CSCI3160: Regular Exercise Set 7

Prepared by Yufei Tao

Problem 1. Let x be a string of length n, and y a string of length m. Define opt(i, j) to be the
length of an LCS of z[1 : 4] and y[1 : j] for ¢ € [0,n] and j € [0,m]. In the lecture, we already
discussed how to calculate opt(i,7) for all possible (i, j) pairs. Based on that discussion, explain an
algorithm that can output an LCS of z and y in O(nm) time.

Solution. Recall:

0 ifi=0o0rj=0
opt(i,j) = qopt(i—1,7—1)+1 if 4,7 > 0 and z[i] = y[j]
max{opt(i,j — 1),opt(i — 1,7)} ifi,7 > 0 and z[i] # y[j].

We will now apply the “piggyback technique” discussed in the lecture to generate an LCS. For
this purpose, let us define

nil ifi=0o0rj=0
bestSub(i, j) nil if 7,7 > 0 and z[i] = y[j]
estSub(i,j) =

J shrink y if 4,7 > 0, ][] jl, and opt(i — 1,7) > opt(i,j — 1)

7yl
shrink x if 4,5 > 0, z[i] # y[j], and opt(i — 1, j) < opt(i,j — 1)

After computing opt(i, ) for all (i,7) pairs, we can compute each bestSub(i,j) in constant time.
The total time is O(nm).

We can now construct an LCS z of  and y as follows. First, if  or y is the empty string, set
2 to the empty string. Second, if z[n] = y[m], recursively obtain an LCS 2’ of z[1 : n — 1] and
y[1 : m — 1] and then set z = 2’ o x[n|, where o means concatenation. Finally, if x[n] # y[m], we act
differently according to bestSub(n,m):

e If it is “shrink z”, we recursively obtain an LCS 2’ of z[1 : n — 1] and y and then set z = 2/.

e If it is “shrink y”, we recursively obtain an LCS 2’ of x and y[1 : m — 1] and then set z = 2’

Problem 2 (Matrix-Chain Multiplication). The goal in this problem to calculate A;As...A,
where A; is an a; x b; matrix for ¢ € [1,n]. This implies that b;_1 = a; for i € [2,n], and the
final result is an a; X b, matrix. You are given an algorithm A that, given an a x b matrix A
and a b x ¢ matrix B, can calculate AB in O(abc) time. To calculate A;As...A,, you can apply
parenthesization, namely, convert the expression to (Aj...A;)(Ait1...Ay) for some i € [1,n — 1], and
then parenthesize each of A;...A; and A;11...A, recursively. A fully parenthesized product is

e cither a single matrix or
e the product of two fully parenthesized products.

For example, if n = 4, then (A1A2)(A3A4) and ((A1A2)A3)A, are fully parenthesized, but
A1(A3A3A,) is not. Each fully parenthesized product has a computation cost under A; e.g., given
(A1A2)(AsAy), you first calculate B; = A1 Ao and By = A3Ay, and then calculate B Bo, all



using A. The cost of the fully parenthesized product is the total cost of the three pairwise matrix
multiplications.

Design an algorithm to find in O(n?) time a fully parenthesized product with the smallest cost.

Solution. Given i, j satisfying 1 <i < j <n, we define cost(i,j) to be the smallest achievable cost
for calculating A;A;;1...A; with parenthesization. Our objective is to calculate cost(1,n).

A key observation is that B1 = A;... Ay, is an a; x by, matrix and By = Aj4q...A; is an a1 X b;
matrix (where by = aj1); so it takes O(a;bib;) time to compute B By. This means that if we start
with the parenthesization (A;...Ay)(Agy1...A;), the best achievable cost is cost(i, k) + cost(k +
1,j) + O(aibib;). This implies:

. 0(1) ifi=j
cost(i,j) =94 . j1 . . o
ming _; (cost(i, k) + cost(k +1,7) + O(a;bgb;)) if i < j
Using dynamic programming, we can compute cost(1,n) in O(n?) time. Using the “piggyback
technique”, we can produce an optimal parenthesization in O(n?) extra time.

Problem 3 (Longest Ascending Subsequence). Let A be a sequence of n distinct integers. A
sequence B of integers is a subsequence of A if it satisfies one of the following conditions:

e A=Bor
e we can convert A to B by repeatedly deleting integers.

