A Modified Edge Recombination Operator for the
Travelling Salesman Problem

Anthony Yiu-Cheung Tang! and Kwong-Sak Leung®

Department of Computer Science
The Chinese University of Hong Kong
! tang028 @cs.cuhk.hk
2 ksleung@cs.cuhk.hk

Abstract. Edge recombination is a crossover operator developed to preserve

edge information for the Travelling Salesman Problem. This paper describes a

modified version of the operator which converges significantly faster for all the
- benchmark problems tested.

1 Introduction

The edge recombination crossover is one of the commonly.used recombination
operators for solving the Travelling Salesman Problem (TSP) using genetic
algorithms [8]. This paper describes a new variant of the edge recombination
operator which introduces greedy choices to the algorithm. It was found that the
modified operator converges significantly faster for all the problems tested.

2 EdgeNN, A New Edge Recombination Operator

An edge recombination operator is an operator that preserves edge information
between parent tours. Starkweather et al. [8] described an enhancement (named in
[6] as Edge-2) to the edge recombination operator by preserving common edges of
the parent tours.

EdgeNN (edge recombination, nearest neighbour) is a variant of Edge-2. It
modifies Edge-2 by replacing some non-deterministic steps by a greedy. heuristic.
The modified edge recombination algorithm is as follows.

1. Identify the two parents as Parent1 and Parent2. Copy a segment of Parentl
to the offspring (The length of this segment is chosen to be 1/4 of the
number of cities in the tour and the starting point of the segment is chosen
randomly).

2. Construct an edge map using the edge information in Parent2 and the
segment of Parent] not copied to the offspring.

3. Set the last city of the inherited segment in the offspring to be the current
city.

4. Remove all occurrences of the current city from all the edge lists.

If the current city has elements in its edge list go to step 6; otherwise go to
step 8.

If there are negative elements (shared edges) in the edge list of the current
city, choose one to be the current city. Ties are broken at random if more
than one shared edge is available. Go to step 4. If there are no shared edges
then go to step 7. '

Determine the city in the edge list of the current city which is nearest to the
current city. The nearest city becomes the current city, Go to step 4.

TIf there ‘are no remaining unvisited cities, then END. Otherwise, choose an

unvisited city which is nearest to the current city. Ties are broken at
random if the two nearest cities have the same ‘distance from the current
city. Go to step 4.

In selecting the next city for the curtent city, an edge failure [6] is said to occur.
when there are no edges in the edge list of the current city, A new edge has-to be
introduced that is not found in both parents, such edges are referred to as foreign

edges.

To illustrate the new algorithm, we use a simple symmetric TSP as an example
and its cost matrix is shown in fig. 1 with the upper triangle omitted.

a | blc|dfel|flglh |+ |]| k|1
a..

b | 3] -

c | 2| 9| -

dl3[2]9]-

e | 71318 1] -
fls11t|2]51]7]-

gle6l 6] 7]19]4]6]-

h |28 |4|2]85]1]-

i 1|71 35]5]213]9] -

il s3] 143|716 1]8]-
k|8 | 7|613|6(3|4]l2l1]7]-1]
145579193]a]8]sg]|-

Figure 1. An example cost matrix of a symmetric TSP,

Consider the following tours as parents to be recombined, the tour lengths of
Parent] and Parent2 are 72 and 51 respectively :

Parentl : abcde fg
3

19 k1
Parent2 : f ghec 1l k iad

h i
b e

The offspring first inherits a fixed segment from Parent1 :

cde

An edge map is constructed using Parent2 and the remaining subtour of Parent] (fig,
2). The negative elements are shared edges which are present in both parents :

city | edge list city - | edge list city | edge list
a | Lbi e | bfi i |hja
b |aj f |-g i li-kb
c - g -f,-h k -i,-1
d |- h | -gi 1 |-ka

Figure 2. The edge table.

City e is now the current city. Referring to the edge list of city e, cities b, f, and i
are the candidates for the next city. City b is chosen because the edge {e,b} is the
shortest. The edge list of city b is [a,j1. Since edge {b,a} and edge {b,j} are of the
same length, ties are broken at random., Suppose city j is chosen. City k is then
chosen because it is a shared edge. As city j has already been selected, the edge list
of city k now contains only city I, hence the new current city is city . The remaining
cities are selected by the same process and finally the following tour is formed with a
tour length of 54 :

cdebjklaihgt
3 Experimental Results
3.1 Comparing EdgeNN with Edge-2

Table 1 lists the three problems tested. The data in the column “best known
solution” are collected from [2] and [7].

problem number of cities (n) best known solution
LIN318 318 ' 42029
PCB442 442 50778
ATT532 532 . 27686

Table 1. The TSP test bed.

To illustrate the convergence rate of EdgeNN, a genetic algorithm with the
following parameters was applied to the test problems :

Population size : 2000

Selection method : Baker’s SUS Selection [1]. Only one offspring is
generated by crossing over two parents,

Mutation rate : 0.05

Mutation is performed by randomly swapping
elements within a randomly selected segment of
the chromosome.

