Forced oscillations:

beyond steady-state response

March 12, 2016

Forced oscillations are discussed beyond the case
of steady-state harmonic response at the same fre-
quency as a harmonic driving force: transients, sec-
ular response for an undamped oscillator driven at
resonance, and response to arbitrary (especially im-
pulsive) forcing.
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1 Introduction

The last module considered forced oscillation de-
scribed by

d? d 9 F(t)
under the assumption that the force is harmonic,
sAY

(1)

F(t) = Fpcoswt (2)

and that the response is steady state (i.e., constant
amplitude) at the same frequency, say

x(t) = A cos(wt + 0) (3)

This module discusses situations that go beyond
these assumptions.

e Even for this kind of forcing, there are in gen-
eral transients that depend on the initial con-
ditions. The transient solution does not have
a constant amplitude, and is not characterized
by the driving frequency w.

e For an undamped oscillator driven exactly at
resonance, the amplitude will grow linearly
with time — a secular solution.

e More generally, the driving force may not be
harmonic.

2 Transients

The steady-state solution (3) does not contain any
free parameters which can be adjusted to match the
initial conditions; it is only a particular solution.
The parameters A and 6 are determined by the
ODE itself. In order to be able to match the initial
conditions, we have to add a homogeneous solution,
which was already discussed under free oscillations.
Therefore the general solution to (1) is

z(t) = A cos(wt+0)

+ A’ e cos(Qt + ¢p)

(4)

The first term is the particular solution, with A and
f given by

F? 1
A2 = 9% 5
| | m?2 (w(% _w2)2 —1—472&}2 ( )
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0 = - tan71 Qi (6)
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The second term in (4) is the homogeneous solu-
tion (see earlier module), but with the two free pa-
rameters A’ and ¢{, denotes by ’, and where the
frequency (2 is

assuming ~ is small and the homogeneous solution
is under-damped. The parameters A’ and ¢ are
to be adjusted so that (4) satisfies the initial con-
ditions specified.

The matching of initial conditions may be messy
algebraically. It seldom matters in practice, since
the second term in (4) becomes negligible for ¢ >
7 = y~! — the initial conditions are “forgotten”.
That is why, in practice, the homogeneous solution
is often ignored.

3 Secular solution

Although the homogeneous solution can often be
ignored, there is one exception: if the damping is
Zero.

e The homogeneous solution does not decay, and
cannot be ignored.

e The standard choice of the particular solution,
as in (4), gives infinity if the driving frequency
is on resonance.

We need a better method.

The problem is discussed both for strictly zero
damping, and also for small damping — which must
be closely related.

3.1 Zero damping

The system we examine is

(j; + w%) x(t) =

There is no damping term, and the frequency is wy
on the RHS as well. There are many different par-
ticular solutions. We have seen that the one that
is a steady-state is no good (it would have an infi-
nite amplitude); let us look for another particular
solution: the one that starts off with z(0) = 0 and
v(0) = 0.

(7)

Fy
— cos wopt
m

e The particle begins with zero displacement and
zero velocity, but a non-zero acceleration be-
cause of the force. Thus the Taylor expan-
sion around ¢ = 0 begins with a t? term:
x(t) = (1/2)(Fo/m)t?> + .... No linear com-
bination of sinwgt and coswgt will have this
property. The solution is not harmonic.

e Since the driving frequency is exactly on reso-
nance, it continuously pumps energy into the
oscillator, so the amplitude is expected to grow
linearly with time.

e So we may expect a linear combination of four
types of terms:

cos wot , t sin wot

sinwgt , t cos wot

e The system defined by the ODE and the ini-
tial conditions are symmetric in time (i.e., un-
der ¢t — —t), which eliminates the two in the
second line.

e The condition z(0) = 0 eliminates the first one.
We are therefore left with the conjecture
z(t) = (8)

which incidentally has the property that it starts
with 2.

At sinwgt

Problem 1
Show that with the choice

Fy
meg

(9)

then (8) satisfies (7). §

Any undamped oscillator, if driven at the res-
onance frequency, will have a linearly growing re-
sponse, called a secular solution.

The general solution is therefore

xz(t) = t sinwot

2mwy
+ x(0) coswopt + v sinwpt (10)
Wo

the second line being a homogeneous solution.



3.2 Small damping*
*This part is more advanced and can be skipped.

We have given two mathematical descriptions for
resonant driving: (a) Section 2 for v # 0, and (b)
Section 3.1 for v = 0. They look quite different.
Yet, the former must merge into the latter in a
continuous fashion if v — 0. The purpose of this
subsection is to demonstrate this connection. We
do so for the special solution that satisfies z(0) = 0,
v(0) = 0. For other cases, there is just an additional
homogeneous solution, which is continuous in the
v — 0 limit.

Start in the v # 0 case and write out the general
solution:

Fo 1
m \/(wg _ w2)2 + 4’720.)2
+e7 7" (B cos Qt + C'sin Qt)

z(t) = cos(wt + 6)

(11)

The first line is the harmonic particular solution,
to be evaluated for w = wy, and the second line is
a general homogeneous solution, in which we have
replaced

A cos(Qt + ¢) > BeosQt + Csin Qt

and Q2 = wi — 2.

