
Rotation: Part 2

February 9, 2016

A more advanced treatment of rotational dynamics
is given, using a vector approach.
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1 Introduction

The state of a rigid body is specified by (a) the
linear displacement ~rC of a point C on the body
(e.g., its CM), and (b) the orientation of the body
about C (Figure 1). The latter can be imagined
by pinning the body at C, and turning it in all
possible ways.

Some feature of rotations1 can be illustrated by
the example of a cube (Figure 2). The three faces
that are not visible are colored in a lighter ver-
sion of the respective opposite faces. For simplicity
consider only rotations by 90o about the x, y and
z axes, denoted respectively as Rx, Ry, Rz.

To deal with rotations about an arbitrary axis,
or equivalently about a point, requires generaliza-
tion beyond the simpler formalism developed for
rotations about a fixed axis.

1.1 Right hand rule

The sign convention goes as follows. When we
speak of a rotation by some angle φ about an axis n̂,
we point the thumb of the right hand along n̂, and
the other fingers point towards positive φ. Thus ro-
tations by +90o along +x and +90o along +y are
shown in Figure 3a and Figure 3b. Of course
φ can be any value; we use 90o rotations only for
convenience.

1.2 Specifying a rotation

Unit vector and an angle
A rotation can therefore be specified by a unit vec-
tor n̂ (the axis of rotation) and the angle of rotation

φ. Thus for Figure 3a, n̂ = î and φ = π/2. Since

1The term “rotation” can mean the rotated configura-
tion, or to the change of this configuration with time. The
meaning should be clear from the context.
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a magnitude and a direction are required, it will be
natural to adopt a vector language; see (11) below.

Three angles
Any vector can be described by polar coordinates:
a length and two angles. For a unit vector, the
length is trivial, so n̂ is specified by a polar angle
θ and an azimuthal angle ψ.2 In fact

n̂x = sin θ cosψ

n̂y = sin θ sinψ

n̂z = cos θ (1)

Thus, the orientation of a rigid body can also be
specified by three angles: θ, ψ, φ.3

1.3 Non-commutativity*

*This advanced topic is mentioned only in passing,
and should be skipped in the first round of study.

Translations
To appreciate the peculiarity of rotations, it is use-
ful to compare with linear translations. Figure 4
shows four states or configurations of an object in
the x–y plane, with the object placed at the cor-
ners of a unit square, and labelled as C0, C1, C2,
C3. Let Tx and Ty be the operation of translation
(or shifting) the object by 1 unit in the x and y
directions respectively. Then in obvious notation

C0
Tx−→ C1

C0
Ty−→ C3 (2)

etc.
Now let us combine the two operations, but in

different orders:

C0
Tx−→ C1

Ty−→ C2

C0
Ty−→ C3

Tx−→ C2 (3)

The result is the same in both cases, as illustrated
in Figure 5. The order does not matter.

It is common to express the same idea in a
slightly different notation. Denote the configura-
tions or states as |C0〉 etc., and the relationships in

2Usually we would denote the azimuthal angle as φ, but
now we reserve this symbol for the amount of rotation about
n̂.

3These are not the same as the three Euler angles that
more advanced students may have encountered, though the
ideas are somewhat similar.

(2) as

Tx |C0〉 = |C1〉
Ty |C0〉 = |C3〉 (4)

which should be read as the operators Tx, Ty acting
on |C0〉 giving the states on the RHS. The compos-
ite operations in (3) would be expressed as

Ty Tx |C0〉 = |C2〉
Tx Ty |C0〉 = |C2〉 (5)

The product of operators should be read from right
to left; for example, in the first line above, Tx acts
first, and then Ty acts on the result. In short we
have

Ty Tx |C0〉 = Tx Ty |C0〉 (6)

But this is true not just for the state |C0〉, but for
any state, so we can state an operator relationship:

Ty Tx = Tx Ty (7)

We say translations are commutative. All this ab-
stract notation is just a fancy (and at some level
unnecessarily fancy) way of expressing the idea in
Figure 5.

