
Ordinary differential equations
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In physics, one tries to determine the motion of a
particle from the forces. The corresponding problem
in mathematics is to solve an ordinary differential
equation. Some general methods and theorems are
presented in a more systematic way, with particu-
lar attention on equations that (a) are linear and
especially (b) have constant coefficients.
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1 Introduction

Mechanics leads to ODEs
In mechanics, one tries to solve for the position

x(t) of a particle from the forces and the given
initial conditions. If the net force F is given in
terms of position, velocity and perhaps also time:
F = F (x, v, t), then from Newton’s second law, the
problem becomes one of solving

m
d2x

dt2
= F (x, ẋ, t) (1)

which is an ordinary differential equation or ODE.
The example of SHM is a particularly simple one,
in which F is (a) independent of ẋ and t, and (b)
linear in x. At least in that simple case, we have
already found the solution. The purpose of this
module is to discuss ODEs more generally.

Notation
We shall freely alternate between the two sets of
notations

(x, v, a) ≡ (x, ẋ, ẍ)

Order
The order of an ODE is the highest degree of
derivative that appears. Most ODEs arising from
physics are second order, as in (1). We shall mostly
pay attention to second-order ODEs, though some
results below are more general.

Types
There are many ways to classify ODEs. In this
module we consider the following categories, whose
mutual relationships are illustrated in Figure 1:

• A = all ODEs

• B = linear ODEs

• C = linear ODEs with constant coefficients

Examples will be given below, and we shall also
consider B′ and C′ which are ODEs that contain an
inhomogeneous term.
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Mathematics and physics
This module is mathematical, and should be cross
referenced to physical examples and concepts. The
more elementary parts relate to the previous mod-
ule in an obvious way. The more advanced top-
ics should be revisited after studying damped and
forced oscillations.

2 Numerical method

2.1 The method

Go back to the example of SHM and write it in the
form

a = −ω2
0 x

It is given that ω2
0 = 4.0; the initial position is

x(0) = 0.03 and the initial velocity is v(0) = 0.08.
(Henceforth, MKS units are understood and not
displayed.) Pretend we do not know the analytic
solution. There is another way to solve the problem
— numerically. We need to find find x(t) satisfying

x(0) = 0.030000

v(0) = 0.080000

a(t) = − 4.0× x(t)

Chop the time into short intervals of ∆t = 0.1;
we assume this is small enough that within each
interval, the acceleration can be regarded as uni-
form. Then it is straightforward, using the formu-
las for uniform acceleration, to move forward one
little step at a time.

a(0) = − 4.0× x(0) = − 0.120000

v(0.1) = v(0) + a(0)∆t

= 0.080000 + (− 0.120× 0.1)

= 0.068000

x(0.1) = x(0) + (1/2)[v(0) + v(0.1)]∆t

= 0.030000 + (1/2)(0.080 + 0.068)× 0.1

= 0.0374000

Because the time step is small, the change of any
variable in one time step is also small; in order for
these changes to be accurately captured, a fairly
large number of digits have been kept — probably
more than is necessary.

Problem 1
Continue the calculation for one more interval. §

Problem 2
Set up a table with columns representing t, x, v,
a, and put the results of Problem 1 into the table.
Continue the table for three more rows. §

Short time interval
The only assumption is that the time interval ∆t is
small enough that the acceleration can be regarded
as uniform within each interval. How do we know
the choice of ∆t = 0.1 is good enough?

• The period is T ∼ 3. (This is known from the
analytic result, with ω0 = 2, or approximately
after following the numerical solution through
one cycle.) So the time step of ∆t = 0.1 is ∼
0.03 of a period, which should not be too bad.
In other words, the comparison must refer to
a characteristic time scale of the problem.

• A better answer is as follows. After solving
the problem with one value of ∆t, repeat it
for a smaller value, say half (which would then
involve twice as many steps). Check that the
two answers agree to the accuracy desired.

