Moment of inertia

January 15, 2016

A systematic account is given of the concept and the properties of the moment of inertia.

Contents

1	Introduction and simple cases		1
	1.1	Introduction	1
	1.2	Examples	1
2	Two theorems		
	2.1	Parallel axes theorem	2
	2.2	Perpendicular axes theorem \dots	2
3	Con	tinuous distribution	3

1 Introduction and simple cases

1.1 Introduction

The moment of inertia I is a key concept for rotations. In this elementary discussion, we consider rotation about a fixed axis. If there are masses m_{α} at positions \vec{r}_{α} , then

$$I = \sum_{\alpha} m_{\alpha} r_{\alpha, \perp}^2 \tag{1}$$

where $\vec{r}_{\alpha,\perp}$ is the perpendicular distance from the axis to the mass; e.g., for the z-axis,

$$r_{\alpha,\perp}^2 = x_{\alpha}^2 + y_{\alpha}^2 \tag{2}$$

It is only necessary to specify the axis but not the origin on the axis; in **Figure 1**, the origins O and O' would give the same moment of inertia, since the perpendicular components of \vec{r}_{α} are the same; only the parallel component is changed when the origin is shifted along the axis.

It is interesting that the CM involves expressions of the schematic form $\sum mx$ while $I \sim \sum mx^2$.

The moment of inertia I is the analog of the mass m for rotational motion. For example, the angular momentum is

$$L = I\omega \tag{3}$$

where ω is the angular velocity. By analogy with linear motion, I denotes a kind of *inertia* (hence its name) for rotational motion.

But unlike the mass, an object can have different moments of inertia about different axes, and if necessary we shall add a subscript, e.g., I_A , to denote the moment of inertia about a particular axis A. Also the moment of inertia may change if an object is not rigid and changes shape.

If an object has a mass M and typical length scale R (transverse to the axis), then obviously

$$I = \beta M R^2 \tag{4}$$

where β is a pure number of O(1).

The rest of this module is about properties of the moment of inertia, and ways to calculate the value.

1.2 Examples

Example 1

Two point masses, each m, are at the ends of a light rod of length R (**Figure 2**). What is the moment of inertia through an axis perpendicular to the rod and (a) through one end (I_A) , and (b) through the CM (I_C) ? Express the answers in terms of the total mass M = 2m and R.

$$I_{A} = (m)(0) + (m)(R)^{2}$$

$$= mR^{2} = \frac{1}{2}MR^{2}$$

$$I_{C} = (m)(R/2)^{2} + m(R/2)^{2}$$

$$= \frac{1}{2}mR^{2} = \frac{1}{4}MR^{2}$$
(5)

Comparing parallel axes, the moment of inertia is smallest for an axis through the CM. We shall discuss this more formally in the next Section. \S

Problem 1

An H₂O molecule consists of the O atom (mass m) connected to two H atoms (each of mass μ) by bonds of length R. The angle between the two bonds is 2θ . The total mass is $M=m+2\mu$. Define $\epsilon=2\mu/M$.

- (a) Find the moment of inertia $I_A = \beta_A M R^2$ about an axis A perpendicular to the plane of the molecule and through the O atom. Answer: $\beta_A = \epsilon$.
- (b) Find the distance y between the CM and the O atom.
- (c) Find the moment of inertia $I_C = \beta_C M R^2$ about an axis C perpendicular to the plane of the molecule and through the CM. Answer: $\beta_C = \epsilon \epsilon^2 \cos^2 \theta$.
- (d) Give numerical values for β_A and β_C in the case of H₂O, for which $2\theta = 104.5^{\circ}$. §

Problem 2

Four equal masses are at the corners of a square of side R. Find the moment of inertia, in the form βMR^2 (where M is the total mass of the system), for axes perpendicular to the square and (a) through a corner, (b) through the midpoint of one side, and (c) through the CM. §