Rotations
Some possible configurations of the cube are shown
in Figure 6; the labelling of Ci is arbitrary. Ro-
tations by Rx and Ry are shown in Figure 7;
the results of the two different orders are different.
Adopting an obviously parallel notation, we have

C0
Rx−→ C1

Ry−→ C2

C0
Ry−→ C3

Rx−→ C4 (8)

or using a notation similar to (5)

Ry Rx |C0〉 = |C2〉
RxRy |C0〉 = |C4〉 (9)

As an operator equation

Ry Rx 6= RxRy (10)

Thus rotations are not commutative.
Therefore the analysis of rotations more compli-

cated — and in the end more interesting and re-
warding; but that is well beyond the level needed
here. Fortunately, angular velocity involves only
one infinitesimal rotation in an infinitesimal time.
So there is no difficulty.
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1.4 Reducing to special case

If the rotation is constrained to be about a fixed
axis (say the z-axis), then there is only one angle φ
and rotations are commutative. This case has been
discussed before, without the need for vector nota-
tion. It is important to check that every formula
in the present module agrees with the earlier dis-
cussion in this special case. We shall not explicitly
carry out the check in every instance.

2 Angular displacement and
velocity

2.1 Vector form of infinitesimal ro-
tation

With the above in mind, consider an infinitesimal
rotation by an angle ∆φ about an axis n̂. We de-
note such a rotation as a vector:4

∆~φ = ∆φ n̂ (11)

namely, the direction giving the axis of rotation,
and the magnitude giving the angle of rotation.
Note that this definition is used only for an in-
finitesimal rotation. Henceforth, we do not deal
with finite rotations.

2.2 Displacement

Consider a point P at a position ~r from the origin
O on the axis. The perpendicular distance from the
axis is r⊥ to P (Figure 8a). Under a rotation by
an infinitesimal angle ∆φ, P is displaced by ∆~s.5

The magnitude of displacement is ∆s = ∆φ · r⊥ =
∆φ ·r ·sin Θ, where Θ is the angle between n̂ and ~r.
The direction is perpendicular to both n̂ and ~r (i.e.,
into the page in Figure 8a). The two properties
are summarized in one vector statement:

∆~s = ∆~φ× ~r (12)

4Strictly speaking, the vector sign should be placed on
the whole symbol ∆φ.

5Likewise, the vector sign should strictly speaking be
placed on the whole symbols ∆s.

2.3 Angular velocity

Upon dividing by the time ∆t, we get

~v = ~ω × ~r (13)

where ~v = ∆~s/∆t is the linear velocity of P and ~ω
is the angular velocity, defined as a vector:

~ω =
∆~φ

∆t
(14)

Its magnitude agrees with the familiar definition,
and it is given a direction along the axis of rotation
n̂.

The formula (13) deals with finite quantities and
is more convenient compared with (12), which deals
with infinitesimal quantities.

The vector angular acceleration

~α =
d~ω

dt
(15)

turns out to be less useful; see Section 4.2.

3 Torque

3.1 Single force

As before, torque is defined as the work done per
unit angular displacement. Consider a force ~F act-
ing on a point mass P at a point ~r measured from
the origin O, and causing an infinitesimal displace-
ment that can be regarded as a rotation (Figure
9a). The work done is, in obvious notation,

∆W = ~F ·∆~s
= ~F ·

(
∆~φ× ~r

)
= ∆~φ ·

(
~r × ~F

)
≡ ~τ ·∆~φ (16)

where we have used the identity (see Appendix A)

~a · (~b× ~c) = ~b · (~c× ~a) (17)

and in the last line of the derivation we have defined
the torque

~τ = ~r × ~F (18)

In regarding the displacement as an infinitesimal
rotation, we are implicitly assuming a rigid body.
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But that assumption merely motivates the defini-
tion (18), and the various consequences below de-
pend only on the definition — and are valid even
for a system of particles that do not constitute a
rigid body.

A special case is shown in Figure 9b, for ~r
and ~F both in the x–y plane. It is clear that
~τ is perpendicular to the plane, with magnitude
τ = r⊥F = rF⊥, in agreement with the definition
adopted earlier.

