CSCI3160: Regular Exercise Set 2

Prepared by Yufei Tao

Problem 1 (Faster Algorithm for Finding the Number of Crossing Inversions). Let S;
and S be two disjoint sets of n integers. Assume that Sp is stored in an array Aj, and S in an
array As. Both A; and As are sorted in ascending order. Design an algorithm to find the number
of such pairs (a, b) satisfying all of the following conditions: (i) a € S, (ii) b € Sz, and (iii) a > b.
Your algorithm must finish in O(n) time (we gave an O(nlogn)-time algorithm in the class).

Solution. Merge A; and Aj into one sorted list A, which takes O(n) time. Scan the elements of A
in ascending order. In the meantime, maintain the number ¢ of elements that (i) originate from As,
and (ii) have already been scanned so far: this can be done by setting ¢ to 0 in the beginning, and
incrementing it each time an element originating from As is scanned. Furthermore, also maintain
a counter ¢ as follows: ¢ = 0 in the beginning; every time an element originating from A; is seen,
increase ¢ by the current value of t. The final ¢ at the end of the algorithm is the number of crossing
inversions

Problem 2 (Faster Algorithm for Finding the Number of Inversions). Given an array A
of n integers, design an algorithm to find the number of inversions in O(nlogn) time.

Solution. We will solve a more challenging problem: besides reporting the number of inversions,
the algorithm also needs to sort A in ascending order. Break A at the middle into two arrays Ay
and As each with at most [n/2] elements. Recursively, find the number ¢; of inversions in A; and
the number ¢y of inversions in As. At this moment, both A; and A, have been sorted. We can then
apply the algorithm in Problem 1 to find the number of crossing inversions in O(n) time. Finally,
merge A; and As into a sorted array using O(n) time. It is rudimentary to verify that the running
time is O(nlogn).

Problem 3. Give an O(nlogn)-time algorithm to solve the dominance counting problem discussed
in the class.

Solution. We will solve a more challenging problem: besides reporting the dominance counts, the
algorithm should also sort P in ascending order.

As discussed in the class, our original algorithm divides P into two halves P; and P using a
vertical line ¢, and then recurse on P; and P; respectively. Upon returning from the recursion, the
points of P; and P» have been sorted by y-coordinate. We still need to find, for each point ps € P,
the number of points p; € P; that are dominated by ps. Next we show that this can be done in
O(n) time. Merge P; and P, into one sorted list P, where the points are sorted in ascending order
by y-coordinate. Scan P. In the meantime, maintain the number ¢ of points that (i) originate from
Py, and (ii) have already been scanned so far. Every time a point py originating from Ps is seen,
the number of points p; € P; dominated by po is precisely the current value of ¢. To complete the
algorithm, return the sorted list of P. The overall time complexity now becomes O(nlogn).

Problem 4 (Section 4.1 of the Textbook). Let A be an array of n integers (A is not necessarily
sorted). Each integer in A may be positive or negative. Given ¢, j satisfying 1 < i < 7 < n,
define sub-array Ali : j] as the sequence (A[i], Afi + 1],..., A[j]), and the weight of Ali : j] as



Alil + Ali + 1] + ... + A[j]. For example, consider A = (13, -3, —25,20, —3, —16, —23,18); A[l : 4]
has weight 5, while A[2 : 4] has weight —8.

1. Give an algorithm to find a sub-array of with the largest weight, among all sub-arrays A[i : j]
with 7 = n. Your algorithm must finish in O(n) time.

2. Give an algorithm to find a sub-array with the largest weight in O(nlogn) time (among all
the possible sub-arrays).

Solution. Subproblem 1: Scan the elements of A from A[n] to A[l]. At any time, maintain the
sum s of the elements already scanned: at the beginning s = 0; after scanning an element A[i], add
Ali] to s. Every time we finish doing so for element A[i], the current value s is precisely the weight
of Afi : n]. In this way, we obtain the weights of all sub-arrays Aln : n|, Aln —1:n], ..., A[1: n]
(in this order) in O(n) time. The maximum weight can then be found easily.

Subproblem 2: Break A into two halves: array A; which contains the first [n/2] elements, and
array Ao which contains the rest. Recursively, find the sub-array of A; with the largest weight, and
then the sub-array of A, with the largest weight. It remains to consider the “crossing” sub-arrays
Ali : j) where i < [n/2] and j > [n/2]. In particular, we want to find the “best” crossing sub-array,
i.e., the one with the maximum weight. Then, the sub-array to output can be decided easily from
the three sub-arrays aforementioned.

We say that a sub-array A1[i : j] is right grounded if j = [n/2], and a sub-array As[i : j| is
left grounded if ¢ = 1. A crucial observation is that the “best” crossing sub-array must be the
concatenation of

e the right grounded sub-array in A; with the maximum weight, and
e the left grounded sub-array in As with the maximum weight.

From Subproblem 1, we know that each of the above two grounded sub-arrays can be found in
O(n) time.

Therefore, if f(n) is the time of solving the problem on an array of length n, it holds that
f(n) <2 f([n/2]) + O(n), which gives f(n) = O(nlogn).

2.81)

Problem 5. In the class, we explained how to multiply two n x n matrices in O(n time when

n is a power of 2. Explain how to ensure the running time for any value of n.

Solution. If n is not a power of 2, let m be the smallest power of 2 that is larger than n. If A, B
are the n X n input matrices, obtain an m x m matrix A’ by padding m — n dummy rows and
columns to A containing only 0 values, and similarly, an m x m matrix B’ from B. Calculate A’B’
in O(m?®) = O((2n)?8') = O(n?>®!) time. Then, the matrix AB can be obtained by discarding
the last m — n rows and columns from the matrix A’B’.



