Moment of inertia

January 15, 2016

A systematic account is given of the concept and
the properties of the moment of inertia.
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1 Introduction and simple

cases

1.1 Introduction

The moment of inertia I is a key concept for ro-
tations. In this elementary discussion, we consider
rotation about a fixed axis. If there are masses m,
at positions 7, then

— 2
I = E MaTy |
[e%

where 7, | is the perpendicular distance from the
axis to the mass; e.g., for the z-axis,

(1)

(2)

It is only necessary to specify the axis but not the
origin on the axis; in Figure 1, the origins O and
O’ would give the same moment of inertia, since
the perpendicular components of 7, are the same;
only the parallel component is changed when the
origin is shifted along the axis.

2 _ 2 2
Ta,J_ = Zq + Yo

It is interesting that the CM involves expressions
of the schematic form Y ma while I ~ Y ma?.

The moment of inertia I is the analog of the mass
m for rotational motion. For example, the angular
momentum is

L = Iw (3)

where w is the angular velocity. By analogy with
linear motion, I denotes a kind of inertia (hence its
name) for rotational motion.

But unlike the mass, an object can have differ-
ent moments of inertia about different axes, and if
necessary we shall add a subscript, e.g., 4, to de-
note the moment of inertia about a particular axis
A. Also the moment of inertia may change if an
object is not rigid and changes shape.

If an object has a mass M and typical length
scale R (transverse to the axis), then obviously

I = BMR? (4)

where (3 is a pure number of O(1).

The rest of this module is about properties of the
moment of inertia, and ways to calculate the value.

1.2 Examples

Example 1

Two point masses, each m, are at the ends of a light
rod of length R (Figure 2). What is the moment
of inertia through an axis perpendicular to the rod
and (a) through one end (14), and (b) through the
CM (I¢)? Express the answers in terms of the total
mass M = 2m and R.

Iy = (m)(0)+ (m)(R)?
= mRQ:%MR2
I =

(m)(R/2)* + m(R/2)*
1 1
5mR? = ZMR2



Comparing parallel axes, the moment of inertia is
smallest for an axis through the CM. We shall dis-
cuss this more formally in the next Section. §

Problem 1

An Hy0 molecule consists of the O atom (mass
m) connected to two H atoms (each of mass p)
by bonds of length R. The angle between the two
bonds is 20. The total mass is M = m+ 2u. Define
e=2u/M.

(a) Find the moment of inertia I4 = 4 M R? about
an axis A perpendicular to the plane of the molecule
and through the O atom. Answer: 84 = €.

(b) Find the distance y between the CM and the O
atom.

(c) Find the moment of inertia Ic = BcM R?
about an axis C perpendicular to the plane of
the molecule and through the CM. Answer: ¢ =
€ — €2 cos? 0.

(d) Give numerical values for 84 and ¢ in the case
of HyO, for which 20 = 104.5°. §

Problem 2

Four equal masses are at the corners of a square
of side R. Find the moment of inertia, in the
form SM R? (where M is the total mass of the sys-
tem), for axes perpendicular to the square and (a)
through a corner, (b) through the midpoint of one
side, and (c) through the CM. §

2 Two theorems

2.1 Parallel axes theorem

Consider a system of particles, not necessarily a
rigid body, with total mass M. Let C be the CM
and I¢ the moment of inertia about an axis through
C, and I be the moment of inertia about another
axis parallel to the first one (Figure 3). For conve-
nience choose the point A on the second axis such
that

RAC = (6)
is perpendicular to the axes. The parallel azes the-
orem states that

T4 —TC

Iy =1Ic+ MR, (7)

Proof
In the following, without danger of confusion, we

simplify the notation: Rac — R. Choose A to
be the origin, and let the position of m, measured
from the origin be 7,; let the position of m, mea-
sured from C be 7,’. Then

FJ_,oc = é + FJ_,O/

= R’2+2R»~FL,QI+FL70/2 (8)
(We have focused on the perpendicular compo-
nents, though the above statement is also true for
the parallel component. Also, R is the same as R 1,
given our convention on how to define the point A.)
Multiply by m, and sum over «. The LHS is I4.
On the RHS, the first term gives (3., ma)R? =
MR?, and the last term gives Y. mara'? = Ic.
So the theorem is proved if the cross term is zero:

Zmoﬁ_‘i@/ = 0 (9)

which is just the property that the moment about
the CM is zero; see the module on the center of
mass.