3.2 Newton’s third law for torques

Case of linear motion
Consider forces F1 and F2 acting on a system of
two masses (Figure 10a). Is the total force F
given simply by F1 + F2? Should there also be the
forces P and Q (Figure 10b), which are the force
on 1 due to 2, and the force on 2 due to 1? Should
we not have F = F1 + F2 + P +Q? The answer is
simple: It does not matter; P + Q = 0 because of
Newton’s third law. Thus total force on a system
is the same as total external force.

Case of rotational motion
Now consider the case of torques. Figure 11 shows
two particles 1 and 2, with internal forces ~P and ~Q
forming an action-reaction pair. There is an inter-
nal torque on 1 due to ~P :

~τ int1 = ~r1 × ~P (19)

Likewise there is an internal torque on 2 due to ~Q:

~τ int2 = ~r2 × ~Q = − ~r2 × ~P (20)

where we have used Newton’s third law for the two
forces. The sum of the two torques is

~τ int1 + ~τ int2 = ~r12 × ~P (21)

where ~r12 = ~r1 − ~r2 is the vector joining the two
particles. But ~P must point along this line, so the
cross product is zero. Thus we prove the analog of
Newton’s third law: the total torque is the same as
the total external torque.

4 Equation of motion

4.1 Derivation

Imagine external forces ~Fα acting on a system of
particles α at positions ~rα. Then

~τ =
∑
α

~τα =
∑
α

~rα × ~Fα (22)

Because of the result in the last Section, we can
replace ~Fα by ~F ′

α, the total force acting on α, i.e.,
adding back the internal forces (which will cancel
in the total torque). But

~F ′
α =

d~pα
dt

(23)

where ~pα is the momentum of particle α. Thus

~τ =
∑
α

~rα ×
d~pα
dt

(24)

Next every term in the sum can be replaced by

d

dt
(~rα × ~pα) (25)

since the extra term

d~rα
dt
× ~pα = ~va × ~pa = 0 (26)

because ~v and ~p are parallel.
We then obtain, taking the derivative outside the

sum

~τ =
d

dt

∑
α

~rα × ~pα (27)

We are then led to define the angular momentum
of a particle as

~Lα = ~rα × ~pα (28)

and the total angular momentum as

~L =
∑
a

~Lα (29)

while the equation of motion is

~τ =
d~L

dt
(30)
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4.2 Applies to non-rigid bodies

The above derivation did not assume that the sys-
tem is a rigid body. In an earlier module, we had
encountered the question as to whether

τ =
dL

dt
=
d(Iω)

dt
?? (31)

τ = I
dω

dt
= I α ?? (32)

The two versions differ if the body is not rigid and I
is not constant. We had previously asserted, with-
out proof, that (31) is correct but (32) is not. Now
we have provided the proof.

4.3 Precession of a top

From the above, a key concept in rotational dy-
namics is the rate of change of ~L. There are two
categories of effects (and of course their combina-
tions).

• If rotation occurs about a fixed axis, only the
magnitude L = |~L| changes. These situations
do not need a vector approach, and have been
discussed at length earlier.

• In other situations, an external torque may
causes the direction of ~L to change with time.

The latter situation can be illustrated by the pre-
cession of a top. A top supported on the ground
at O is spinning rapidly about its symmetry axis
OA, at angular velocity ω; its CM is at a displace-
ment ~R from O, on the axis OA. At a certain
moment, the axis OA lies in the x–z plane (z-axis
vertically upwards), tilted at an angle θ from the
vertical (Figure 12a). The top will precess slowly,
i.e., the point A will describe a circle in the x–y
plane, as shown by the dotted line. We want to
understand the reason for the precession, and to
determine its rate.