Now simplify by taking w = wp and v — 0, mak-
ing substitutions where there are no singularities.
In particular

1 1
—_— =
N 2ywo
0 — —7/2
cos(wt+6) +— sinwpt
Q — wo
and we have
F
z(t) = =2 sin wot
m 2wy

+ e " (B coswpt + C'sinwgt) (12)

The « in the exponential in the second line cannot
be dropped, because, as we shall see, B and C may
go as v~! in order to cancel the v~! in the first

line.
The condition z(0) = 0 eliminates B, and we get
z(t) = <FO + C’e”t) sinwet  (13)

2mrywo

Imposing the condition v(0) = 0 then gives

Fy

c = -
2mywo

and when this is put into (13) we find

1—e 0t
( ) sin wot
Y

Now take v — 0. The expression in the brackets

just gives
1—e
() Lot
gl

and we recover the linearly growing secular solu-
tion.

In short, if the solution is expressed in terms of
the usual harmonic particular solution and a ho-
mogenous solution, then each of these go as v~! as
v — 0. The leading singular terms must cancel,

and the next term is the origin of the prefactor ¢.

Fy
2mw0

a(t) = (14)

4 Impulsive force*

*This part is more advanced and can be skipped.

4.1 Need for another method

The general problem to be solved for forced oscilla-
tions is of course (1), with an arbitrary driving force
F(t). The case of a sinusoidal driving force with a
definite frequency w, as in (2), seems to be a very
special case, leaving many other cases unsolved.

There are at least two approaches for general
forces. First, any force F(t) can always be ex-
pressed as the sum of sinusoidal forces, e.g., if it
is symmetric in time

F(t) = ZF] coswjt
J

r in the continuous case, as the integral over such
terms:

F(t) = /d—wﬁ'(w) cos wt

2

(The factor 27 is only a matter of convention.) If
F(t) is not symmetric, then sinw;t or sinwt terms



have to be added. The theorems of Fourier guar-
antee that every function F'(t) can be represented
this way, as the sum or integral of sinusoidal terms.

Since we have already solved the problem for one
such term, then it is only a matter of adding up
the individual solutions. Or, to express the idea
more physically, each frequency component can be
handled separately.

This perspective is useful if the external driving
force is conveniently expressed as the sum of single-
frequency terms. For example, the radio waves hit-
ting an antenna is the sum of signals from differ-
ent stations, each being (centered around) a single
carrier frequency. Then we simply think of each
component in turn, independently.

But there are other situations in which such a
representation, though theoretically possible, is by
no means convenient. This Section introduces a
second approach, which does not refer to sinusoidal
forces (or their sums). This method is general, and
especially useful for forces that lasts only a short
duration, e.g., Figure 1.

4.2 Impulse

Reminder about impulse

Recall that an impulse is a force F'(¢) that lasts only
a short interval At (Figure 2a), during which the
particle hardly moves. The impulse is the prod-
uct F(t)At, and the only effect is that the velocity
increases by an amount Av = F(t)At/m.

Response function

Suppose the oscillator is originally at rest in the
equilibrium position, and an impulse is delivered
at t = 0, causing its velocity to jump by 1 unit.
The subsequent motion is given by

a(t) =

where 9 (t) is a solution to the homogeneous equa-
tion, satisfying the initial condition ¢(0) = 0,
dy(0)/dt = 1.

Problem 2

Show that

¥(t)

ot sin Q¢

Y(t) = e —a (15)

where Q2 = w2 — 2. §

In fact, to write an equation that applies also
before the impulse, we have

Y1) O(t) = G(t)

where © is the unit step function, defined as

o) = {

Single impulse at one time
Now if an impulse F'(¢')At’ is delivered at the time
t’, then the resultant motion must be

F(t') At

G(t—t) —

z(t) =

0 for
1 for

t<0
t>0

a(t) = (16)
where we have (a) displaced the solution by an
amount ¢, and (b) scaled up to the size of the im-
pulse.

4.3 General solution

Since any force F'(t) can be thought of as the sum
of such impulses (Figure 2b), the general solution
is obtained by adding up many terms of the form
(16). Converting this to an integral, we then get
1
() = — / G-t F{t")dt (17)
m
Because of the ©-function in G, the range of ¢’ is
t' < t, so we have, explicitly

I ,
z(t) = E/ e ") sin Q(t—t')
— 00

x F(t")dt' (18)

which gives the formal solution for any force F'(t).

Checking the steady-state solution

The result (18) is general, and should be applicable
to a harmonic driving force as well. We check the
steady state solution is recovered. Replace F(t) by

F(t) = FO €th

with the understanding that the result will be Z(t),
whose real part is to be taken at the end. As-
sume this force has been present from ¢’ — —oo;
this should then produce the steady-state solution
without transients. Make the substitution

t—t = 71



where 7 has the interpretation of the delay between
force and response. Then a little arithmetic leads
to
. Fy/m [
z(t) = 0/ e 7
21 J

% (ezQT _ e—ZQT) ezw(t—‘r) dr

Fo/m .
= ;@LQ et (I — Iy) (19)
where
Ly = /°° e~ (VFIH)T g
0
Problem 3
Show that
2i02
L—1, = !

(—w? 4 wi) + 2iyw

and hence show that Z(t) agrees with the known
steady-state solution. §

Problem 4

Suppose the force did not start from ¢ — oo but say
t" = 0. Then the upper limit in the integrals would
be 7 = t rather than 7 = oo. Show that there is
an additional term which represents the transients.
There is no need to evaluate the coeflicients which
appear in the final formula. §
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