Generation gap : 0.1

Fitness scaling : None

Three runs were performed on each problem and the results were averaged (the
variances are not significant). A randomly generated initial population was used for
each run. For the chosen parameter settings each generation corresponds to 200
recombinations (population size * generation gap = 2000 * 0.1 = 200), The
percentage excesses over the best known solution taken after 200,000 recombinations
are shown in table 2. The graph for ATT532 is shown in fig. 3, the tour length of
‘the best individual in the population is plotted against the number of generations.
The performance of EdgeNN is significantly better.

LIN318 PCB442 ATT532

Percentage excess over optimal length

Edge-2 276 459 582
FdgeNN | 7 12 14
Edge failures per recombination

Edge-2 8 12 15
EdgeNN o 6 12 10

Table 2. Percentage excess over the optimal solution for Edge-2 and EdgeNN. -

500000 T
450000 -
400000 -
350000 -
300000 -
250000 -
200000 -1
150000
100000 -
50000 £
0 f t f

Best Tour e-2

Length

Number of Generations

Figirre 3. The convergence rate of Edge-2 and EdgeNN on ATT532.

Although EdgeNN produced better results than Edge-2, the comparison is not
fair because Edge-2 is a “blind” operator : it uses no local information during
recombination. Nevertheless the comparison is made to illustrate the drastic
improvement in the rate of convergence by introducing greedy choices to Edge-2.

3.2 Comparing EdgeNN with Edge-3

The Edge-3 operator was designed by Mathias and Whitley [6] which enhances
Edge-2 with an additional mechanism to reduce edge failures. Although Edge-3 is
also a blind recombination operator, the authors hybridized Edge-3 by a procedure
called 2-Repair, a variant of 2-Opt which compares only the foreign edges produced
by edge recombination operators. In view of processing cost and degree of
hybridization, EdgeNN is quite similar to the 2-Repair-Edge-3 hybrid.

To compare EdgeNN with Edge-3, an experiment was performed on the problem
ATTS32. The setting used was chosen to be as similar as possible to that described
in their paper. GENITOR [9] with a bias of 1.25 was used with a population size of
2,000. The initial population was created randomly. In the experiment performed
by Mathias and Whitley the initial population was first improved by the I-Pass of 2-
Opt procedure. In our case the initial population was used without any
preprocessing because, as shown in fig. 3, the convergence rate of EdgeNN should be
" sufficiently fast. When 16,000 recombinations had been performed the 1-Pass of
2-Opt procedure was performed on the whole population. The process was then
repeated.

Our results were averaged over 30 runs. The average tour length obtained was
28,914 with a best solution of 28,652. These results were slightly better than the
average solution of 28,979 with a best of 28,752 obtained by Edge-3 reported in [6].

4 Further Improvement : A heuristic GA using EdgeNN

We agree that “from a function optimization point of view, GAs frequently don’t
exhibit a ‘killer instinct’ ” [3]. Although a genetic algorithm is good at locating the
region containing the global optimum, it may take a very long time to locate the
optimal solution. For this reason most attempts to solve TSP using genetic
algorithms incorporated some form of hill-climbing heuristics. In this section a
genetic algotithm combining EdgeNN and hill-climbing heuristics is presented
which produces tours that are within 2 % from the optimal for the problem ATT532.
The heuristics use the k-change operator [5]. The operator improves a tour by
deleting k edges of the tour and introducing k new ones such that the tour length is
reduced. We used 2-change and 3-change operators. Two objectives guided the
design of our algorithm :
Diversity maintenance. If an offspring is phenotypically equivalent (i.e. having the
same tour length) to either parents, the alleles in a small segment picked randomly
are shuffled.
Minimizing the number of local optimizations performed. As the hill-climbing
heuristics are CPU-intensive, they are applied under restricted circumstances. The
algorithms will stop optimizing a tour after one exchange that can reduce tour cost is
found. These heuristics are invoked under the following situations :

i) The tour length of an offspring is larger than the average tour length of its
parents.
As it is a waste of time to repair very bad tours, one more constraint is added
requiring that the tour length of the offspring must also be shorter than :

'(méan tour length + minimum tour length) / 2

The mean and minimum are values with respect to the current population. If
* these conditions are satisfied, 2-change is applied to the offspring., The fixed
segment inherited directly from the parent will not be optimized.

ii) The best tour length so far does not improve after a number of offsprings have
been generated. _
We use the population size (popsize) as our criterion. When there is no
improvement after a popsize of offsprings are generated, 3-change is applied to
the tour randomly picked from the best ten tours. When there is still no
improvement after another 9 * popsize offsprings are generated, 2-change will
be applied to the best half of the population.