The angular momentum of the spinning top has
a magnitude L = Iω, where I is the moment of
inertia about the axis OA. The direction of ~L is
along OA, so

~L = Iω (sin θ î + cos θ k̂) (33)

There is a force acting on the top, due to gravity

~F = −Mg k̂ (34)

which leads to a torque about O given by

~τ = ~R× ~F (35)

where

~R = R (sin θ î + cos θ k̂) (36)

Thus

~τ = MgR [(sin θ î + cos θ k̂)× (− k̂)]

= MgR sin θ ĵ (37)

So, after a short time ∆t, ~L will gain a y-
component given by

Ly = τy∆t = MgR sin θ∆t (38)

while Lx is to first order unchanged. In Figure
12b, the arrow indicates the projection of ~L onto
the x–y plane. The angle ∆ψ is

∆ψ =
Ly
Lx

=
MgR sin θ

Iω sin θ
(39)

Hence ψ increases at a rate

Ω ≡ ∆ψ

∆t
=
MgR

Iω
(40)

This is the angular precession frequency of the top.
If ω is large, as assumed, then Ω is small. The
angular momentum associated with the precession
itself has been neglected in the above analysis.

5 Angular momentum

5.1 Definition

For a single particle, and now for convenience drop-
ping the label α, the angular momentum is

~L = ~r × ~p (41)

Referring to Figure 13, we see that ~L is perpen-
dicular to the plane containing ~r and ~p, and has a
magnitude L = r⊥p = rp⊥ = rp sin Θ, where Θ is
the angle between the two vectors.
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5.2 Conservation of angular momen-
tum

General statement
Since ~τ = d~L/dt, angular momentum is conserved
if the torque is zero.

Central force
The most important application concerns a parti-
cle (e.g., a planet) subject to a central force (e.g.,
gravitational force due to the sun). If the force is

central, then ~F acting on the particle is parallel to
~r, and ~τ = ~r × ~F = 0. So angular momentum is
conserved for a particle subject to a central force.

Planar planetary orbits
First of all, the direction of ~L is unchanged. Choose
the z-axis along ~L. Then ~r and ~p are in the x–y
plane. In other words, planetary orbits stay in one
plane; motion such as that sketched in Figure 14
is not allowed.

Kepler’s second law
Consider planetary motion over a short time inter-
val ∆t (Figure 15). The sun is at the origin O
and the planet moves by an amount ∆~s = ~v∆t.
The area ∆A swept out by the radius vector is the
shaded triangle. (The “extra” small triangle has a
negligible area ∝ (∆s)2 ∝ (∆t)2.)

∆A =
1

2
r∆s⊥ =

1

2
r v⊥ ∆t

∆A

∆t
=

1

2
r v⊥ =

1

2m
r p⊥ =

L

2m
(42)

where m is the mass of the planet and L its angular
momentum.

Since the force is central, L is conserved, and we
conclude that the radius vector sweeps out equal
areas in equal times — Kepler’s second law. His-
torically, the chain of deduction was the reverse:
Kepler noticed this regularity from astronomical
observations, and Newton used this empirical law
to deduce that gravity was a central force.

A consequence is that planets move slower when
farther from the sun (Figure 16).

Atomic physics
Consider the motion of the electron around the nu-
cleus in a hydrogen atom. The force is again central
(in fact, also inverse-square, but that is not relevant
here). In this case, there are two important prop-
erties.

• The value of the angular momentum L is con-
stant. We can therefore label the motion (or
“state”) of the electron by the constant value
of L. This fact follows from the above discus-
sion.

• The value of L can only be an integral multi-
ple of a basic unit, namely h̄: L = ` h̄, where
` = 0, 1, 2, . . .. This fact comes from quantum
mechanics. (Actually, to be more precise, the
statement is that L2 = `(`+1) h̄2.)

The state of the electron with ` = 0, 1, 2, . . . are
called the s, p, d, . . . orbitals. Their properties are
central to chemical bonding.

6 Moment of inertia

6.1 An example

Description of example
This Section deals with the moment of inertia in a
more general context. Heuristically, I is the pro-
portionality constant between L and ω:

L ∼ I ω (43)

Now we realize that ~L and ~ω are vectors. But are
they always in the same direction? If not, do we
need to generalize the concept of I? We first intro-
duce these ideas through a simple example.