Using a spreadsheet
For a sufficiently small ∆t, many steps are needed.
It is best to automate the calculation by putting the
table of Problem 2 onto a spreadsheet. Formulas
need to be entered only once, and then extended
to other intervals using COPY and PASTE. The
spreadsheet eqm.xlsx illustrates the above proce-
dure in three ways.

• Sheet 1 shows the calculation as above.

• Sheet 2 repeats it for a smaller (and ad-
justable) ∆t, and can be used to check the
convergence as ∆t → 0. In this case, we have
chosen a different set of initial conditions.

• Sheet 3 (which is laid out more systematically)
generalizes to the equation of motion

a = − (c1x+ c3x
3)

for arbitrary c1 and c3. (The spreadsheet
shows the case for one set of (c1, c3), but these
parameters are easily changed.)
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If you look at the situation after one cycle, you will
find that the amplitude has changed slightly; this
is an indication of the size of numerical error.

Our purpose is just to illustrate the idea. There
are higher-order algorithms which give better ac-
curacy for the same ∆t. Moreover, there are more
efficient softwares (e.g., using FORTRAN or C++)
than spreadsheets, and you will learn these in other
courses.

Problem 3
An oscillator obeys the force law a = − x3.
(a) Using the spreadsheet provided, find the pe-
riod of motion for amplitude A = 1.0. (Start with
x(0) = 1.0, v(0) = 0 and continue until x = 0; the
time is T/4.)
(b) Repeat for A = 2.0 and check the dependence
against what you expect from dimensional analysis.
§

2.2 Why numerical method

We already have an analytic solution for SHM; so
why bother with a numerical solution, which for
any finite ∆t is not even exact?

• The numerical method is applicable for any
force law a = f(x, v); sheet 3 and Problem
3 illustrate one case. For most such force laws,
there is no analytic solution.

• The numerical method1 shows that a solution
exists if two initial conditions x(0) and v(0)
are given. (Existence)

• The numerical method also shows that with
these initial conditions, there is only one solu-
tion. (Uniqueness)

Uniqueness
Since the solution given the initial condition is
unique, we are allowed to guess the solution: so
long as we check that it satisfies the equation, then
it is the correct solution. In the earlier discussion
of SHM, we guessed the solution; now we have the
formal justification.

Number of free parameters
Moreover, the general solution to a second-order

1Subject to niceties about the existence of the limit ∆t →
0, which we leave to mathematicians to worry about

differential equation must contain two free parame-
ters in order to match the two initial conditions.
(More generally, for an n-th order ODE, there
should be n free parameters to match n initial con-
ditions.)

3 Linearity and superposition

In general, not much can be said about the prop-
erties of most ODEs. For example, if a particle is
subject to a viscous force proportional to the third
power of the velocity, and to a potential energy,
say U(x) = U0 cos kx, then the equation of motion
would be

m
d2x

dt2
= −b

(
dx

dt

)3

+ kU0 sin kx

about which not much can be said. However, there
are useful theorems which apply if the ODE is linear
(class B), and in particular if the ODE is linear with
constant coefficients (class C).

3.1 Linear

Consider a differential operator of the form

D = an(t)
dn

dtn
+ . . .+ a1(t)

d

dt
+ a0(t) (2)

(with an(t) 6= 0). Such an operator is said to be
linear in the sense that

D [c1x1(t) + c2x2(t)]

= c1 [Dx1(t)] + c2 [Dx2(t)]

and the corresponding equation Dx(t) = 0 is said
to be a linear ODE ; this class of ODEs was denoted
as B.

3.2 Superposition

For a linear ODE, if there are two solutions x1(t)
and x2(t), i.e.,

Dx1(t) = 0 , D x2(t) = 0

then any linear combination with constant coeffi-
cients c1, c2

x(t) = c1x1(t) + c2x2(t)
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is also a solution, i.e.,

Dx(t) = 0

In physics, we typically deal with second-order
ODEs, for which we can (and must) specify two
initial conditions, which would give a unique solu-
tion. This means there can be two and only two
independent solutions only (say x1(t) and x2(t)),
and the two corresponding coefficients c1 and c2
would allow the two initial conditions to be satis-
fied. If there were a third independent solution,
that would make the solution not unique — and
that contradicts what we learnt from the numerical
method.