Our algorithm is essentially GENITOR with the following set of parameters :

Population Size 500

Selection Method | Linear ranking with a bias of 1.25
Generation Gap 0.1

Mutation Rate 0

Fitness Scaling None

The results averaged over 30 runs on ATT532 are shown in table 3. The number
of recombinations performed for each run is 250,000. The best tour obtained is
within 1% from the optimal and the average tour length obtained is around 2% from
the optimal.

Tour length Best Mean SD
27949 28255 197

average number of 2-changes 8820

petformed per run

average number of 3-changes 1123

performed per run

Téb]e 3. Performance of the heuristic GA on ATT532.

5 Discussion

Since EdgeNN selects among the available cities the on nearest to the current city as
the next city, the computation cost for EdgeNN will be comparatively higher than
that of Edge-2 if there are many edge failures. Fig. 4 shows the averaged
accumulated edge failures for the tests on ATTS532 described in section 3. The
average number of foreign edges produced per recombination was quite high in the
beginning.but gradually decreased as the tours in the population were becoming
more and more similar.

2500000 -
2000000 1

1500000 -
Accumulated
Edge Fallures

1000000 -

500000 +

0 ; : + . : ! }
1 11 21 3 4 5 61 7
Number of Generations

Figure 4. The accumulated number of foreign edges made by EdgeNN for ATT532.

We agree with Grefenstette [4] that for genetic searches “probabilistic choices are
usually preferable to deterministic ones.” The reason why a part of the offspring is
inherited ditectly from one of the parents is that we do not want too much
determinism in our algorithm. Consider the following parent tours :

Parentl : a bcde fghij
Parent2 : f beiadijghoc

Using EdgeNN, the offspring first inherits a fixed segment from Parent1 :
Offspring : ¢ d e f

The edge list for city fusing Edge-2 is [b,¢,¢,g]. Suppose city ¢ is nearest to city f
among these four cities, then EdgeNN will always choose city ¢ if it is available.
However, this deterministic behaviour does not always happen. As shown in this
example, the edge list for city f using EdgeNN is [b,g] because the fixed segment
chosen already includes city ¢ and e.

With regard to foreign edges, suppose city d is the city nearest to city j and that
an edge failure occurs in choosing the next city for city j. Since city d has already
been added to the offspring, the algorithm has to select a city from the available
cities that is nearest to city j. Since the fixed segment is picked randomly, EdgeNN
retains some probabilistic choices in selecting foreign edges.

6 Conclusions

The goal of this paper is to present and evaluate the effectiveness of EdgeNN for
solving TSPs, and to explore the interactions of EdgeNN with local optimization
heuristics. The experimental results show that EdgeNN converges much faster than
Edge-2 and produces results similar to a hybridized version of Edge-3. This suggests
that any method for solving TSPs can use EdgeNN to generate initial tours of
medium quality.]

Although satisfactory results are produced for a medium sized problem when
local optimizations are combined with EdgeNN, the number of recombinations is a
bit too large. Better tour lengths with fewer recombinations may be obtained if more
sophisticated local hill-climbing procedures such as the LK algorithm [5] are used.

Remarks. The experiments are constructed using TOLKIEN : TOoLKIt for gENetics-based
applications, a C++ class library developed by the first author. TOLKIEN is developed as a
prototyping tool that enables GA and classifier system applications to be constructed easily.
The toolkit is available in /pub/local/tolkien by anonymous ftp access to ftp.cs.cuhk.hk
(137.189.4.57).

References

1.

Baker, J. (1987). Reducing bias and inefficiency in the selection algorithm.
Genetic algorithms and their applications : Proceedings of the Second
International Conference on Genetic Algorithms. Lawrence Erlbaum
Associates, Publishers.

Bixby, B., and Reinelt, G. (1990). TSPLIB 1.1.

De Jong, K. A. (1993). Genetic algorithms are not function optimizers.
Foundations of Genetic Algorithms 2. Morgan Kaufmann.

Grefenstette, J. J. (1987). Incorporating problem specific knowledge into
genetic algorithms. Genetic Algorithms and Simulated Annealing. Pitman.
Lin, S., and Kernighan, G. W. (1973). An efficient heuristic algorithm for the
traveling salesman problem. Operations Research 21 : 498-516.

Mathias, K., and Whitley, D. (1992). Genetic operators, the fitness landscape
and the traveling salesman problem. Parallel Problem Solving from Nature, 2.
Elsevier Science Publishers B.V.

Padbetg, M., and Rinaldi, G. (1991). A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman problems. SIAM
Review 33 : 60-100.

Starkweather, T., McDaniel, S., Whitley, D., and Whitley, C, (1991). A
comparison of genetic sequencing operators. Proceedings of the Fourth
International Conference on Genetic Algorithms. Morgan Kaufmann,
Whitley, D. (1989). The GENITOR algorithm and selection pressure: Why
rank-based allocation of reproductive trials is best. Proceedings of the Third
International Conference on Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann.

