], A[i+1], ..., A[j]), and the weight of A[i : j] as A[i] +A[i+1]+ ...+A[j]. For example, consider
A = (13,−3,−25, 20,−3,−16,−23, 18); A[1 : 4] has weight 5, while A[2 : 4] has weight −8. Design
an algorithm to find a subarray of A with the largest weight in O(n) time.

Remark: We solved the problem using divide-and-conquer in O(n log n) time before.

Solution. Given a subarray A[i : j], we refer to j as the subarray’s ending position. For each
k ∈ [1, n], define maxwght(k) as the largest weight of all the subarrays whose ending positions are k.
It holds that

maxwght(k) =


A[k] if k = 1

A[k] if k > 1 and maxwght(k − 1) ≤ 0

maxwght(k − 1) +A[k] if k > 1 and maxwght(k − 1) > 0

The above obviously holds for k = 1. Next, we will prove its correctness for k > 1. Let t ∈ [1, k]
be an integer that maximizes the weight of A[t : k].

Consider first the scenario where maxwght(k− 1) ≤ 0. Suppose (for contradiction purposes) that
t < k. Then, the weight of A[t : k − 1], which cannot exceed maxwght(k − 1), must be non-positive.
Hence, the weight of A[t : k] is at most A[k : k]. This implies that the weight of A[t : k] — which is
maxwght(k) — must be exactly A[k], establishing the second branch in the definition.

Finally, consider maxwght(k − 1) > 0. Let t′ be an integer such that the weight of A[t′ : k − 1]
equals maxwght(k − 1). As A[t′ : k] has a larger weight than A[k : k], we can assert that t < k.
Next, we argue that A[t : k − 1] and A[t′ : k − 1] must have the same weight, i.e., maxwght(k − 1).
Otherwise, A[t : k − 1] has a lower weight than A[t′ : k − 1], because of which A[t : k] has a lower
weight than A[t′ : k], contradicting the role of t. This establishes the third branch of the definition.

Using dynamic programming, we can calculate maxwght(k) for all k ∈ [1, n] in O(n) time. The
maximum weight of all the subarrays of A equals

n
max
k=1

maxwght(k)

which can also be obtained in O(n) time. By resorting to the “piggyback” technique, we can obtain
a subarray with the maximum weight in O(n) extra time.

3