2 Two theorems

2.1 Parallel axes theorem

Consider a system of particles, not necessarily a rigid body, with total mass M. Let C be the CM and I_C the moment of inertia about an axis through C, and I_A be the moment of inertia about another axis parallel to the first one (**Figure 3**). For convenience choose the point A on the second axis such that

$$\vec{R}_{AC} \equiv \vec{r}_A - \vec{r}_C \tag{6}$$

is perpendicular to the axes. The $\it parallel$ $\it axes$ the $\it orem$ states that

$$I_A = I_C + MR_{AC}^2 \tag{7}$$

Proof

In the following, without danger of confusion, we

simplify the notation: $\vec{R}_{AC} \mapsto \vec{R}$. Choose A to be the origin, and let the position of m_{α} measured from the origin be \vec{r}_{α} ; let the position of m_{α} measured from C be \vec{r}_{α}' . Then

$$\vec{r}_{\perp,\alpha} = \vec{R} + \vec{r}_{\perp,\alpha}'$$

$$\vec{r}_{\perp,\alpha}^2 = \vec{R}^2 + 2\vec{R} \cdot \vec{r}_{\perp,\alpha}' + \vec{r}_{\perp,\alpha}'^2 \qquad (8)$$

(We have focused on the perpendicular components, though the above statement is also true for the parallel component. Also, \vec{R} is the same as \vec{R}_{\perp} , given our convention on how to define the point A.) Multiply by m_{α} and sum over α . The LHS is I_A . On the RHS, the first term gives $(\sum_{\alpha} m_{\alpha})R^2 = MR^2$, and the last term gives $\sum_{\alpha} m_{\alpha} r_{\alpha}'^2 = I_C$. So the theorem is proved if the cross term is zero:

$$\sum_{\alpha} m_{\alpha} \vec{r}_{\perp,\alpha}{}' = 0 \tag{9}$$

which is just the property that the moment about the CM is zero; see the module on the center of mass.

Problem 3

Check that the two results in Example 1 agree with this theorem. \S

Problem 4

Check that the results in Problem 1 and Problem 2 agree with this theorem. §

Problem 5

For a thin circular ring of mass M and radius R, find the moment of inertia about the following axes perpendicular to the ring:

- (a) an axis through the center;
- (b) an axis through a point on the rim. §

2.2 Perpendicular axes theorem

The perpendicular axes theorem refers to a lamina, i.e., a sheet with negligible thickness, say in the x-y plane (**Figure 4**). Consider the moments of inertia I_x , I_y , I_z along the three perpendicular axes, all through the same point O on the lamina. The moments of inertia depend on the perpendicular distances to the axes; for example, I_z depends on $x^2 + y^2$:

$$I_x = \sum_{\alpha} m_{\alpha} (y_{\alpha}^2 + z_{\alpha}^2) = \sum_{\alpha} m_{\alpha} y_{\alpha}^2$$

$$I_{y} = \sum_{\alpha} m_{\alpha} \left(x_{\alpha}^{2} + z_{\alpha}^{2} \right) = \sum_{\alpha} m_{\alpha} x_{\alpha}^{2}$$

$$I_{z} = \sum_{\alpha} m_{\alpha} \left(x_{\alpha}^{2} + y_{\alpha}^{2} \right)$$
(10)

where in the first two equations we have used the fact that $z_{\alpha} = 0$ for a thin lamina in the x-y plane. It therefore follows that

$$I_z = I_x + I_y$$
 (lamina in $x-y$ plane) (11)

Example 2

What is the moment of inertia of a thin ring of mass M and radius R (a) about a diameter, and (b) about an axis P parallel to a diameter, but passing through a point on the ring?

- (a) Let the ring lie in the x-y plane. For an axis through the center of the ring and perpendicular to the plane, $I_z = MR^2$, since any element of the ring is at the same perpendicular distance R from the axis. By the perpendicular axes theorem, $I_x + I_y = I_z$, and by symmetry $I_x = I_y$. So $I_x = I_y = (1/2)MR^2$.
- (b) Applying the parallel axes theorem, we get $I_P = (1/2)MR^2 + MR^2 = (3/2)MR^2$. §

Example 3

Find the moment of inertia of a thin spherical shell of mass M and radius R, about a diameter.