3.3 Real equation and complex solu-
tion

Consider an equation Dx(t) = 0 with D given
by (2) and all the coefficients aj(t) being real,
j = 0, . . . , n, as would usually be the case if the
equation arises from physics. We say that the ODE
is a real equation.

But a real equation can have complex solutions.
(This happens even in algebra, where ax2 + 2bx+
c = 0 with real a, b, c can have complex solutions if
b2 − ac < 0.) Let x̃(t) be such a complex solution:

D x̃(t) = 0

Take the complex conjugate and note that D∗ = D,
and we find that

D x̃∗(t) = 0

namely that the conjugate function is also a solu-
tion.

Then by the superposition principle, the follow-
ing are also solutions

< x̃(t) =
1

2
[x̃(t) + x̃∗(t)]

= x̃(t) =
1

2i
[x̃(t)− x̃∗(t)]

So from one complex solution we can generate two
real solutions.

It will be seen, especially in the next Section, that
it is often convenient to first seek complex solutions.

3.4 Linear with constant coefficients

There is a special subclass, for which the coeffi-
cients aj are constants independent of t:

D = an
dn

dtn
+ . . .+ a1

d

dt
+ a0 (3)

This class of ODEs was denoted as C. A general
method for solving such equations is discussed in
the next Section.

SHM
For the case of SHM, we have n = 2 and in partic-
ular:

D =
d2

dt2
+ ω2

0

In this case, even without a general method, we can
guess two solutions:

x1(t) = cosω0t

x2(t) = sinω0t

which are easily checked. Thus the general solution
is given by a linear superposition, namely

x(t) = B cosω0t+ C sinω0t (4)

as obtained before.

Next we outline a more systematic method to
deal with such ODEs with constant coefficients.

4 ODEs with constant coeffi-
cients

4.1 The characteristic equation

Consider the equation Dx(t) = 0 with D given by
(3), and let us guess a (possibly complex) solution

x̃(t) = eiωt

This function has the nice property that each dif-
ferentiation just gives a multiplicative factor:

d

dt
x̃(t) = iω x̃(t)

d

dt
7→ iω
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When this is put into (3), we find an algebraic con-
dition, that ω must be a root of the characteristic
polynomial :

D̃(ω) = an(iω)n + . . .+ a1(iω) + a0 (5)

Such a polynomial equation is guaranteed to have
n roots, which we denote as ω1, . . . , ωn.

• If n = 1 or n = 2, iωj can be found analyti-
cally. For n > 2 (even though there are ana-
lytic methods for n = 3, 4), the solutions can
be found numerically, by Newton’s algorithm
for example.

• We could have chosen the conjectured solution
to be

x̃(t) = eβt

i,e., replace iω 7→ β. In general, we do not ex-
pect the roots of the characteristic polynomial
to be either purely real or purely imaginary.
Thus, neither β nor ω should be thought of as
necessarily real. Which form we use is purely
a matter of convenience and convention. The
iω notation is usually adopted if the system is
expected to be (mostly) oscillatory.

• If the coefficients aj are real, i.e., (5) is a real
polynomial, then the solutions for β = iω are
either real, or are in complex-conjugate pairs.

• The case where two (or more) roots of (5) coin-
cide would be ignored for now. The mathemat-
ical subtlety can be bypassed: We can always
change the coefficients aj slightly to split the
solutions, and then take the limit to remove
the splitting.

4.2 The general solution

Assuming ωj to have been found, then by superpo-
sition, a general complex solution is

x̃(t) =
∑
j

Ãj e
iωt

where

Ãj = Aj e
iφj

are arbitrary complex amplitudes associated with
the various terms.