A dumbbell consists of two masses, each m, at
the ends of a light rod of length 2R. The dumbbell
is attached to an axle (chosen as z-axis) through
its CM, and is inclined at an angle θ to the axle
(Figure 17a). The axle is rotated at an angular
velocity ω. Thus,

~ω = ω k̂ (44)

We now want to find the angular momentum.
Take the point mass at z > 0. Its position vector

~r (on the page) and its momentum ~p (into the page)
are perpendicular, so its its angular momentum
~L1 = ~r × ~p has magnitude Rp = R ·m(Rω sin θ) =

mR2ω sin θ. The direction of ~L1 is shown by the
red arrow in Figure 17a. Adding the other point
mass just doubles the angular momentum (since
both ~r and ~p are reversed). Thus

L = 2mR2ω sin θ (45)
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with components

Lx(0) = − L cos θ

Lz(0) = L sin θ (46)

Problem 1
Go back to the first particle and express ~r and ~p =
m~v = m~ω × ~r in Cartesian coordinates and hence
calculate the Cartesian components of ~L1 and ~L.
Verify the answer above. §

Two vectors not parallel
We draw a lesson from this example: ~ω and ~L need
not be in the same direction. Somehow, the pro-
portionality “constant” in L ∼ I ω cannot be just
one number I.

Torque required
The angular momentum ~L is the red arrow attached
rigidly, at right angles, to the dumbbell. As the
system is turned on the axle, the dumbbell and
the red arrow rotate. Thus the angular momentum
changes with time, and a torque is required.

Problem 2
Refer to the top view of the situation in Figure
17b. The red arrow represents the projection of ~L
onto the x–y plane, with initial value Lx(0) given
by (46). As time goes on

Lx(t) = Lx(0) cosωt

Ly(t) = Lx(0) sinωt (47)

Find the torque τ(t) for all times. §
In a sense, the details do not matter. We only

emphasize two points.

• ~L and ~ω need not be in the same direction.

• Although ~ω is constant, ~L is not, and therefore
~τ 6= 0. This example again illustrates the fact
that we cannot have an equation of the form
τ = I (dω/dt).

6.2 Derivation of key formula*

* This part is more advanced and can be skipped.

Consider a collection of particles α constituting a
rigid body, and the total angular momentum

~L =
∑
α

~rα × ~pα (48)

To avoid confusion, for vector quantities, the in-
dex α labelling particles is written as a superscript,
while the indices i, j labelling the Cartesian direc-
tions are written as subscripts.

Using the formulas derived, we have

~L =
∑
α

~rα × ~pα

=
∑
α

~rα × (mα ~v
α)

=
∑
α

mα [~rα × (~ω × ~rα)] (49)

We have used (13) to express ~vα in terms of ~ω —
which is the same for all particles. If we can take
~ω outside the summation, the other factor depend
only on mα and ~rα, and can be identified as the
moment of inertia I. But the tricky point is that
we have to deal with the Cartesian indices.

Use the vector identity (see Appendix A)

~a× (~b× ~c) = ~b (~a · ~c)− ~c (~a ·~b) (50)

to write (49) as

~L =
∑
α

mα [~ω (~rα · ~rα)− ~rα (~ω · ~rα)] (51)

Take the i component on both sides:

Li =
∑
α

mα[ωi(r
α)2 − rαi

∑
j

ωjr
α
j ] (52)

In the first term, write

ωi =
∑
j

δij ωj (53)

Then on the RHS, both terms contain
∑
j . . . ωj ,

and the other factors are

Iij ≡
∑
αmα

[
(rα)2 δij − rαi rαj

]
(54)

which we define as the moment of inertia, and the
angular momentum is given by

Li =
∑
j Iij ωj (55)

6.3 Properties of key formula

Matrix form
The key formula (55) shows that ~L and ~ω are lin-
early related. But they are not necessarily in the
same direction.

7



We can express (55) in terms of matrix multipli-
cation, with

∑
j being naturally implied:L1

L2

L3

 =

 I11 I12 I13
I21 I22 I23
I31 I32 I33

 ω1

ω2

ω3

 (56)

or in an obvious shorthand

[L] = [I] [ω] (57)

with square brackets denoting appropriate column
or square matrices.

