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The motion of an oscillator subject to external har-
monic forcing is analyzed, focusing on the steady-
state response and the phenomenon of resonance.
The problem is first studied without damping, and
then more realistically with damping. The complex
method is essential in the latter case.
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1 Introduction

The basic model
This module studies the response of an oscillator
subject to an external force F (t). The general equa-
tion of motion we study is

m
d2x

dt2
= − kx− b dx

dt
+ F (t)

where on the RHS there are (a) the restoring force
due to the spring, (b) the viscous damping force,
and (c) the assumed external force. This is then
written in the following standard form(

d2

dt2
+ 2γ

d

dt
+ ω2

0

)
x(t) =

F (t)

m
(1)

with all the terms proportional to x on the LHS and
the inhomogeneous term on the RHS. Here ω2

0 =
k/m, 2γ = α = b/m. The parameter γ is used
(instead of α) because it is the damping rate for
the amplitude of free (i.e., unforced) oscillations.

Harmonic external force
Specialize to the case where the external force is
itself harmonic, say

F (t) = F0 cosωt (2)

about which several remarks can be made.

• Distinguish between ω0, the natural fre-
quency1 and the external or driving frequency
ω. We can likewise talk about the two rele-
vant periods T0 and T . Imagine say a swing
which, if set into free oscillations, would exe-
cute motion with a period of T0 = 5 seconds,
but someone pushes it periodically with a pe-
riod of T = 3 seconds.

• The natural frequency ω0 is fixed for a given
system (e.g., ω2

0 = k/m if the ODE refers to
a mass m tied to a spring k). But imagine
that the driving frequency ω can be arbitrarily
tuned, and we study how the response depends
on ω as the latter is varied.

• The most important case is when ω is (approx-
imately) equal to ω0, which will lead to the
phenomenon of resonance. Heuristically, if the
external force pushes forward (F > 0) when
the mass is naturally moving forward (v > 0)
then there will be positive work done and en-
ergy is fed into the system, so one gets a large
amplitude.

1Strictly speaking these are angular frequencies; the loose
terminology should not lead to confusion.
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• Since the system is linear, the generalization
to a sum or integral of such harmonic forces
with different values of ω is straightforward,
and should be understood.

• In (2) we could have added a phase and writ-
ten cos(ωt+ψ). That is equivalent to a trivial
shift of the origin of time. Since (at least in
this module) we shall not be dealing with ini-
tial conditions, this would have no effect other
than adding a similar phase to all such trigono-
metric functions. This will be understood to
save some writing.

Further simplifications
We first deal with the steady-state solution, i.e.,
what happens after the external force has been act-
ing for a sufficiently long time. From a physical
point of view, the initial conditions will have been
“forgotten” — hence the word “transients” is of-
ten used. From a mathematical point of view, this
means only a particular solution is sought, while
the homogeneous solution is ignored. The latter
will be added back in Section ?? for the sake of
completeness.

It should be noticed, however, that the homo-
geneous solution decays as e−γt = e−t/τ . If the
damping is weak (and in the extreme case if it is
zero), it will take a very long time for the initial
conditions to be “forgotten”. In that case the ho-
mogeneous solution must be considered as well. In
the extreme case of zero damping and the driving
force exactly on resonance, a somewhat different
approach is called for. This case will be considered
in Section ??.

The next Section starts with the case case of no
damping (γ = 0), which can be handled without in-
voking a complex representation. The main physi-
cal features will be introduced in this context. Then
Section 3 deals with the case with damping.

2 Case without damping

2.1 The solution

In the absence of damping (γ = 0) and with the
external force assumed to be harmonic as discussed
above, (1) reduces to(

d2

dt2
+ ω2

0

)
x(t) =

F0

m
cosωt (3)

for which a particular solution is sought to describe
the steady-state response. We conjecture a solution
of the form

x(t) = A cosωt (4)

at the same frequency and the same phase as the
external force (or half a cylce out of phase if A is
negative — see below); the amplitude A is to be
determined. The assumed displacement is simple
harmonic motion (SHM), at the driving frequency.

For this assumed form of solution, clearly

d2

dt2
7→ − ω2

so when this is put into (3), all terms have the
same time dependence cosωt, which can be can-
celled, giving(

− ω2 + ω2
0

)
A =

F0

m

thus determining the amplitude to be

A =
F0

m

1

− ω2 + ω2
0

(5)

• The cosine function returns to the same form
after two differentiations.