Problem 3
Check that the two results in Example 1 agree with
this theorem. §

Problem 4
Check that the results in Problem 1 and Problem
2 agree with this theorem. §
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Problem 5

For a thin circular ring of mass M and radius R,
find the moment of inertia about the following axes
perpendicular to the ring:

(a) an axis through the center;

(b) an axis through a point on the rim. §

2.2 Perpendicular axes theorem

The perpendicular axes theorem refers to a lam-
ina, i.e., a sheet with negligible thickness, say in
the z—y plane (Figure 4). Consider the moments
of inertia I, I, I, along the three perpendicular
axes, all through the same point O on the lamina.
The moments of inertia depend on the perpendicu-
lar distances to the axes; for example, I, depends
on 22 + y%:

L o= Y ma(yl+22) =) mays



I, =

Zma (xi + zi) = Zmami
« (e
Zma (Zi eri)

@

where in the first two equations we have used the
fact that z, = 0 for a thin lamina in the z—y plane.
It therefore follows that

L. = I, + I, (lanina in @y plane) | (11)

Example 2

What is the moment of inertia of a thin ring of
mass M and radius R (a) about a diameter, and
(b) about an axis P parallel to a diameter, but
passing through a point on the ring?

(a) Let the ring lie in the z—y plane. For an axis
through the center of the ring and perpendicular
to the plane, I, = MR?, since any element of the
ring is at the same perpendicular distance R from
the axis. By the perpendicular axes theorem, I, +
I, = I, and by symmetry I, = I,. So I, = I, =
(1/2)M R2.

(b) Applying the parallel axes theorem, we get Ip =
(1/2)MR? + MR?* = (3/2)MR?. §

Example 3

Find the moment of inertia of a thin spherical shell

of mass M and radius R, about a diameter.
Consider three axes through the center. In obvi-

ous notation:

I, = Z Me (yi =+ ZZ)
I, = Z Mg (zi + xi)
I, = (12)

Z Ma (xi + yi)
o

Adding these together and using the fact that I, =
I, = I, by symmetry, we have

3I, = QZma(xi—&—yi—i—zi)
= 2MR?
I, = %MRQ (13)

The calculation relies on the following fact: al-
though each of 22, y2 and 22 depends on «, their
sum is a constant R? independent of o and can be
taken out of the sum. §

3 Continuous distribution

For a continuous distribution, the relevant formula
takes the form, in obvious notation,

I = ZAmri

which is then turned into a suitable integral. We
illustrate with several examples.

(14)

Example 4: Uniform rod

For a uniform rod of mass M and length R, find

the moment of inertia about an axis A through one

end, and an axis C through the center (Figure 5).
Let the mass per unit length be p = M/R and

first choose the origin at one end. Then for a seg-

ment from z to x + Ax,

Am =

Iy, = ZAme = Z(pA:z:) z?

1.
= p/a:de: ~§x‘3

The integral is to be evaluated between x = 0 and
x = R, thus giving

(15)

1 1
In = p-R*=_-MR? (16)
3 3
For the axis C, the calculation is the same, except
that the origin is taken to be C', and the integral
(16) is to be evaluated between z = —R/2 and
x = R/2, giving
1
—MR?
12
It is left as an exercise to check that 14 — I agrees
with the parallel axes theorem. §

Ie= = (17)

Example 5: Uniform disk
For a uniform circular disk of mass M and radius R,
find the moment of inertia about an axis through
the center and perpendicular to the disk.

Let the mass per unit area be p = M/(7R?). Cut
the disk into thin rings, each extending from r to
r + Ar. The mass of this ring is

Am = p-27rAr (18)

and its moment of inertia is

Al = Amr®=(p-2nrAr) r?

= 2mp-1r3Ar (19)



Adding these up, we find the moment of inertia of
the disk to be

I= Al =27p Zr?’Ar
R

1
= 2mp / r3dr=2mp- -R*
0 4
- ! (p-mR*) R* = Lyvr? (20)
2 2
The same answer applies to a uniform cylinder
about its symmetry axis. §

Problem 6

Find the moment of inertia of a uniform disk of
mass M and radius R (a) about a diameter, and
(b) about an axis perpendicular to the disk and
passing through the rim. §

Problem 7

Consider a uniform solid sphere of mass M and
radius R. Show that the moment of inertia about
a diameter is (2/5)M R%. Hint: cut into thin shells
and use Example 3 for each shell. §

Problem 8: Polytropic star of index n = 1*

* This is a more complicated example to illustrate
how one deals with cases of non-uniform density.
It should be skipped when first studying this subject.

A spherically symmetric star of radius R has a den-
sity profile given by

p(r) = pcb (21)

where p, is the central density,
sin &
0 = — (22)
£

and £ « r is dimensionless.
(a) The density falls to zero at the surface. Express
¢ in terms of r and R.
(b) The moment of inertia about a diameter can be
written as I = SM R?. Show that

8 = 20, 0.261 (23)
where
C, = / M sin € d€ (24)
0

Hint: Change integral from dr to d¢. By the way,
B < 2/5 because the mass is more concentrated
near the center compared to a uniform sphere. §
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I, = I + MR%,

Figure 3

mmO006



Lamina in x-y plane

I, =1, +1,

Figure 4
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