Since the values iωj are not necessarily pure
imaginary, we write them as

ωj = Ωj + iγj (6)

Thus we can also write (??) as

x̃(t) =
∑
j

Aj e
−γjt ei(Ωjt+φj) (7)

4.3 The general real solution

From this point onwards, assume aj are real. By
taking the real part of (7), we get a real solution

x(t) =
∑
j

Aj e
−γjt cos(Ωjt+ φj) (8)

This is the general real solution. Each term rep-
resents a harmonic motion whose amplitude is de-
creasing with time as

Aj(t) = Aj e
−γjt (9)

As a matter of mathematics, γj can have either
sign; but most applications in physics would involve
a decreasing solution, hence the convention.

It may look as if there are 2n free parameters
(Aj , φj), whereas we know that we can only specify
n initial conditions. This mystery is left as an ex-
ercise. It is best to consider the case n = 2 and the
various possibilities for the two roots of the char-
acteristic equation.

It is important to note, from (6), that the real
part of ωj represents oscillation, and the imaginary
part represents damping.

5 Inhomogeneous case

5.1 Defining the problem

We now make a small generalization: Consider the
equation

Dx(t) = f(t) (10)

with D given by (2). Such an ODE is said to be
inhomogeneous.

For the moment we do not assume the coefficients
aj(t) to be time-independent. We want to solve
this ODE with suitable initial conditions, in general
with given values of x, dx/dt, . . . , dn−1x/dtn−1 at
t = 0.
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5.2 Splitting into two parts

Write

x(t) = xh(t) + xp(t) (11)

where xp(t) is any one particular solution that sat-
isfies (10). The name “particular” means that it
does not contain any free parameters that would
allow the initial conditions to be matched.

It is easy to check that x(t) would satisfy (10)
if the other term, called the homogeneous solution,
satisfies

Dxh(t) = 0 (12)

Thus the second part of the problem is reduced
to the homogeneous case, for which the solution is
assumed known. In particular, xh would contain
n free parameters to allow matching of the initial
conditions.

We next consider three classes of inhomogeneities
for which the particular solution can be solved rel-
atively simply.

5.3 Constant coefficients and con-
stant inhomogeneity

This idea is readily illustrated in the special case
where an are independent of time, and f(t) is also
independent of time. Then a particular solution is
simply

xp(t) = f/a0

while the general homogenous solution is given by
(8), so now we have

x(t)

=
∑
j

Aj e
−γjt cos(Ωjt+ φj) + f/a0 (13)

An oscillating system subject to an extra con-
stant external force is exactly an example of what
is described here. The extra constant term in the
solution in that case corresponds simply to mea-
suring the displacement from the new equilibrium
position.

5.4 Harmonic inhomegeneity

Again consider the case where the coefficients aj(t)
are time-independent, and suppose the inhomoge-
neous term on the RHS of (10) is harmonic. We
consider the corresponding complex problem:

D x̃(t) = f̃(t)

f̃(t) = f̃0 e
iωt (14)

• The parameter ω has nothing to do with any
of the ωj found from the characteristic equa-
tion. It is simply the frequency of the inhomo-
geneous term, or, to take a physical example,
the frequency of an external force driving an
oscillator.

• In physics we typically deal with real f(t) and
x(t), in which case the real part of (14) is to
be taken.

We guess a solution

x̃(t) = x̃0 e
iωt (15)

Now (unlike the case when we were solving the ho-
mogeneous equation), ω is not a free parameter to
be determined, but the same ω as in the inhomo-
geneous term; rather, the complex amplitude x̃0 is
the parameter to be determined.

If (15) is put into the differential equation, every
d/dt just gives a factor of (iω), so from (14), we
obtain

D̃(ω) x̃0 = f̃0 (16)

where D̃ is the polynomial defined in (5). In the
above, a common factor of eiωt has been cancelled
— and this is the reason for assuming a solution
of the form (15), so that every term has the same
time dependence. In fact, this is also why we need
to go to the complex case: a real solution say cosωt
would not go back to the same time dependence af-
ter an odd number of differentiations. The solution
is trivial:

x̃0 =
f̃0

D̃(ω)
≡ Aeiθ

x̃(t) =
f̃0

D̃(ω)
eiωt = Aei(ωt+θ)

x(t) = < x̃(t) = A cos(ωt+ θ) (17)
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• Note that ψ, unlike the phases φj in (8), are
not free parameters to be determined by the
initial condition, but is fixed by the parameters
appearing in the ODE.

