
Moment of inertia

January 15, 2016

A systematic account is given of the concept and
the properties of the moment of inertia.
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1 Introduction and simple
cases

1.1 Introduction

The moment of inertia I is a key concept for ro-
tations. In this elementary discussion, we consider
rotation about a fixed axis. If there are masses mα

at positions ~rα, then

I =
∑
α

mαr
2
α,⊥ (1)

where ~rα,⊥ is the perpendicular distance from the
axis to the mass; e.g., for the z-axis,

r2α,⊥ = x2α + y2α (2)

It is only necessary to specify the axis but not the
origin on the axis; in Figure 1, the origins O and
O′ would give the same moment of inertia, since
the perpendicular components of ~rα are the same;
only the parallel component is changed when the
origin is shifted along the axis.

It is interesting that the CM involves expressions
of the schematic form

∑
mx while I ∼

∑
mx2.

The moment of inertia I is the analog of the mass
m for rotational motion. For example, the angular
momentum is

L = Iω (3)

where ω is the angular velocity. By analogy with
linear motion, I denotes a kind of inertia (hence its
name) for rotational motion.

But unlike the mass, an object can have differ-
ent moments of inertia about different axes, and if
necessary we shall add a subscript, e.g., IA, to de-
note the moment of inertia about a particular axis
A. Also the moment of inertia may change if an
object is not rigid and changes shape.

If an object has a mass M and typical length
scale R (transverse to the axis), then obviously

I = βMR2 (4)

where β is a pure number of O(1).
The rest of this module is about properties of the

moment of inertia, and ways to calculate the value.

1.2 Examples

Example 1
Two point masses, each m, are at the ends of a light
rod of length R (Figure 2). What is the moment
of inertia through an axis perpendicular to the rod
and (a) through one end (IA), and (b) through the
CM (IC)? Express the answers in terms of the total
mass M = 2m and R.

IA = (m)(0) + (m)(R)2

= mR2 =
1

2
MR2

IC = (m)(R/2)2 +m(R/2)2

=
1

2
mR2 =

1

4
MR2 (5)

1



Comparing parallel axes, the moment of inertia is
smallest for an axis through the CM. We shall dis-
cuss this more formally in the next Section. §

Problem 1
An H2O molecule consists of the O atom (mass
m) connected to two H atoms (each of mass µ)
by bonds of length R. The angle between the two
bonds is 2θ. The total mass is M = m+2µ. Define
ε = 2µ/M .
(a) Find the moment of inertia IA = βAMR2 about
an axisA perpendicular to the plane of the molecule
and through the O atom. Answer: βA = ε.
(b) Find the distance y between the CM and the O
atom.
(c) Find the moment of inertia IC = βCMR2

about an axis C perpendicular to the plane of
the molecule and through the CM. Answer: βC =
ε− ε2 cos2 θ.
(d) Give numerical values for βA and βC in the case
of H2O, for which 2θ = 104.5o. §

Problem 2
Four equal masses are at the corners of a square
of side R. Find the moment of inertia, in the
form βMR2 (where M is the total mass of the sys-
tem), for axes perpendicular to the square and (a)
through a corner, (b) through the midpoint of one
side, and (c) through the CM. §

2 Two theorems

2.1 Parallel axes theorem

Consider a system of particles, not necessarily a
rigid body, with total mass M . Let C be the CM
and IC the moment of inertia about an axis through
C, and IA be the moment of inertia about another
axis parallel to the first one (Figure 3). For conve-
nience choose the point A on the second axis such
that

~RAC ≡ ~rA − ~rC (6)

is perpendicular to the axes. The parallel axes the-
orem states that

IA = IC +MR2
AC (7)

Proof
In the following, without danger of confusion, we

simplify the notation: ~RAC 7→ ~R. Choose A to
be the origin, and let the position of mα measured
from the origin be ~rα; let the position of mα mea-
sured from C be ~rα

′. Then

~r⊥,α = ~R+ ~r⊥,α
′

~r⊥,α
2 = ~R2 + 2~R · ~r⊥,α′ + ~r⊥,α

′2 (8)

(We have focused on the perpendicular compo-
nents, though the above statement is also true for
the parallel component. Also, ~R is the same as ~R⊥,
given our convention on how to define the point A.)
Multiply by mα and sum over α. The LHS is IA.
On the RHS, the first term gives (

∑
αmα)R2 =

MR2, and the last term gives
∑
αmαrα

′2 = IC .
So the theorem is proved if the cross term is zero:∑

α

mα~r⊥,α
′ = 0 (9)

which is just the property that the moment about
the CM is zero; see the module on the center of
mass.