• The original equation (3) is an identity in t,
containing an infinite number of conditions,
one for each t. It is now reduced to a single
condition (5) on the coefficient. We are able to
satisfy the original equation for all t because
the conjectured form of the solution is correct.

• We neither have, not do we need, the condition
that the function returns to the same form af-
ter one differentiation. This is one generaliza-
tion needed when damping is included.
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2.2 Properties of the solution

Amplitude
The most important property is that of resonance.
The amplitude A goes as2

A2 =

(
F0

m

)2
1

(ω2 − ω2
0)2

(6)

which becomes very large when ω ≈ ω0, and in fact
theoretically infinite when ω = ω0. The plot of
A2 versus ω is shown in Figure 1. The solid line
is according to (6), whereas the broken line indi-
cates qualitatively what must happen when there
is some damping — the amplitude cannot go to in-
finity. The modification happens only very near the
resonance.

Phase
The sign of A is also interesting. Below resonance
(ω < ω0), A > 0, so x(t) and F (t) have the same
sign — they are in phase. Above resonance (ω >
ω0), A < 0, so x(t) and F (t) have opposite signs —
they are half a cycle out of phase: when the force
pushes to the right, the mass moves to the left.
This may seem slightly paradoxical, but is easily
demonstrated with a mass tied to a spring.

The reference to half a cycle (or 180 degrees or π
radians) can be explained more clearly as follows.
Recall that SHM can be regarded as the projection
of circular motion. Figure 2 shows the vector OF
with magnitude F0 rotating at an angular velocity
ω; its horizontal projection is the force F (t). The
vector OX has magnitude |A|, and also rotates at
the same speed; its horizontal projection is x(t).
For ω < ω0, OX is in the same direction as OF
(Figure 2a); For ω > ω0, OX is in the opposite
direction as OF (Figure 2b). In the latter case,
the two rotating vectors are half a cycle apart; it
is a matter of convention whether we say OX is π
radians ahead or behind OF . We shall see in the
next Section that it is convenient to say that OX
is an angle θ ahead of OF , with θ = − π.

Therefore the phase relationship is shown in the
plot of θ versus ω in Figure 3. The solid line, with
a discontinuity at ω = ω0, is the result obtained
here. The broken line indicates the change when
there is some damping: the dependence becomes
continuous, as we shall see.

2Reference is made to the square of A in order to separate
the discussion on the magnitude from the discussion on the
sign.

3 Case with damping

3.1 Complex solution

When there is damping, instead of (3) we have to
solve (

d2

dt2
+ 2γ

d

dt
+ ω2

0

)
x(t) =

F0

m
cosωt (7)

It is no longer possible to assume a solution x(t) ∝
cosωt, since the first derivative term would then go
as sinωt. Trigonometric functions such as cosine
and sine return to the same form only after two (or
in general an even number of) differentiations. For
the same property to hold for any number of differ-
entiations, we have to go to exponential functions.

Thus the strategy is instead to first solve for a
complex x̃(t):(

d2

dt2
+ 2γ

d

dt
+ ω2

0

)
x̃(t) =

F0

m
eiωt (8)

If a complex solution x̃(t) is found for (8), then its
real part

x(t) = < x̃(t)

would be a solution to (7), because

RHS of (7) = < [RHS of (8)]

We now try the guess

x̃(t) = Ã eiωt

Ã = Aeiθ (9)

where by convention A ≥ 0.3 The amplitude Ã is
allowed to be a complex number, with magnitude
A and phase θ. For a function of this form

d

dt
7→ iω

so every term in (8) has the same time dependence
eiωt, which can be cancelled, leading to an algebraic
equation (

− ω2 + 2iγω + ω2
0

)
Ã =

F0

m
(10)

which allows the complex amplitude to be found

Ã =
F0

m

1

(ω2
0 − ω2) + 2iγω

(11)

3The parameters A and Ã should not be confused with
those of the same name used in describing free damped os-
cillations, i.e., the homogeneous solution. When both are
considered, then a different and slightly more cumbersome
notation would have to be adopted.
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3.2 Physical solution

The solution
Write (9) as

x̃(t) = Aei(ωt+θ) (12)

and take the real part

x(t) = A cos(ωt+ θ) (13)

We therefore recognize that the motion is SHM,
at the driving frequency, with amplitude A, and a
relative phase θ compared to the force.