Consider three axes through the center. In obvious notation:

$$I_{x} = \sum_{\alpha} m_{\alpha} (y_{\alpha}^{2} + z_{\alpha}^{2})$$

$$I_{y} = \sum_{\alpha} m_{\alpha} (z_{\alpha}^{2} + x_{\alpha}^{2})$$

$$I_{z} = \sum_{\alpha} m_{\alpha} (x_{\alpha}^{2} + y_{\alpha}^{2})$$
(12)

Adding these together and using the fact that $I_x = I_y = I_z$ by symmetry, we have

$$3I_{x} = 2\sum_{\alpha} m_{\alpha} \left(x_{\alpha}^{2} + y_{\alpha}^{2} + z_{\alpha}^{2}\right)$$

$$= 2MR^{2}$$

$$I_{x} = \frac{2}{3}MR^{2}$$
(13)

The calculation relies on the following fact: although each of x_{α}^2 , y_{α}^2 and z_{α}^2 depends on α , their sum is a constant R^2 independent of α and can be taken out of the sum. §

3 Continuous distribution

For a continuous distribution, the relevant formula takes the form, in obvious notation,

$$I = \sum \Delta m r_{\perp}^2 \tag{14}$$

which is then turned into a suitable integral. We illustrate with several examples.

Example 4: Uniform rod

For a uniform rod of mass M and length R, find the moment of inertia about an axis A through one end, and an axis C through the center (**Figure 5**).

Let the mass per unit length be $\rho = M/R$ and first choose the origin at one end. Then for a segment from x to $x + \Delta x$,

$$\Delta m = \rho \Delta x$$

$$I_A = \sum \Delta m x^2 = \sum (\rho \Delta x) x^2$$

$$= \rho \int x^2 dx = \rho \cdot \frac{1}{3} x^3$$
 (15)

The integral is to be evaluated between x = 0 and x = R, thus giving

$$I_A = \rho \frac{1}{3}R^3 = \frac{1}{3}MR^2$$
 (16)

For the axis C, the calculation is the same, except that the origin is taken to be C, and the integral (16) is to be evaluated between x = -R/2 and x = R/2, giving

$$I_C = = \frac{1}{12}MR^2$$
 (17)

It is left as an exercise to check that $I_A - I_C$ agrees with the parallel axes theorem. §

Example 5: Uniform disk

For a uniform circular disk of mass M and radius R, find the moment of inertia about an axis through the center and perpendicular to the disk.

Let the mass per unit area be $\rho = M/(\pi R^2)$. Cut the disk into thin rings, each extending from r to $r + \Delta r$. The mass of this ring is

$$\Delta m = \rho \cdot 2\pi r \, \Delta r \tag{18}$$

and its moment of inertia is

$$\Delta I = \Delta m r^2 = (\rho \cdot 2\pi r \, \Delta r) r^2$$
$$= 2\pi \rho \cdot r^3 \, \Delta r \qquad (19)$$

Adding these up, we find the moment of inertia of the disk to be

$$I = \sum \Delta I = 2\pi\rho \sum r^{3} \Delta r$$

$$= 2\pi\rho \int_{0}^{R} r^{3} dr = 2\pi\rho \cdot \frac{1}{4}R^{4}$$

$$= \frac{1}{2} (\rho \cdot \pi R^{2}) R^{2} = \frac{1}{2}MR^{2}$$
 (20)

The same answer applies to a uniform cylinder about its symmetry axis. §

Problem 6

Find the moment of inertia of a uniform disk of mass M and radius R (a) about a diameter, and (b) about an axis perpendicular to the disk and passing through the rim. \S

Problem 7

Consider a uniform solid sphere of mass M and radius R. Show that the moment of inertia about a diameter is $(2/5)MR^2$. Hint: cut into thin shells and use Example 3 for each shell. §

Problem 8: Polytropic star of index n = 1*

* This is a more complicated example to illustrate how one deals with cases of non-uniform density. It should be skipped when first studying this subject.

A spherically symmetric star of radius R has a density profile given by

$$\rho(r) = \rho_c \theta \tag{21}$$

where ρ_c is the central density,

$$\theta = \frac{\sin \xi}{\xi} \tag{22}$$

and $\xi \propto r$ is dimensionless.

- (a) The density falls to zero at the surface. Express ξ in terms of r and R.
- (b) The moment of inertia about a diameter can be written as $I = \beta MR^2$. Show that

$$\beta = \frac{2}{3\pi^2} \frac{C_3}{C_1} = 0.261 \tag{23}$$

where

$$C_n \equiv \int_0^{\pi} \xi^n \sin \xi \, d\xi \tag{24}$$

Hint: Change integral from dr to $d\xi$. By the way, $\beta < 2/5$ because the mass is more concentrated near the center compared to a uniform sphere. §

Figure 1

Figure 2

$$I_A = I_C + MR_{AC}^2$$

Figure 3

Lamina in *x*-*y* plane

$$I_z = I_x + I_y$$

Figure 4

Figure 5