Problem 3
Check that the two results in Example 1 agree with
this theorem. §

Problem 4
Check that the results in Problem 1 and Problem
2 agree with this theorem. §

Problem 5
For a thin circular ring of mass M and radius R,
find the moment of inertia about the following axes
perpendicular to the ring:
(a) an axis through the center;
(b) an axis through a point on the rim. §

2.2 Perpendicular axes theorem

The perpendicular axes theorem refers to a lam-
ina, i.e., a sheet with negligible thickness, say in
the x–y plane (Figure 4). Consider the moments
of inertia Ix, Iy, Iz along the three perpendicular
axes, all through the same point O on the lamina.
The moments of inertia depend on the perpendicu-
lar distances to the axes; for example, Iz depends
on x2 + y2:

Ix =
∑
α

mα

(
y2α + z2α

)
=
∑
α

mαy
2
α
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Iy =
∑
α

mα

(
x2α + z2α

)
=
∑
α

mαx
2
α

Iz =
∑
α

mα

(
x2α + y2α

)
(10)

where in the first two equations we have used the
fact that zα = 0 for a thin lamina in the x–y plane.
It therefore follows that

Iz = Ix + Iy (lamina in x–y plane) (11)

Example 2
What is the moment of inertia of a thin ring of
mass M and radius R (a) about a diameter, and
(b) about an axis P parallel to a diameter, but
passing through a point on the ring?
(a) Let the ring lie in the x–y plane. For an axis
through the center of the ring and perpendicular
to the plane, Iz = MR2, since any element of the
ring is at the same perpendicular distance R from
the axis. By the perpendicular axes theorem, Ix +
Iy = Iz, and by symmetry Ix = Iy. So Ix = Iy =
(1/2)MR2.
(b) Applying the parallel axes theorem, we get IP =
(1/2)MR2 +MR2 = (3/2)MR2. §

Example 3
Find the moment of inertia of a thin spherical shell
of mass M and radius R, about a diameter.

Consider three axes through the center. In obvi-
ous notation:

Ix =
∑
α

mα

(
y2α + z2α

)
Iy =

∑
α

mα

(
z2α + x2α

)
Iz =

∑
α

mα

(
x2α + y2α

)
(12)

Adding these together and using the fact that Ix =
Iy = Iz by symmetry, we have

3Ix = 2
∑
α

mα

(
x2α + y2α + z2α

)
= 2MR2

Ix =
2

3
MR2 (13)

The calculation relies on the following fact: al-
though each of x2α, y2α and z2α depends on α, their
sum is a constant R2 independent of α and can be
taken out of the sum. §

3 Continuous distribution

For a continuous distribution, the relevant formula
takes the form, in obvious notation,

I =
∑

∆mr2⊥ (14)

which is then turned into a suitable integral. We
illustrate with several examples.

Example 4: Uniform rod
For a uniform rod of mass M and length R, find
the moment of inertia about an axis A through one
end, and an axis C through the center (Figure 5).

Let the mass per unit length be ρ = M/R and
first choose the origin at one end. Then for a seg-
ment from x to x+ ∆x,

∆m = ρ∆x

IA =
∑

∆mx2 =
∑

(ρ∆x) x2

= ρ

∫
x2 dx = ρ · 1

3
x3 (15)

The integral is to be evaluated between x = 0 and
x = R, thus giving

IA = ρ
1

3
R3 =

1

3
MR2 (16)

For the axis C, the calculation is the same, except
that the origin is taken to be C, and the integral
(16) is to be evaluated between x = −R/2 and
x = R/2, giving

IC = =
1

12
MR2 (17)

It is left as an exercise to check that IA− IC agrees
with the parallel axes theorem. §

Example 5: Uniform disk
For a uniform circular disk of mass M and radius R,
find the moment of inertia about an axis through
the center and perpendicular to the disk.

Let the mass per unit area be ρ = M/(πR2). Cut
the disk into thin rings, each extending from r to
r + ∆r. The mass of this ring is

∆m = ρ · 2πr∆r (18)

and its moment of inertia is

∆I = ∆mr2 = (ρ · 2πr∆r) r2

= 2πρ · r3 ∆r (19)
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Adding these up, we find the moment of inertia of
the disk to be

I =
∑

∆I = 2πρ
∑

r3∆r

= 2πρ

∫ R

0

r3 dr = 2πρ · 1

4
R4

=
1

2

(
ρ · πR2

)
R2 =

1

2
MR2 (20)

The same answer applies to a uniform cylinder
about its symmetry axis. §

Problem 6
Find the moment of inertia of a uniform disk of
mass M and radius R (a) about a diameter, and
(b) about an axis perpendicular to the disk and
passing through the rim. §

Problem 7
Consider a uniform solid sphere of mass M and
radius R. Show that the moment of inertia about
a diameter is (2/5)MR2. Hint: cut into thin shells
and use Example 3 for each shell. §

Problem 8: Polytropic star of index n = 1*
* This is a more complicated example to illustrate
how one deals with cases of non-uniform density.
It should be skipped when first studying this subject.

A spherically symmetric star of radius R has a den-
sity profile given by

ρ(r) = ρc θ (21)

where ρc is the central density,

θ =
sin ξ

ξ
(22)

and ξ ∝ r is dimensionless.
(a) The density falls to zero at the surface. Express
ξ in terms of r and R.
(b) The moment of inertia about a diameter can be
written as I = βMR2. Show that

β =
2

3π2

C3

C1
= 0.261 (23)

where

Cn ≡
∫ π

0

ξn sin ξ dξ (24)

Hint: Change integral from dr to dξ. By the way,
β < 2/5 because the mass is more concentrated
near the center compared to a uniform sphere. §
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