A linear relationship between two vectors can al-
ways be expressed in such a matrix form. In short,
the natural proportionality “constant” between two
vectors is a matrix, i.e., an object with two indices.

Incidentally, to simplify notation, we shall hence-
forth (whenever there is no danger of confusion)
drop the index α and write

Iij =
∑
m (r2 δij − rirj) (58)

it being understood that we sum over all masses.

Symmetry
It is obvious that [I] is a symmetric matrix. (This
is not necessarily true of all such proportionality
matrices between two vectors.)

Diagonal components
Consider for example I33. If (58) is evaluated for
i = j = 3, we get δij = 1, so

I33 =
∑

m(r2 − r23)

=
∑

m(r21 + r22) =
∑

mr2⊥ (59)

where r⊥ is the perpendicular distance to the 3-
axis. This recovers the familiar formula for the
moment of inertia about the 3-axis.

Off-diagonal components
Consider for example I12. If (58) is evaluated for
i = 1, j = 2, we get δij = 0, so

I12 = −
∑

mr1r2 (60)

If the object is symmetric under r1 7→ − r1 (e.g.,
the object in Figure 18a), then the RHS as an odd
power of r1 will sum to zero; likewise if the object
is symmetric under r2 7→ − r2 (e.g., the object

in Figure 18b). So for symmetrical object, [I] is
diagonal, in which case

L1 = I11 ω1

L2 = I22 ω2

L3 = I33 ω3 (61)

which combined with formulas such as (59) return
us to the simpler situations discussed in Rotation:
Part 1.

Problem 3
A dumbbell consists of two masses, each m, on the
ends of a light rod of length 2R. Find Iij if the axes
are chosen as in the three cases shown in Figure
19. Check the special cases θ = 0, π/2. §

Tensor property
It is often said that Iij is a tensor of rank 2. This
carries two levels of meaning. (a) First, it means
that Iij has two indices. (b) Secondly, it means
that there is a precise rule about how it transforms
under a change of coordinates (in this case a rota-
tion). The transformation property is such that if
(57) holds in one system of coordinates [L] = [I] [ω],
then it is guaranteed to hold in another system of
coordinates [L′] = [I ′] [ω′]. We can bypass all such
transformations by always calculating the new I ′ij
afresh from the new position vectors ~r′.

Appendix

A Vector identities

Theorem 1
The quantity V (abc) = ~a · (~b×~c) is the same under
cyclic permutation of the three vectors, i.e.,

V (abc) = V (bca) (62)

Proof
Let ~d = ~b× ~c. Then

V (abc) =
∑
i

aidi =
∑
i

ai
∑
jk

εijkbjck

=
∑
ijk

εijk aibjck (63)

where εijk is the totally antisymmetric symbol, e.g.,
ε123 = 1, ε321 = −1, and zero if any two indices are
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equal. The identity follows from the property that
εijk = εjki.

In fact, it is obvious that

V = det

 a1 a2 a3
b1 b2 b3
c1 c2 c3

 (64)

and the identity follows from the property of a de-
terminant under cyclic permutation of rows.

Problem 4
Consider a parallelepiped with sides ~a, ~b, ~c. Show
that the area of the base formed by the two sides ~b
and ~c is given by |~b×~c | and the volume of the par-
allelepiped is exactly |V (abc)|. This gives a proof
of the identity, at least up to a sign. §

Theorem 2
For any three vectors

~a× (~b× ~c) = ~b (~a · ~c)− ~c (~a ·~b) (65)

Proof
Let the LHS be a vector ~X and let ~d = ~b× ~c.

Xi =
∑
jk

εijkajdk

=
∑
jk

εijkaj
∑
mn

εkmnbmcn

=
∑
jmn

(∑
k

εkijεkmn

)
ajbmcn (66)

Problem 5
(a) By checking all cases, prove that∑

k

εkijεkmn = δimδjn − δinδjm (67)

(b) Using (67), prove the identity (65). §
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