Amplitude
From (11), the magnitude of A is thus given by

|A|2 =
F 2
0

m2

1

(ω2
0 − ω2)2 + 4γ2ω2

(14)

The discussion is continued only for the case
where γ is small. The second term in the denomi-
nator is important only when the first term is also
small, i.e., only near ω = ω0. Thus we make the
approximation

γ2ω2 7→ γ2ω2
0

and

|A|2 ≈ F 2
0

m2

1

(ω2
0 − ω2)2 + 4γ2ω2

0

(15)

The denominator is minimum (and hence |A|2 is
maximum) when ω = ω0, with a value 4γ2ω2

0 . The
denominator has double this value (and hence |A|2
falls to half maximum) when

(ω2
0 − ω2)2 = 4γ2ω2

0

ω2 − ω2
0 = ± 2γω0

(ω − ω0)(ω + ω0) = ± 2γω0

Since the half maximum occurs near ω = ω0, the
second bracket on the LHS can be approximated as
2ω0, so that we finally get

ω − ω0 = ± γ (16)

The plot of |A|2 versus ω (Figure 4) shows how
the strength of the response depends on the driving
frequency. The parameter γ is seen as the half width
at half maximum (HWHM) of this curve.

Also note that at the peak, the denominator is
4γ2ω2

0 , so

|Amax|2 =
F 2
0

m2

1

4γ2ω2
0

∝ 1

γ2

as indicated schematically in Figure 4. A small γ
means a narrow and tall resonance curve.

Problem 1
Consider a case where ω0 = 100 and γ = 1. Find
the position and value of the peak (|A|2 in units of
F 2
0 /m

2) (a) based on the exact formula (14) and
(b) based on the approximate formula (15). §

Uncertainty principle
The parameter γ relates two properties.

• If such an oscillator is set into free motion, the
amplitude decays as e−γt. So the oscillation
lasts only a characteristic time

∆t ∼ γ−1

• If the oscillator is excited by an external force
of frequency ω and the resonance curve (e.g.,
Figure 4) is measured, then the resonance fre-
quency is determined to an accuracy of about

∆ω ∼ γ

namely approximately the width of the re-
sponse curve.

Therefore there is the relationship

∆t ·∆ω ∼ 1 (17)

which expresses an important and universal rela-
tionship between such a pair of complementary
variables: to determine the frequency accurately
requires that the system has a long lifetime. Of
course, the accuracy can be worse than this esti-
mate for other reasons, so (17) should in general be
an inequality, with the RHS being a lower bound.
The above is just one of many equivalent ways of
expressing essentially the same idea.

Quality factor
Related to this are two ways of defining the quality
factor of a resonance, denoted by Q and usually
applied to cases of weak damping or narrow reso-
nance. In terms of the variables we have introduced

Q =
ω0

2γ
(18)
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Recall that in the resonance curve, |A|2 drops
to half the peak value at ω = ω0 ± γ, so the full
width at half maximum (FWHM) or the half power
bandwidth is 2γ. Therefore one interpretation is

Q =
resonance frequency

half power bandwidth

where the numerator and denominator can be both
expressed in terms of frequency f or angular fre-
quency ω (in the latter case the FWHM is 2γ).

Secondly we know that for free oscillations, the
energy decreases as

E = E0 e−2γt

(apart from small oscillations with zero mean) so
the energy loss in a period T is

∆E = E0
(
1− e−2γT

)
≈ E0 (2γT )

= E0 2π
2γ

ω0

the approximate expression being valid for weak
damping. Thus we see

Q = 2π
energy stored

energy lost per cycle

Phase
From (13), θ is the angle by which the displacement
x(t) leads the force F (t): if θ > 0, then x(t) leads;
if θ < 0, then x(t) lags. In fact, the pair of variables

F (t) = F0 cosωt

x(t) = A cos(ωt+ θ)

can be represented graphically as in Figure 5.
They are the horizontal projections respectively of
the vectors OF and OX, which are rotating to-
gether at angular velocity ω. The vector OF makes
an angle ωt with the horizontal axis (and starts out
along this axis at t = 0). The vector OX is ahead
if θ > 0 (Figure 5a) and behind if θ < 0 (Figure
5b).

