
CSCI3160: Regular Exercise Set 12

Prepared by Yufei Tao

Problem 1. Consider the set cover algorithm discussed in the lecture. Prove: it achieves an
approximation ratio of h = maxS∈S |S|, where S is the input family of sets.

Remark: This means if all the sets in S have constant sizes, then the approximation ratio is O(1).

Solution. Suppose that our algorithm picks t sets. Every time the algorithm picks a set, at least
one new element is covered. For each i ∈ [1, t], denote by ei an arbitrary element that is newly
covered when the i-th set is picked.

Let C∗ be an optimal universe cover. Because each ei (i ∈ [1, t]) exists in at least one set of C∗,
we have:

t =

t∑
i=1

1 ≤
t∑

i=1

|{S ∈ C∗ : ei ∈ S}| ≤
∑
S∈C∗

|S|.

The right hand side of the above is bounded by |C∗| · h. This completes the proof.

Remark: Our algorithm actually enjoys an approximation ratio of 1 + lnh, but the proof is much
more sophisticated.

Problem 2. Let C∗ be an optimal universe cover for the set cover problem. Consider running
the set cover algorithm discussed in the lecture. In particular, consider the moment right before
the algorithm is to choose the i-th set Si, having chosen already S1, S2, ..., Si−1. Let zi−1 be
the number of elements in the universe that have not been covered by S1 ∪ S2 ∪ ... ∪ Si−1. Let
s = |{S1, S2, ..., Si−1} ∩ C∗|, i.e., s of the i− 1 sets chosen by the algorithm are from C∗. Prove: Si
has benefit at least zi−1/(|C∗| − s) (namely, the i-th set picked by the algorithm covers at least
zi−1/(|C∗| − s) new elements).

Solution. Let C∗out = C∗ \ {S1, S2, ..., Si−1}; note that |C∗out | = |C∗| − s. The zi−1 elements not yet
covered by {S1, S2, ..., Si−1} must be covered by C∗out . Therefore, at least one of the sets in C∗out has
benefit at least zi−1/|C∗out | = zi−1/(|C∗| − s). The claim thus follows from the algorithm’s greedy
nature.

Problem 3. Let R be a set of n red points in 2D space, and B be a set of n black points in 2D
space. Fix an integer ε > 0. A subset S ⊆ R is a B-guarding set if, for every black point b ∈ B, there
is at least one point r ∈ S with dist(r, b) ≤ ε, where dist(r, b) is the Euclidean distance between r
and b. Let OPT be the smallest size of all B-guarding sets. Design a poly(n)-time (i.e., polynomial
in n) algorithm that returns a B-guarding set with size OPT ·O(log n); if no B-guarding sets exist,
your algorithm must correctly declare so.

Solution. We will convert the problem to set cover. For each red point r ∈ R, obtain the set
B(r) of black points p satisfying dist(r, p) ≤ ε. This can be easily implemented in poly(n) time.
If

⋃
r∈RB(r) 6= B, we declare that no B-guarding sets exist. Otherwise, run our greedy set-cover

algorithm on {B(r) | r ∈ R}.

Problem 4. Let S be a set of n axis-parallel rectangles in 2D space (i.e., each rectangle has
the form [x1, x2]× [y1, y2]; you can assume that the x1, x2, y1, y2 values of the n rectangles are all

1

distinct). A set P of points is an S-pinning set if every rectangle of S covers at least one point in P .
Let OPT be the smallest size of all S-pinning sets. Design a poly(n)-time algorithm that returns an
S-pinning set with size OPT ·O(log n).

Solution. We say that a point p is important if

• it is a corner of some rectangle in S, or

• it lies on the boundary of at least two rectangles in S.

If P is an S-pinning set, we can always find an S-pinning set of the same size that contains
only important points (if a point in P is not important, keep pushing it towards a corner or the
intersection of two edges). Equipped with this observation, we can convert the problem to hitting
set.

First, obtain the set I of all the important points. The size of I is O(n2) and can be easily
computed in poly(n) time. For each point p ∈ I, define S(p) to be the set of rectangles in S that
contain p. Run our greedy set-cover algorithm on {S(p) | p ∈ I}.

Problem 5 (Conversion from Set Cover to Hitting Set). Suppose that we have an algorithm
A for the hitting set problem that achieves an approximation ratio ρ. UseA to design a ρ-approximate
algorithm for the set cover problem.

Solution. Let (Usc, Ssc) be an input to the set cover problem. W.l.o.g., assume Ssc = {S1, S2, ..., St}
for some integer t ≥ 1. We create an input (Uhs, Shs) to the hitting set problem as follows.

• Uhs = {1, 2, ..., t}.

• For each e ∈ Usc, define OriginSe = {i ∈ [1, t] | e ∈ Si}.

• Shs = {OriginSe | e ∈ Usc}.

Now, run A on (Uhs, Shs) and let H be its output. Create a universe cover C for (Usc, Ssc) as follows:

C = {Si | i ∈ H}.

By an argument similar to what was discussed in the lecture, we can prove that C is a universe
cover whose size is at most ρ times the optimal size.

2