The subsequence B is ascending if its integers are arranged in ascending order. Design an algorithm
to find an ascending subsequence of A with the maximum length. Your algorithm should run in
O(n?) time. For example, if A = (10, 5,20, 17,3, 30, 25, 40, 50, 60, 24, 55, 70, 58, 80, 44), then a longest
ascending sequence is (10, 20, 30, 40, 50, 60, 70, 80).

Solution. We say that B is an end-aligned ascending subsequence of A if A[n] is the last integer in
B. In the example given in the problem statement, (5,20, 30,40,44) is an end-aligned ascending
subsequence of A, while (10, 20, 30, 40, 50, 60, 70, 80) is not. Given an i € [1,n], we use len(i) to
denote the maximum length of all end-aligned ascending subsequences of A[1 : ¢]. In our example,
len(16) = 5 because (5,20, 30,40,44) is a longest end-aligned ascending subsequence of A, but
len(15) = 8 because (10, 20, 30, 40, 50, 60, 70, 80) is longest end-aligned ascending subsequence of
All - 15].

Let B be an (arbitrary) end-aligned ascending subsequence of Al : 7], and define k to be the
length of B. There are two possibilities.

e k= 1. This implies that A[j] > A[i] for all j < i.

e k> 1. In this case, let j be the integer such that B[k — 1] = A[j]. Then, B[l : k — 1] must be
an end-aligned longest subsequence of A[l : j].

Given an i € [1,n], define S(i) = {j | j < i and A[j] < A[i]}. The above discussion implies:

len(i) =1+ ngggg) len(y)

Using dynamic programming, we can compute len(i) for all i € [1,n] in O(n?) time.



The maximum length of all ascending subsequences of A is

max len(i).

i=1
By the “piggyback technique”, we can produce a longest ascending subsequence of A in O(n?) extra
time.

Problem 4%*. In this problem, we will revisit a regular exercise discussed before and derive a faster
algorithm using dynamic programming.

Let A be an array of n integers (A is not necessarily sorted). Each integer in A may be
positive or negative. Given i, j satisfying 1 < i < j < n, define subarray Ali : j] as the sequence
(Ali], Ali + 1], ..., A[j]), and the weight of Afi : j] as A[i| + A[i + 1]+ ... + A[j]. For example, consider
A= (13,-3,-25,20,—3,—16,—23,18); A[l : 4] has weight 5, while A[2 : 4] has weight —8. Design
an algorithm to find a subarray of A with the largest weight in O(n) time.

Remark: We solved the problem using divide-and-conquer in O(nlogn) time before.

Solution. Given a subarray A[i : j], we refer to j as the subarray’s ending position. For each
k € [1,n], define mazwght(k) as the largest weight of all the subarrays whose ending positions are k.
It holds that

Alk] ifk=1
mazwght(k) = ¢ A[k] if £ > 1 and mazwght(k — 1) <0

mazwght(k — 1) + A[k] if & > 1 and mazwght(k —1) >0

The above obviously holds for & = 1. Next, we will prove its correctness for k > 1. Let ¢ € [1, k]
be an integer that maximizes the weight of A[t : k.

Consider first the scenario where mazwght(k —1) < 0. Suppose (for contradiction purposes) that
t < k. Then, the weight of A[t: k — 1], which cannot exceed mazwght(k — 1), must be non-positive.
Hence, the weight of A[t : k] is at most A[k : k]. This implies that the weight of At : k| — which is
mazwght(k) — must be exactly A[k], establishing the second branch in the definition.

Finally, consider mazwght(k — 1) > 0. Let ¢’ be an integer such that the weight of A[t' : k — 1]
equals mazwght(k — 1). As A[t' : k] has a larger weight than A[k : k], we can assert that t < k.
Next, we argue that A[t : k — 1] and A[t' : k — 1] must have the same weight, i.e., mazwght(k — 1).
Otherwise, At : k — 1] has a lower weight than A[t’ : k — 1], because of which At : k] has a lower
weight than A[t' : k], contradicting the role of t. This establishes the third branch of the definition.

Using dynamic programming, we can calculate mazwght(k) for all k € [1,n] in O(n) time. The
maximum weight of all the subarrays of A equals

l}ﬁxx mazwght (k)

which can also be obtained in O(n) time. By resorting to the “piggyback” technique, we can obtain
a subarray with the maximum weight in O(n) extra time.