• In fact, there is no free parameters at all.

• In physical terms, the solution has the same
periodicity as the inhomogeneity (the “driving
force”), but is in general out of phase by an
amount θ.

• In general, we have to add a homogeneous so-
lution xh(t), and the necessary free parameters
appear in xh(t).

• More generally, the inhomogeneous term may
consist of a sum of harmonic terms with dif-
ferent frequencies. We simply apply superpo-
sition: use the above method for each term,
and add up the result.

5.5 Impulsive inhomogeneity*

*This subsection is more advanced and can be
skipped.

Here we restrict to a second-order ODE with con-
stant coefficients, say(

d2

dt2
+ ω2

0

)
x(t) = f(t) (18)

which can be thought of as the equation of motion
for a unit mass (or f(t) = F (t)/m where the mass
is m) subject to (a) the restoring force of a spring
− ω2

0x, and (b) an external driving force f(t); an
additional linear damping force can also be han-
dled.

First consider a special case where f(t) (which
we shall refer to as a force) is an impulse, in the
following sense (Figure 2a).

• It is nonzero only for a short interval ∆t
around a time t1.

• During this short interval it has an extremely
large value f1.

• We imagine ∆t→ 0, f1 →∞, but the product
f1∆t being finite.

We divide the analysis into three domains.

Before the impulse
Before the impulse there is no displacement;

x(t) = 0 for t < t1

This means that the overall solution must contain a
factor of Θ(t−t1), where the Θ-function is defined
as

Θ(t) =

{
0 for t < 0
1 for t > 0

After the impulse
After the impulse has passed, x(t) satisfies the ho-
mogeneous equation, so must take the form

x(t) = B cosω0(t−t1) + C sinω0(t−t1)

where B and C are constants to be determined from
the initial conditions — “initial” means immedi-
ately after the impulse, denoted as t = t+1 . The
arguments in the two terms have been chosen to
refer to t−t1, for convenience below.

In general (e.g., if there is damping), we would
still have two coefficients multiplying two homoge-
neous solutions.

During the impulse
During the short interval ∆t, there are two forces
(or two terms in the differential equation in addi-
tion to d2x/dt2): (a) the restoring force of mag-
nitude ω2

0x, which is finite, and (b) the external
force f1 → ∞. Therefore the former is neglected.
Thus we have a case of uniform force and uniform
acceleration, and at the end of the impulse we have

ẋ(t+1 ) = f1∆t

x(t+1 ) =
1

2
f1(∆t)2

with the latter being zero in the limit under con-
sideration.

Matching across the impulse
Thus we have B = 0 and Cω0 = f1∆t, giving

x(t) =
f1∆t

ω0
sinω0(t−t1) Θ(t−t1) (19)

the Θ function having been inserted to make this
valid for all t.
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General force
A general force f(t) can be regarded as the sum of
impulses (Figure 2b), with magnitude fj = f(tj)
at the time tj . Then, by superposition, the solution
in this case is

x(t) =
∑
j

f(tj)∆t

ω0
sinω0(t−tj) Θ(t−tj)

=

∫
f(t′)

sinω0(t−t′)
ω0

Θ(t−t′) dt′

=

∫
G(t−t′) f(t′) dt′ (20)

G(t) =
1

ω0
sinω0tΘ(t) (21)

The formula (20) in principle gives the particular
solution for any inhomogeneity, now not necessar-
ily an impulse — at least the problem is reduced to
an integral. This trick is fairly standard for inho-
mogeneous equations — replace the inhomogeneity
to a point “source” (a “point” in time would be an
impulse) and then superpose. The solution G for a
point source is referred to as the Green’s function.
This idea will be repeated when we come to forced
oscillations in the presence of damping.
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