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Many computational geometry problems are defined in Euclidean space

Rd where the dimensionality d is an arbitrarily large constant. Often

times, a problem of dimensionality d can be reduced to the same problem

of dimensionality d − 1 efficiently. Today, we will demonstrate this by

solving the maxima problem in arbitrary dimensionality.
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Review: The Maxima Problem

A point p1 dominates p2 if the coordinate of p1 is larger than or equal to
that of p2 in all dimensions, and strictly larger in at least one dimension.

Let P be a set of points in Rd . A point p ∈ P is a maximal point of P
if it is not dominated by any other point in P.
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The maximal points are p4, p5, and p13.
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Input: A set P ⊆ Rd of size n = |P|.
Output: All the maximal points of P.

We will solve the problem in O(n logd−1 n) time.

Remark: This week’s exercises will guide you to improve the time to

O(n logd−2 n) for d ≥ 3.
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Dominance Screening

We will discuss a different problem:

Let P and Q be sets of d-dimensional points in Rd . In dominance
screening problem, we want to report all the points in Q that are
not dominated by any points in P. Set n = |P|+ |Q|.
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Suppose that P (or Q) is the set of white (or red, resp.) points. The
result is {q2, q4}.
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1D Dominance Screening

When d = 1, the problem can be easily solved in O(n) time.
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2D Dominance Screening

First, divide the input into two halves by x-coordinate:
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Let P1 (Q1) be the set of white (or red, resp.) points on the left half

(i.e., P1 = {p1, p2, p3} and Q1 = {q1, q2, q3}). Define P2 and Q2

analogously with respect to the right half.
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2D Dominance Screening

We have two instances of dominance screening: the first on P1,Q1, and
the other on P2,Q2.
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Solve each instance recursively. The left instance reports q2, q3, and the

right instance reports q4. Next, we will merge the two answers to obtain

the final result.
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2D Dominance Screening

Observation 1: The right answer is definitely in the final result.
Observation 2: Let q be a point in the left answer. It is in the
final result if and only if it is not dominated by any white point
from the right instance.
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2D Dominance Screening

We now resort to 1D dominance screening.
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Let Aleft be the left answer. Construct a 1D dominance screening
problem with input sets P ′,Q ′ where

P ′: obtained by projecting P2 onto the y-axis

Q ′: obtained by projecting Aleft onto the y-axis.
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2D Dominance Screening

Let us now analyze the running time. Let f (n) be the time on
n = |P|+ |Q| points. We have:

f (n) ≤ 2 · f (n/2) + O(n)

For n ≤ 2, f (n) = O(1).

Solving the recurrence gives: f (n) = O(n log n).
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Dominance Screening in d-dimensional Space

1. Divide P ∪ Q into two equal halves by the first dimension. This
yields two instances of d-dimensional dominance screening: (i) left
instance P1,Q1, and (ii) right instance P2,Q2.

2. Solve the left and right instances, recursively. Let Aleft and Aright be
their answers, respectively.

3. Obtain a (d − 1)-dimensional dominance screening problem P ′,Q ′

where P ′ (or Q ′) is the projection of P2 (or Aleft , resp.) onto
dimensions 2, 3, ..., d . Solve this instance to obtain its answer A′.

4. Return Aright ∪ A′.
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Dominance Screening in d-dimensional Space

Let us analyze the running time. Let f (n) be the time on n points.

f (n) ≤ 2 · f (n/2) + g(n)

where g(n) is the time of solving (d − 1)-dimensional dominance
screening. Solving the recurrence gives:

when d = 3, f (n) = O(n log2 n);

when d = 4, f (n) = O(n log3 n);

...

in general, f (n) = O(n logd−1 n).

Yufei Tao Dimensionality Reduction 1 — Maxima



14/18

2D Maxima

We now attack the maxima problem. First, divide the input set into two
halves by x-coordinate:
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Let P1 (or P2) be the set of points on the left (or right, resp.) half.
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2D Maxima

Recursively find the maximal points of P1 and P2.
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The left instance returns Aleft = {p2, p3, p9}, and the right one returns

Aright = {p5, p4, p13}. The points in Aright must be in the final result.
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2D Maxima

Observation: Let q be a point in Aleft . It is in the final result if
and only if it is not dominated by any point in Aright .
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Clearly, now it suffices to solve a 1D dominance screening problem on
Aleft and Aright .
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2D Maxima

Let us now analyze the running time of our algorithm. Let f (n) be the
time on n = |P|+ |Q| points. We have:

f (n) ≤ 2 · f (n/2) + O(n)

Solving the recurrence gives: f (n) = O(n log n).
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Maxima in d-dimensional Space

We can solve the d-dimensional maxima problem in O(n logd−1 n) time

with a reduction to (d − 1)-dimensional dominance screening. The

details should have become straightforward.
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