Thus the complex amplitude Ã nicely captures
both the magnitude and the phase of the response.

To see how θ depends on the frequency, note that
from (11)

eiθ ∝ 1

(ω2
0 − ω2) + 2iγω

e−iθ ∝ (ω2
0 − ω2) + 2iγω

− tan θ =
2γω

ω2
0 − ω2

or, explicitly

θ = − tan−1 2γω

ω2
0 − ω2

(19)

This is shown versus ω in Figure 6.

• At ω = 0, the RHS of (19) is zero, so θ = 0.
The displacement and the force are in phase.
(Be careful: arctan has two solutions; θ can be
either 0 or π. But if we go back to e−iθ, we see
that for ω → 0, the real part is positive and
the imaginary part is zero; so θ = 0.)

• Now suppose ω is small; then the RHS of (19)
is negative and small; so θ is negative and
small. (There are always two solutions for arc-
tan, differing by π, but continuity from ω = 0
fixes the choice.)

• At ω = ω0, the tangent is infinite, and θ =
− π/2.

• For ω > ω0, θ lies between − π/2 and − π.

• For extremely high frequencies, the tangent
goes to zero again, and θ → − π. By the
way, this explains the convention that θ = −π
for the undamped case above resonance.

Thus, resonance can also be specified by the con-
dition that the response is exactly a quarter cycle
out of phase. The width of the transition region can
be defined by the phase being 1/8 cycle (π/4 radi-
ans or 45 degrees) away from the resonance (Fig-
ure 6), at which points

2γω

ω2
0 − ω2

= ± 1 (20)

Problem 2
Using the same approximation of small γ as before,
show that the boundaries of the transition region
are

ω − ω0 = ± γ (21)

namely the same as the points for half-maximum
for |A|2. §
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Problem 3
Go back to the ODE (1) with the force given by
(2). Assume a solution of the form (13). With-
out invoking any complex methods, directly check
that this satisfies the ODE, and determine A and θ.
Hint: Write cos(ωt+θ) in terms of cosωt and sinωt.
These two types of terms must balance in the ODE,
leading to two conditions on the parameters. The
complex method is just a way of combining the two
real conditions into one equation. §

3.3 Comparison with undamped
case

The amplitude and phase are again plotted versus
ω in Figure 7, with the corresponding undamped
case shown by the broken lines. The two are ap-
proximately the same away from the resonance.
This can be understood, for example, from (15). If
ω2−ω2

0 is not small, the second term in the denom-
inator can be neglected, i.e., setting γ = 0 makes
no difference. Thus, damping is important only in
a band of width ∼γ around the resonance, where it
has the effect of (a) limiting the maximum ampli-
tude to a finite value |A| ∝ 1/γ, and (b) showing
that the phase goes from 0 to − π in a continuous
manner over a width ∼γ, rather than discontinu-
ously.

3.4 Work done by external force

We should also explain that a phase lag of π/2 cor-
responds to maximum work done (quite apart from
the variation of the amplitude A = A(ω)). To see
this, start with

F (t) = F0 cosωt

x(t) = A cos(ωt+ θ)

v(t) = −Aω sin(ωt+ θ)

The rate of doing work, or the power P , is given by

P = Fv

= − F0Aω cosωt (sinωt cos θ + cosωt sin θ)

Consider the average over a cycle, denoted by ¯ ,
and note that

cos2 ωt 7→ 1/2 , sinωt cosωt 7→ 0

so

P̄ =
1

2
F0Aω (− sin θ) (22)

The amplitude A depends on ω. Setting this
aside, let us look at the dependence on the phase,
through the factor in brackets.

• Since 0 ≥ θ ≥ −π, the bracket is non-negative.

• This means the external force (on average) de-
livers energy to the oscillator, not the other
way round — which is intuitively obvious.

• There is (on average) no work done if the phase
angle is θ = 0 or θ = − π. (The amplitude is
also negligible in these cases.)

• This factor is maximum at resonance, when
θ = − π/2. At this point, the force and the
velocity are in phase.
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